1
|
Deshpande AR, Pochapsky TC, Ringe D. The Metal Drives the Chemistry: Dual Functions of Acireductone Dioxygenase. Chem Rev 2017; 117:10474-10501. [PMID: 28731690 DOI: 10.1021/acs.chemrev.7b00117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Acireductone dioxygenase (ARD) from the methionine salvage pathway (MSP) is a unique enzyme that exhibits dual chemistry determined solely by the identity of the divalent transition-metal ion (Fe2+ or Ni2+) in the active site. The Fe2+-containing isozyme catalyzes the on-pathway reaction using substrates 1,2-dihydroxy-3-keto-5-methylthiopent-1-ene (acireductone) and dioxygen to generate formate and the ketoacid precursor of methionine, 2-keto-4-methylthiobutyrate, whereas the Ni2+-containing isozyme catalyzes an off-pathway shunt with the same substrates, generating methylthiopropionate, carbon monoxide, and formate. The dual chemistry of ARD was originally discovered in the bacterium Klebsiella oxytoca, but it has recently been shown that mammalian ARD enzymes (mouse and human) are also capable of catalyzing metal-dependent dual chemistry in vitro. This is particularly interesting, since carbon monoxide, one of the products of off-pathway reaction, has been identified as an antiapoptotic molecule in mammals. In addition, several biochemical and genetic studies have indicated an inhibitory role of human ARD in cancer. This comprehensive review describes the biochemical and structural characterization of the ARD family, the proposed experimental and theoretical approaches to establishing mechanisms for the dual chemistry, insights into the mechanism based on comparison with structurally and functionally similar enzymes, and the applications of this research to the field of artificial metalloenzymes and synthetic biology.
Collapse
Affiliation(s)
- Aditi R Deshpande
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Thomas C Pochapsky
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Dagmar Ringe
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| |
Collapse
|
2
|
Deshpande AR, Pochapsky TC, Petsko GA, Ringe D. Dual chemistry catalyzed by human acireductone dioxygenase. Protein Eng Des Sel 2017; 30:197-204. [PMID: 28062648 DOI: 10.1093/protein/gzw078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/15/2016] [Indexed: 11/14/2022] Open
Abstract
Acireductone dioxygenase (ARD) from the methionine salvage pathway of Klebsiella oxytoca is the only known naturally occurring metalloenzyme that catalyzes different reactions in vivo based solely on the identity of the divalent transition metal ion (Fe2+ or Ni2+) bound in the active site. The iron-containing isozyme catalyzes the cleavage of substrate 1,2-dihydroxy-3-keto-5-(thiomethyl)pent-1-ene (acireductone) by O2 to formate and the ketoacid precursor of methionine, whereas the nickel-containing isozyme uses the same substrates to catalyze an off-pathway shunt to form methylthiopropionate, carbon monoxide and formate. This dual chemistry was recently demonstrated in vitro by ARD from Mus musculus (MmARD), providing the first example of a mammalian ARD exhibiting metal-dependent catalysis. We now show that human ARD (HsARD) is also capable of metal-dependent dual chemistry. Recombinant HsARD was expressed and purified to obtain a homogeneous enzyme with a single transition metal ion bound. As with MmARD, the Fe2+-bound HsARD shows the highest activity and catalyzes on-pathway chemistry, whereas Ni2+, Co2+ or Mn2+ forms catalyze off-pathway chemistry. The thermal stability of the HsARD isozymes is a function of the metal ion identity, with Ni2+-bound HsARD being the most stable followed by Co2+ and Fe2+, and Mn2+-bound HsARD being the least stable. As with the bacterial ARD, solution NMR data suggest that HsARD isozymes can have significant structural differences depending upon the metal ion bound.
