1
|
K Glenn J, H Gold M. Reprint of: Purification and Characterization of an Extracellular Mn(ll)-Dependent Peroxidase from the Lignin-Degrading Basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 2022; 726:109251. [PMID: 35680439 DOI: 10.1016/j.abb.2022.109251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A Mn(II)-dependent peroxidase found in the extracellular medium of ligninolytic cultures of the white rot fungus, Phanerochaete chrysosporium, was purified by DEAE-Sepharose ion-exchange chromatography, Blue Agarose chromatography, and gel filtration on Sephadex G-100. Sodium dodecyl sulfate-gel electrophoresis indicated that the homogeneous protein has an Mr of 46,000. The absorption spectrum of the enzyme indicates the presence of a heme prosthetic group. The pyridine hemochrome absorption spectrum indicates that the enzyme contained one molecule of heme as iron protoporphyrin IX. The absorption maximum of the native enzyme (406 nm) shifted to 433 nm in the reduced enzyme and to 423 nm in the reduced-CO complex. Both CN- and N3- readily bind to the native enzyme, indicating an available coordination site and that the heme iron is high spin. The absorption spectrum of the H2O2 enzyme complex, maximum at 420 nm, is similar to that of horseradish peroxidase compound II. P. chrysosporium peroxidase activity is dependent on Mn(II), with maximal activity attained above 100 μM. The enzyme is also stimulated to varying degrees by α-hydroxy acids (e.g., malic, lactic) and protein (e.g., gelatin, albumin). The peroxidase is capable of oxidizing NADH and a wide variety of dyes, including Poly B-411 and Poly R-481. Several of the substrates (indigo trisulfonate, NADH, Poly B-411, variamine blue RT salt, and Poly R-481) are oxidized by this Mn(II)-dependent peroxidase at considerably faster rates than those catalyzed by horseradish peroxidase. The enzyme rapidly oxidizes Mn(II) to Mn(III); the latter was detected by the characteristic absorption spectrum of its pyrophosphate complex. Inhibition of the oxidation of the substrate diammonium 2,2-azino-bis(3-ethyl- 6-benzothiazolinesulfonate) (ABTS) by Na-pyrophosphate suggests that Mn(III) plays a role in the enzyme mechanism. © 1985 Academic Press, Inc.
Collapse
Affiliation(s)
- Jeffrey K Glenn
- Department of Chemical, Biological, and. Environmental Sciences, Oregon Graduate Center, Beaverton, Oregon, 97006-1999
| | - Michael H Gold
- Department of Chemical, Biological, and. Environmental Sciences, Oregon Graduate Center, Beaverton, Oregon, 97006-1999
| |
Collapse
|
2
|
Rashid GMM, Taylor CR, Liu Y, Zhang X, Rea D, Fülöp V, Bugg TDH. Identification of Manganese Superoxide Dismutase from Sphingobacterium sp. T2 as a Novel Bacterial Enzyme for Lignin Oxidation. ACS Chem Biol 2015. [PMID: 26198187 DOI: 10.1021/acschembio.5b00298] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The valorization of aromatic heteropolymer lignin is an important unsolved problem in the development of a biomass-based biorefinery, for which novel high-activity biocatalysts are needed. Sequencing of the genomic DNA of lignin-degrading bacterial strain Sphingobacterium sp. T2 revealed no matches to known lignin-degrading genes. Proteomic matches for two manganese superoxide dismutase proteins were found in partially purified extracellular fractions. Recombinant MnSOD1 and MnSOD2 were both found to show high activity for oxidation of Organosolv and Kraft lignin, and lignin model compounds, generating multiple oxidation products. Structure determination revealed that the products result from aryl-Cα and Cα-Cβ bond oxidative cleavage and O-demethylation. The crystal structure of MnSOD1 was determined to 1.35 Å resolution, revealing a typical MnSOD homodimer harboring a five-coordinate trigonal bipyramidal Mn(II) center ligated by three His, one Asp, and a water/hydroxide in each active site. We propose that the lignin oxidation reactivity of these enzymes is due to the production of a hydroxyl radical, a highly reactive oxidant. This is the first demonstration that MnSOD is a microbial lignin-oxidizing enzyme.