Collapse
Affiliation(s)
- Aditi R Deshpande
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Thomas C Pochapsky
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.,Department of Chemistry, Brandeis University, Waltham, MA 02454, USA.,Rosenstiel Institute for Basic Biomedical Research, Brandeis University, Waltham, MA 02454, USA
| | - Gregory A Petsko
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.,Department of Chemistry, Brandeis University, Waltham, MA 02454, USA.,Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Dagmar Ringe
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.,Department of Chemistry, Brandeis University, Waltham, MA 02454, USA.,Rosenstiel Institute for Basic Biomedical Research, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
3
|
Deshpande AR, Wagenpfeil K, Pochapsky TC, Petsko GA, Ringe D. Metal-Dependent Function of a Mammalian Acireductone Dioxygenase. Biochemistry 2016; 55:1398-407. [PMID: 26858196 PMCID: PMC5319410 DOI: 10.1021/acs.biochem.5b01319] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The two acireductone dioxygenase (ARD) isozymes from the methionine salvage pathway of Klebsiella oxytoca are the only known pair of naturally occurring metalloenzymes with distinct chemical and physical properties determined solely by the identity of the divalent transition metal ion (Fe(2+) or Ni(2+)) in the active site. We now show that this dual chemistry can also occur in mammals. ARD from Mus musculus (MmARD) was studied to relate the metal ion identity and three-dimensional structure to enzyme function. The iron-containing isozyme catalyzes the cleavage of 1,2-dihydroxy-3-keto-5-(thiomethyl)pent-1-ene (acireductone) by O2 to formate and the ketoacid precursor of methionine, which is the penultimate step in methionine salvage. The nickel-bound form of ARD catalyzes an off-pathway reaction resulting in formate, carbon monoxide (CO), and 3-(thiomethyl) propionate. Recombinant MmARD was expressed and purified to obtain a homogeneous enzyme with a single transition metal ion bound. The Fe(2+)-bound protein, which shows about 10-fold higher activity than that of others, catalyzes on-pathway chemistry, whereas the Ni(2+), Co(2+), or Mn(2+) forms exhibit off-pathway chemistry, as has been seen with ARD from Klebsiella. Thermal stability of the isozymes is strongly affected by the metal ion identity, with Ni(2+)-bound MmARD being the most stable, followed by Co(2+) and Fe(2+), and Mn(2+)-bound ARD being the least stable. Ni(2+)- and Co(2+)-bound MmARD were crystallized, and the structures of the two proteins found to be similar. Enzyme-ligand complexes provide insight into substrate binding, metal coordination, and the catalytic mechanism.
Collapse
Affiliation(s)
| | | | - Thomas C. Pochapsky
- Department of Biochemistry, Brandeis University, Waltham, MA 02454,Department of Chemistry, Brandeis University, Waltham, MA 02454,Rosenstiel Institute for Basic Biomedical Research, Brandeis University, Waltham, MA 02454
| | - Gregory A. Petsko
- Department of Biochemistry, Brandeis University, Waltham, MA 02454,Department of Chemistry, Brandeis University, Waltham, MA 02454,Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medical College, New York, NY 10065
| | - Dagmar Ringe
- Department of Biochemistry, Brandeis University, Waltham, MA 02454,Department of Chemistry, Brandeis University, Waltham, MA 02454,Rosenstiel Institute for Basic Biomedical Research, Brandeis University, Waltham, MA 02454,Corresponding Author. To whom correspondence should be addressed. . Phone: 781-736-4902
| |
Collapse
|
4
|
Affiliation(s)
- Michael J Maroney
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | | |
Collapse
|
5
|
Albers E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5â²-methylthioadenosine. IUBMB Life 2009; 61:1132-42. [DOI: 10.1002/iub.278] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Chai SC, Ju T, Dang M, Goldsmith RB, Maroney MJ, Pochapsky TC. Characterization of metal binding in the active sites of acireductone dioxygenase isoforms from Klebsiella ATCC 8724. Biochemistry 2008; 47:2428-38. [PMID: 18237192 DOI: 10.1021/bi7004152] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The two acireductone dioxygenase (ARD) isozymes from the methionine salvage pathway of Klebsiella ATCC 8724 present an unusual case in which two enzymes with different structures and distinct activities toward their common substrates (1,2-dihydroxy-3-oxo-5-(methylthio)pent-1-ene and dioxygen) are derived from the same polypeptide chain. Structural and functional differences between the two isozymes are determined by the type of M2+ metal ion bound in the active site. The Ni2+-bound NiARD catalyzes an off-pathway shunt from the methionine salvage pathway leading to the production of formate, methylthiopropionate, and carbon monoxide, while the Fe2+-bound FeARD' catalyzes the on-pathway formation of methionine precursor 2-keto-4-methylthiobutyrate and formate. Four potential protein-based metal ligands were identified by sequence homology and structural considerations. Based on the results of site-directed mutagenesis experiments, X-ray absorption spectroscopy (XAS), and isothermal calorimetry measurements, it is concluded that the same four residues, His96, His98, Glu102 and His140, provide the protein-based ligands for the metal in both the Ni- and Fe-containing forms of the enzyme, and subtle differences in the local backbone conformations trigger the observed structural and functional differences between the FeARD' and NiARD isozymes. Furthermore, both forms of the enzyme bind their respective metals with pseudo-octahedral geometry, and both may lose a histidine ligand upon binding of substrate under anaerobic conditions. However, mutations at two conserved nonligand acidic residues, Glu95 and Glu100, result in low metal contents for the mutant proteins as isolated, suggesting that some of the conserved charged residues may aid in transfer of metal from in vivo sources or prevent the loss of metal to stronger chelators. The Glu100 mutant reconstitutes readily but has low activity. Mutation of Asp101 results in an active enzyme that incorporates metal in vivo but shows evidence of mixed forms.
Collapse
Affiliation(s)
- Sergio C Chai
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | |
Collapse
|
7
|
Schlenk F. Methylthioadenosine. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 54:195-265. [PMID: 6405586 DOI: 10.1002/9780470122990.ch4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Abstract
Parasites are responsible for a wide variety of infectious diseases in human as well as in domestic and wild animals, causing an enormous health and economical blight. Current containment strategies are not entirely successful and parasitic infections are on the rise. In the absence of availability of antiparasitic vaccines, chemotherapy remains the mainstay for the treatment of most parasitic diseases. However, there is an urgent need for new drugs to prevent or combat some major parasitic infections because of lack of a single effective approach for controlling the parasites (e.g., trypanosomiasis) or because some serious parasitic infections developed resistance to presently available drugs (e.g., malaria). The rational design of a drug is usually based on biochemical and physiological differences between pathogens and host. Some of the most striking differences between parasites and their mammalian host are found in purine metabolism. Purine nucleotides can be synthesized by the de novo and/or the so-called "salvage" pathways. Unlike their mammalian host, most parasites studied lack the pathways for de novo purine biosynthesis and rely on the salvage pathways to meet their purine demands. Moreover, because of the great phylogenic separation between the host and the parasite, there are in some cases sufficient distinctions between corresponding enzymes of the purine salvage from the host and the parasite that can be exploited to design specific inhibitors or "subversive substrates" for the parasitic enzymes. Furthermore, the specificities of purine transport, the first step in purine salvage, diverge significantly between parasites and their mammalian host. This review highlights the unique transporters and enzymes responsible for the salvage of purines in parasites that could constitute excellent potential targets for the design of safe and effective antiparasitic drugs.
Collapse
Affiliation(s)
- Mahmoud H el Kouni
- Department of Pharmacology and Toxicology, Center for AIDS Research, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
9
|
Abstract
Two enzymes, designated, E-2 and E-2', catalyze different oxidation reactions of an aci-reductone intermediate in the methionine salvage pathway. E-2 and E-2', overproduced in Escherichia coli from the same gene, have the same protein component. E-2 and E-2' are separable on an anion exchange column or a hydrophobic column. Their distinct catalytic and chromatographic properties result from binding different metals. The apo-enzyme, obtained after metal is removed from either enzyme, is catalytically inactive. Addition of Ni2+ or Co2+ to the apo-protein yields E-2 activity. E-2' activity is obtained when Fe2+ is added. Production in intact E. coli of E-2 and E-2' depends on the availability of the corresponding metals. These observations suggest that the metal component dictates reaction specificity.