Collapse
Affiliation(s)
- Goran M. M. Rashid
- Department of Chemistry and ‡School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Charles R. Taylor
- Department of Chemistry and ‡School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Yangqingxue Liu
- Department of Chemistry and ‡School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Xiaoyang Zhang
- Department of Chemistry and ‡School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Dean Rea
- Department of Chemistry and ‡School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Vilmos Fülöp
- Department of Chemistry and ‡School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Timothy D. H. Bugg
- Department of Chemistry and ‡School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
3
|
Habe T, Mikio S, Umezawa T, Higuchi T. Evidence for Deuterium Retention in the Products after Enzymatic C-C and Ether Bond Cleavages of Deuterated Lignin Model Compounds. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/00021369.1985.10867288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tsuyostri Habe
- Research Section of Lignin Chemistry,, Wood Research Institute, Kyoto University, Uji, Kyoto 611, Japan
| | - Shimada Mikio
- Research Section of Lignin Chemistry,, Wood Research Institute, Kyoto University, Uji, Kyoto 611, Japan
| | - Toshiaki Umezawa
- Research Section of Lignin Chemistry,, Wood Research Institute, Kyoto University, Uji, Kyoto 611, Japan
| | - Takayoshi Higuchi
- Research Section of Lignin Chemistry,, Wood Research Institute, Kyoto University, Uji, Kyoto 611, Japan
| |
Collapse
|
4
|
Grinhut T, Salame TM, Chen Y, Hadar Y. Involvement of ligninolytic enzymes and Fenton-like reaction in humic acid degradation by Trametes sp. Appl Microbiol Biotechnol 2011; 91:1131-40. [PMID: 21541787 DOI: 10.1007/s00253-011-3300-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
Abstract
Trametes sp. M23, isolated from biosolids compost was found to decompose humic acids (HA). A low N (LN) medium (C/N, 53) provided suitable conditions for HA degradation, whereas in a high N (HN) medium (C/N, 10), HA was not degraded. In the absence of Mn(2+), HA degradation was similar to that in Mn(2+)-containing medium. In contrast, MnP activity was significantly affected by Mn(2+). Laccase activity exhibited a negative correlation to HA degradation, while LiP activity was not detected. Thus, ligninolytic enzymes activity could provide only a partial explanation for the HA-degradation mechanism. The decolorization of two dyes, Orange II and Brilliant Blue R250, was also determined. Similar to HA degradation, under LN conditions, decolorization occurred independently of the presence of Mn(2+). We investigated the possible involvement of a Fenton-like reaction in HA degradation. The addition of DMSO, an OH-radical scavenger, to LN media resulted in a significant decrease in HA bleaching. The rate of extracellular Fe(3+) reduction was much higher in the LN vs. HN medium. In addition, the rate of reduction was even higher in the presence of HA in the medium. In vitro HA bleaching in non-inoculated media was observed with H(2)O(2) amendment to a final concentration of 200 mM (obtained by 50 mM amendments for 4 days) and Fe(2+) (36 mM). After 4 days of incubation, HA decolorization was similar to the biological treatment. These results support our hypothesis that a Fenton-like reaction is involved in HA degradation by Trametes sp. M23.
Collapse
Affiliation(s)
- Tzafrir Grinhut
- Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
5
|
Kerley MS, Fahey GC, Berger LL, Gould JM, Lee Baker F. Alkaline hydrogen peroxide treatment unlocks energy in agricultural by-products. Science 2010; 230:820-2. [PMID: 17791797 DOI: 10.1126/science.230.4727.820] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lignocellulosic residues (wheat straw, corncobs, and cornstalks) were treated with a dilute alkaline solution of hydrogen peroxide and suspended in cattle rumen in situ to measure microbial degradation. The rate and extent of dry matter disappearance were markedly increased as a result of the treatment. Results in vivo indicate that this treatment increases the fermentability of wheat straw structural carbohydrates such that this agricultural by-product may be considered an acceptable energy source for the ruminant animal. Treatment of wheat straw allowed more complete bacterial colonization and more rapid degradation of the cell wall.
Collapse
|
6
|
Faison BD, Kirk TK. Relationship Between Lignin Degradation and Production of Reduced Oxygen Species by Phanerochaete chrysosporium. Appl Environ Microbiol 2010; 46:1140-5. [PMID: 16346420 PMCID: PMC239531 DOI: 10.1128/aem.46.5.1140-1145.1983] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relationship between the production of reduced oxygen species, hydrogen peroxide (H(2)O(2)), superoxide (O(2)), and hydroxyl radical (.OH), and the oxidation of synthetic lignin to CO(2) was studied in whole cultures of the white-rot fungus Phanerochaete chrysosporium Burds. The kinetics of the synthesis of H(2)O(2) coincided with the appearance of the ligninolytic system; also, H(2)O(2) production was markedly enhanced by growth under 100% O(2), mimicking the increase in ligninolytic activity characteristic of cultures grown under elevated oxygen tension. Lignin degradation by whole cultures was inhibited by a specific H(2)O(2) scavenger, catalase, implying a role for H(2)O(2) in the degradative process. Superoxide dismutase also inhibited lignin degradation, suggesting that O(2) is also involved in the breakdown of lignin. The production of .OH was assayed in whole cultures by a benzoate decarboxylation assay. Neither the kinetics of .OH synthesis nor the final activity of its producing system obtained under 100% O(2) correlated with that of the lignin-degrading system. However, lignin degradation was inhibited by compounds which react with .OH. It is concluded that H(2)O(2), and perhaps O(2), are involved in lignin degradation; because these species are relatively unreactive per se, their role must be indirect. Conclusions about a role for .OH in ligninolysis could not be reached.