Collapse
Affiliation(s)
- Y Dai
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453-2728, USA
| | | | | |
Collapse
|
10
|
Gatel M, Muzard M, Guillerm D, Guillerm G. Kinetic properties of fluorinated substrate analogues on 5′-methylthioadenosine nucleosidase from Escherichia coli. Eur J Med Chem 1996. [DOI: 10.1016/s0223-5234(96)80004-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Myers RW, Wray JW, Fish S, Abeles RH. Purification and characterization of an enzyme involved in oxidative carbon-carbon bond cleavage reactions in the methionine salvage pathway of Klebsiella pneumoniae. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74533-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Hammargren WM, Luffer DR, Schram KH, Reimer MLJ, Nakano K, Yasaka T, Moorman AR. The Identification of 5′-Deoxy-5′-Methylthioguanosine in Human Urine by Gas Chromatography/Mass Spectrometry. ACTA ACUST UNITED AC 1992. [DOI: 10.1080/07328319208018342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Tower PA, Johnson LL, Ferro AJ, Fitchen JH, Riscoe MK. Synergistic activity of 5-trifluoromethylthioribose and inhibitors of methionine synthesis against Klebsiella pneumoniae. Antimicrob Agents Chemother 1991; 35:1557-61. [PMID: 1929327 PMCID: PMC245218 DOI: 10.1128/aac.35.8.1557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
5-Methylthioribose (MTR) is an intermediate in the methionine recycling pathway of organisms containing the enzyme MTR kinase. Analogs of MTR have been proposed as a new class of antimicrobial agents because of their ability to perturb the growth of MTR kinase-containing pathogens through inhibition of methionine salvage or by conversion to toxic products. One such analog, 5-trifluoromethylthioribose (TFMTR), has demonstrated potent inhibitory effects on the growth of Klebsiella pneumoniae (A. G. Gianotti, P. A. Tower, J. H. Sheley, P. A. Conte, C. Spiro, J. H. Fitchen, and M. K. Riscoe, J. Biol. Chem. 265:831-837, 1990). Although the mode of action of TFMTR has yet to be determined, it is believed that the drug is converted to the toxic products trifluoromethionine or carbonothioic difluoride via MTR kinase and the methionine recycling pathway. On the basis of this assumption, we theorized that blocking de novo methionine synthesis would increase dependence on the methionine salvage pathway and lead to an increased rate of synthesis of toxic metabolites from TFMTR. In this report, we show that three separate inhibitors of de novo methionine synthesis (1,2,4-triazole, azaserine, and propargylglycine) act synergistically with TFMTR in inhibiting the growth of K. pneumoniae.
Collapse
Affiliation(s)
- P A Tower
- Medical Research Service, Department of Veterans Affairs Medical Center, Beaverton, Oregon
| | | | | | | | | |
Collapse
|
14
|
Myers RW, Abeles RH. Conversion of 5-S-methyl-5-thio-D-ribose to methionine in Klebsiella pneumoniae. Stable isotope incorporation studies of the terminal enzymatic reactions in the pathway. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)44848-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Abstract
Two subjects are discussed: first, the regulation of hepatic protein synthesis; and second, the intermediary metabolism of methionine, particularly with respect to the role of 2-hydroxy-4-(methylthio)-butanoic acid (HMB, Alimet). In the first section, the regulation of albumin synthesis is reviewed in terms of molecular events associated with the changes in albumin synthesis during fasting and refeeding. The effect of infection or of inflammatory stress on both albumin and total protein synthesis in the liver is also discussed. In the second part, research results are presented which indicate that HMB is a naturally occurring compound in methionine intermediary metabolism. The HMB synthesis by chick liver enzymes is demonstrated, and its role in normal avian methionine metabolism is discussed.
Collapse
Affiliation(s)
- J J Dibner
- Monsanto Company, Animal Sciences Division, Chesterfield, Missouri 63198
| | | |
Collapse
|
16
|
Selective killing of Klebsiella pneumoniae by 5-trifluoromethylthioribose. Chemotherapeutic exploitation of the enzyme 5-methylthioribose kinase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40124-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
17
|
|
18
|
Riscoe MK, Ferro AJ, Fitchen JH. Analogs of 5-methylthioribose, a novel class of antiprotozoal agents. Antimicrob Agents Chemother 1988; 32:1904-6. [PMID: 2854458 PMCID: PMC176044 DOI: 10.1128/aac.32.12.1904] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Since drug resistance and toxicity limit the use of available antiprotozoal agents, it is important that new drugs be developed as soon as possible. In this study, the method by which several protozoa degrade 5'-methylthioadenosine (MTA) was shown to differ from MTA catabolism in human cells. To exploit this metabolic difference, two analogs of methylthioribose (MTR), an MTA catabolite, were synthesized and found to be cytocidal to Plasmodium falciparum, Giardia lamblia, and Ochromonas malhamensis in vitro. In contrast, these analogs had no effect on cultured mammalian cells. Analogs of MTR represent a potential new class of antiprotozoal drugs.
Collapse
Affiliation(s)
- M K Riscoe
- Medical Research Service, Portland Veterans Administration Medical Center, Oregon 97207
| | | | | |
Collapse
|
19
|
Furfine ES, Abeles RH. Intermediates in the conversion of 5′-S-methylthioadenosine to methionine in Klebsiella pneumoniae. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81558-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Ghoda LY, Savarese TM, Northup CH, Parks RE, Garofalo J, Katz L, Ellenbogen BB, Bacchi CJ. Substrate specificities of 5'-deoxy-5'-methylthioadenosine phosphorylase from Trypanosoma brucei brucei and mammalian cells. Mol Biochem Parasitol 1988; 27:109-18. [PMID: 3125430 DOI: 10.1016/0166-6851(88)90030-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The separation by chromatofocusing of two distinct purine nucleoside cleaving activities from crude extracts of Trypanosoma brucei brucei is described. One catalyzes the reversible phosphorolysis of 5'-deoxy-5'-methylthioadenosine (MeSAdo) and adenosine (Ado) and was designated an MeSAdo/Ado phosphorylase, while the other catalyzes the hydrolysis of adenosine, inosine, and guanosine but not MeSAdo. The substrate specificity of trypanosomal MeSAdo/Ado phosphorylase differed from that of a mammalian MeSAdo phosphorylase (derived from murine Sarcoma 180 cells) in that it was able to phosphorolyze 2'-deoxyadenosine, 3'-deoxyadenosine and 2',3'-dideoxyadenosine. In addition, the trypanosomal phosphorylase was able to utilize the nucleoside analog, 6-methylpurine 2'-deoxyribonucleoside, as an alternative substrate, whereas the mammalian enzyme could not. Because of these differences, cytotoxic analogs of MeSAdo may be designed that are selectively activated by the trypanosomal MeSAdo/Ado phosphorylase.
Collapse
Affiliation(s)
- L Y Ghoda
- Division of Biology and Medicine, Brown University, Providence, RI 02912
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Fitchen JH, Riscoe MK, Ferro AJ. Exploitation of methylthioribose kinase in the development of antiprotozoal drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 250:199-210. [PMID: 2855560 DOI: 10.1007/978-1-4684-5637-0_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- J H Fitchen
- Medical Research Service, Portland V.A. Medical Center, OR
| | | | | |
Collapse
|
22
|
Valentine WN, Toohey JI, Paglia DE, Nakatani M, Brockway RA. Modification of erythrocyte enzyme activities by persulfides and methanethiol: possible regulatory role. Proc Natl Acad Sci U S A 1987; 84:1394-8. [PMID: 3469673 PMCID: PMC304436 DOI: 10.1073/pnas.84.5.1394] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Sulfhydryl modification of 22 human erythrocyte enzymes was achieved by exposing intact erythrocytes, hemolysates, and partially purified enzymes to persulfides (RSSH) generated nonenzymatically from cystine in the presence of pyridoxal phosphate and mercaptopyruvate, which donates its sulfur to suitable acceptors with the mediation of the carrier enzyme, mercaptopyruvate sulfurtransferase (EC 2.8.1.2). The inhibition pattern was qualitatively similar for persulfides and that previously reported by us for the methylthio-group donor, methyl methanethiosulfonate. Thirteen activities were inhibited, and 9 were minimally or not at all affected. Pyruvate kinase was similarly modified by all systems in terms of phosphoenolpyruvate kinetics, thermostability, and interaction with the negative effector ATP. Partial-to-complete reversal of inhibition was documented in a subset of activities inhibited by mercaptopyruvate upon 30-min incubation with 1 mM dithiothreitol. A possible physiologic role for methylthio groups and for persulfides is discussed.
Collapse
|
23
|
Gunnison AF, Jacobsen DW. Sulfite hypersensitivity. A critical review. CRC CRITICAL REVIEWS IN TOXICOLOGY 1987; 17:185-214. [PMID: 3556020 DOI: 10.3109/10408448709071208] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sulfiting agents (sulfur dioxide and the sodium and potassium salts of bisulfite, sulfite, and metabisulfite) are widely used as preservatives in foods, beverages, and pharmaceuticals. Within the past 5 years, there have been numerous reports of adverse reactions to sulfiting agents. This review presents a comprehensive compilation and discussion of reports describing reactions to ingested, inhaled, and parenterally administered sulfite. Sulfite hypersensitivity is usually, but not exclusively, found within the chronic asthmatic population. Although there is some disagreement on its prevalence, a number of studies have indicated that 5 to 10% of all chronic asthmatics are sulfite hypersensitive. This review also describes respiratory sulfur dioxide sensitivity which essentially all asthmatics experience. Possible mechanisms of sulfite hypersensitivity and sulfur dioxide sensitivity are discussed in detail. Sulfite metabolism and the role of sulfite oxidase in the detoxification of exogenous sulfite are reviewed in relationship to the etiology of sulfite hypersensitivity.
Collapse
|
24
|
Abstract
A method for determination of 4-methylthio-2-hydroxybutyrate and 4-methylthio-2-oxobutyrate in human urine has been devised, based on metoxime formation of the keto acid and a clean-up procedure using a strong anion-exchange resin AG 2 X 8 and ethyl acetate extraction. After alkylation, the compounds were quantified by GC, using a flame photometric sulfur-selective detector. A normal urinary excretion of 0.14 to 0.25 mmol/mol creatinine and 0.07 to 0.22 mmol/mol creatinine of the alpha-hydroxy and alpha-keto acid, respectively, was found, whereas a markedly elevated excretion of the hydroxy acid was noted in subjects with hypermethioninemia. The enzymatic reduction of 4-methylthio-2-oxobutyric acid by lactate dehydrogenase: NAD+ oxidoreductase (EC 1.1.1.17) was also studied. The Km and Kequil values for 4-methylthio-2-oxobutyrate were 1.41 mM and 0.92 X 10(8) M-1. The Vmax value of the enzyme at infinite concentrations of the two substrates was 7.2 mumol/s/mumol enzyme, which indicates low affinity and reduced catalytic activity compared to other known substrates of lactate dehydrogenase. The reaction product 4-methylthio-2-hydroxybutyrate was not inhibitory on the reaction. The M4 isoenzyme of lactate dehydrogenase (rabbit and pig muscle) possessed approximately 20% of the activity of the H4 isoenzyme (pig heart) for the substrate.
Collapse
|
25
|
|
26
|
Ghoda LY, Savarese TM, Dexter DL, Parks RE, Trackman PC, Abeles RH. Characterization of a defect in the pathway for converting 5‘-deoxy-5‘-methylthioadenosine to methionine in a subline of a cultured heterogeneous human colon carcinoma. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)39787-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
27
|
|
28
|
Christa L, Thuillier L, Munier A, Perignon JL. Salvage of 5'-deoxy-methylthioadenosine into purines and methionine by lymphoid cells and inhibition of cell proliferation. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 803:7-10. [PMID: 6421333 DOI: 10.1016/0167-4889(84)90048-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
5'-Deoxy-5'-methylthioadenosine, a by-product of polyamine metabolism, is a potent inhibitor of cell proliferation. MTA phosphorylase cleaves MTA into adenine and 5'-methylthioribose-1-P. We studied MTA inhibition and salvage into purine compounds and methionine in concanavalin A-stimulated rat T lymphocytes and in Raji cells. When de novo purine synthesis was inhibited by azaserine (20 microM), low concentrations of MTA, (less than or equal to 20 microM), were able to completely restore cell proliferation in both types of cells. When cells were cultured in a methionine-free medium, MTA (15 microM) completely fulfilled the methionine requirement of Raji cells but only 50% of that of rat T lymphocytes. MTA displayed a dose-dependent inhibition of the proliferation of both types of cells, but in the case of MTA salvage into purines or methionine, the curves were shifted to higher MTA concentrations. In vitro studies by Backlund et al. (Backlund, P.S., Chang, C.P. and Smith, R.A. (1982) J. Biol. Chem. 257, 4196-4202) on rat liver homogenates, suggested that the last step of MTA salvage into methionine may be the transamination of 2-keto-4-methylthiobutyrate to methionine. We present evidence that this is a step physiologically efficient in intact cells.
Collapse
|
29
|
Abstract
Typical enzyme kinetics were observed when 5'-methylthioadenosine was used as substrate with extracts of malignant murine cells in a diffusion assay. The volatile product was measured after diffusion into a solution of the sulfhydryl reagent, 5,5'-dithiobis(2-nitrobenzoic acid), which it reduced to a yellow chromophore. Cysteine was required in the system. The volatile product was identified as H2S derived from the cysteine. The yield of H2S was similar to the amount of 2-keto-4-methylthiobutyric acid (KMTB) formed from methylthioadenosine when the KMTB was measured simultaneously in an ether extraction assay. KMTB could replace methylthioadenosine as a substrate capable of causing the formation of the diffusible product from cysteine. It is concluded that the following sequence of reactions takes place in the diffusion assay system: (1) 5'-methylthioadenosine + Pi leads to adenine + 5-methylthioribose-1-P, (2) 5-methylthioribose-1-P leads to KMTB, (3) KMTB + cysteine leads to methionine + 3-mercaptopyruvate, (4) 3-mercaptopyruvate + excess R-SH leads to pyruvate + H2S, (5) H2S + 5,5'-dithiobis(2-nitrobenzoic acid) leads to 5-mercapto-2-nitrobenzoic acid. Thus, the diffusion assay measures the amount of KMTB formed. The key enzyme, cysteine aminotransferase, EC 2.6.1.3, was partially purified from malignant cells and from liver and several of its characteristics are described. The diffusion assay using this enzyme is useful in measuring de novo synthesis of alpha-keto acids and it is applicable to crude enzyme preparations. The sensitivity is about 5 nmol of keto acid and the accurate range is 5 to 100 nmol.
Collapse
|
30
|
Trackman PC, Abeles RH. Methionine synthesis from 5'-S-Methylthioadenosine. Resolution of enzyme activities and identification of 1-phospho-5-S methylthioribulose. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32277-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Abbruzzese A, Della Pietra G, Porta R. Occurrence of 5'-deoxy-5'-methylthioadenosine phosphorylase in the mammalian CNS: distribution and kinetic studies on the rat brain enzyme. J Neurochem 1983; 40:487-92. [PMID: 6401802 DOI: 10.1111/j.1471-4159.1983.tb11309.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
5'-Deoxy-5'-methylthioadenosine (MTA) phosphorylase catalyzes the cleavage of MTA, a secondary product of polyamine biosynthesis, to 5-methylthioribose-1-phosphate and adenine. The occurrence and the general properties of the enzyme were studied in mammalian brain with the following results. (1) Cerebral tissues contained levels of MTA phosphorylase that were comparable to those occurring in other mammalian tissues. (2) Interspecies differences in the enzyme distribution were quite limited, with the highest specific activity values observed in pig brain. Moreover, the enzyme seemed to be generally more concentrated in the cerebellar fractions. (3) Rat brain MTA phosphorylase was highly localized in the cellular soluble fraction. In the first days of rat life, its specific activity in the whole brain was observed to decline significantly from a value of 17.6 units/mg at 1-5 days of age to 13.7 units/mg at 6-10 days of age, remaining then fairly constant up to maturity. (4) Kinetic studies performed with the soluble enzyme extracted from rat brain showed: a pH optimum of 7.4; a Km value for MTA of about 10 microM; an inhibitory effect of the MTA analog 5'-deoxy-5'-isobutylthioadenosine; and a remarkable resistance of the enzyme to heat treatment.
Collapse
|
32
|
|
33
|
|
34
|
Backlund PS, Smith RA. 5'-Methylthioadenosine metabolism and methionine synthesis in mammalian cells grown in culture. Biochem Biophys Res Commun 1982; 108:687-95. [PMID: 6959620 DOI: 10.1016/0006-291x(82)90884-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Kushad MM, Richardson DG, Ferro AJ. 5-Methylthioribose kinase activity in plants. Biochem Biophys Res Commun 1982; 108:167-73. [PMID: 6293478 DOI: 10.1016/0006-291x(82)91846-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Guranowski A, Paszewski A. Metabolism of 5'-methylthioadenosine in Aspergillus nidulans. An alternative pathway for methionine synthesis via utilization of the nucleoside methylthio group. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 717:289-94. [PMID: 7052140 DOI: 10.1016/0304-4165(82)90181-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Experiments in which 5'-methylthioadenosine was used as a culture supplement for methionine-requiring mutants of Aspergillus nidulans with various enzymatic lesions indicated that the methylthio group derived from the nucleoside can be recycled to methionine. The results strongly suggest that methionine may be synthesized in the reaction catalyzed by homocysteine synthase (EC 4.2.99.10) in which O-acetylhomoserine is an acceptor of the methylthio group. The first step on the salvage pathway of the methylthio group is, in Aspergillus nidulans, phosphorolytic cleavage of 5'-methylthioadenosine to adenine and 5-methylthioribose 1-phosphate catalyzed by a specific phosphorylase.
Collapse
|
37
|
Mamont PS, Danzin C, Wagner J, Siat M, Joder-Ohlenbusch AM, Claverie N. Accumulation of decarboxylated S-adenosyl-L-methionine in mammalian cells as a consequence of the inhibition of putrescine biosynthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 123:499-504. [PMID: 6804235 DOI: 10.1111/j.1432-1033.1982.tb06559.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biological transmethylation reactions and polyamine biosynthesis share the substrate S-adenosyl-L-methionine. Under normal conditions, decarboxylated S-adenosyl-L-methionine, the aminopropyl donor for polyamine biosynthesis, does not accumulate because of its rapid utilization in spermidine and spermine synthesis. Alteration of polyamine synthesis by DL-alpha-difluoromethylornithine, an enzyme-activated irreversible inhibitor of L-ornithine decarboxylase, leads to a striking accumulation of decarboxylated S-adenosyl-L-methionine in rat hepatoma cells cultured in vitro and in rat ventral prostate. This increase is due both to lack of putrescine and spermidine for the aminopropyltransferase reactions and to the elevation of S-adenosyl-L-methionine decarboxylase activity. The biological implications of accumulation of decarboxylated S-adenosyl-L-methionine are discussed with regard to the regulation of S-adenosyl-L-methionine decarboxylase activity and to the antiproliferative effects of DL-alpha-difluoromethylornithine.
Collapse
|
38
|
Yung KH, Yang SF, Schlenk F. Methionine synthesis from 3-methylthioribose in apple tissue. Biochem Biophys Res Commun 1982; 104:771-7. [PMID: 6803789 DOI: 10.1016/0006-291x(82)90704-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
39
|
Chapter 25. Polyamine Metabolism - Recent Developments and Implications for the Design of New Chemotherapeutic Agents. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1982. [DOI: 10.1016/s0065-7743(08)60507-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
40
|
|