Collapse
Affiliation(s)
- B D Faison
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, and Forest Products Laboratory, U.S. Department of Agriculture, Madison, Wisconsin 53705
| | | |
Collapse
|
7
|
|
8
|
Larrondo LF, Canessa P, Melo F, Polanco R, Vicuña R. Cloning and characterization of the genes encoding the high-affinity iron-uptake protein complex Fet3/Ftr1 in the basidiomycete Phanerochaete chrysosporium. MICROBIOLOGY-SGM 2007; 153:1772-1780. [PMID: 17526834 DOI: 10.1099/mic.0.2006/003442-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MCO1, a multicopper oxidase from Phanerochaete chrysosporium exhibiting strong ferroxidase activity, has recently been described. This enzyme shows biochemical and structural similarities with the yeast Fet3p, a type I membrane glycoprotein that efficiently oxidizes Fe(II) to Fe(III) for its subsequent transport to the intracellular compartment by the iron permease Ftr1p. The genome database of P. chrysosporium was searched to verify whether it includes a canonical fet3 in addition to mco1, and single copies of fet3 and ftr1 orthologues were found, separated by a divergent promoter. Pc-fet3 encodes a 628 aa protein that exhibits overall identities of about 40 % with other reported Fet3 proteins. In addition to a secretion signal, it has a C-terminal transmembrane domain, characteristic of these cell-surface-attached ferroxidases. Structural modelling of Pc-Fet3 revealed that the active site has all the residues known to be essential for ferroxidase activity. Pc-ftr1 encodes a 393 aa protein that shows about 38 % identity with several Ftr1 proteins from ascomycetes. Northern hybridization studies showed that the mRNA levels of both genes are reduced upon supplementation of the growth medium with iron, supporting the functional coupling of Fet3 and Ftr1 proteins in vivo.
Collapse
MESH Headings
- Binding Sites
- Blotting, Northern
- Ceruloplasmin/genetics
- Cloning, Molecular
- DNA, Fungal
- Fungal Proteins/chemistry
- Fungal Proteins/genetics
- Gene Expression Regulation, Bacterial
- Iron/metabolism
- Membrane Proteins/genetics
- Membrane Transport Proteins/chemistry
- Membrane Transport Proteins/genetics
- Models, Molecular
- Molecular Sequence Data
- Phanerochaete/genetics
- Phanerochaete/metabolism
- Promoter Regions, Genetic
- Protein Sorting Signals/genetics
- Protein Structure, Tertiary
- RNA, Bacterial/genetics
- RNA, Messenger/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Luis F Larrondo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and Instituto Milenio de Biología Fundamental y Aplicada, Santiago, Chile
| | - Paulo Canessa
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and Instituto Milenio de Biología Fundamental y Aplicada, Santiago, Chile
| | - Francisco Melo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and Instituto Milenio de Biología Fundamental y Aplicada, Santiago, Chile
| | - Rubén Polanco
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and Instituto Milenio de Biología Fundamental y Aplicada, Santiago, Chile
| | - Rafael Vicuña
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and Instituto Milenio de Biología Fundamental y Aplicada, Santiago, Chile
| |
Collapse
|
9
|
Kersten P, Cullen D. Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 2007; 44:77-87. [PMID: 16971147 DOI: 10.1016/j.fgb.2006.07.007] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 07/20/2006] [Indexed: 11/17/2022]
Abstract
The US Department of Energy has assembled a high quality draft genome of Phanerochaete chrysosporium, a white rot Basidiomycete capable of completely degrading all major components of plant cell walls including cellulose, hemicellulose and lignin. Hundreds of sequences are predicted to encode extracellular enzymes including an impressive number of oxidative enzymes potentially involved in lignocellulose degradation. Herein, we summarize the number, organization, and expression of genes encoding peroxidases, copper radical oxidases, FAD-dependent oxidases, and multicopper oxidases. Possibly relevant to extracellular oxidative systems are genes involved in posttranslational processes and a large number of hypothetical proteins.
Collapse
Affiliation(s)
- Phil Kersten
- Forest Products Laboratory, USDA, One Gifford Pinchot Drive, Madison, WI 53705, USA
| | | |
Collapse
|
10
|
Phanerochaete chrysosporium Genomics. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1874-5334(05)80016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
11
|
Härtig C, Lorbeer H. Phenomenological principles of microbial lignin degradation. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/abio.370130107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Gonzales L, Hernández J, Perestelo F, Carnicero A, Falcón M. Relationship between mineralization of synthetic lignins and the generation of hydroxyl radicals by laccase and a low molecular weight substance produced by Petriellidium fusoideum. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(01)00527-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
|
14
|
Vyas BR, Molitoris HP. Involvement of an extracellular H2O2-dependent ligninolytic activity of the white rot fungus Pleurotus ostreatus in the decolorization of Remazol brilliant blue R. Appl Environ Microbiol 1995; 61:3919-27. [PMID: 8526504 PMCID: PMC167697 DOI: 10.1128/aem.61.11.3919-3927.1995] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
During solid-state fermentation of wheat straw, a natural lignocellulosic substrate, the white rot fungus Pleurotus ostreatus produced an extracellular H2O2-requiring Remazol brilliant blue R (RBBR)-decolorizing enzymatic activity along with manganese peroxidase, manganese-independent peroxidase, and phenol oxidase activities. The presence of RBBR was not essential for the production of RBBR-decolorizing enzymatic activity by P. ostreatus, because this activity was also produced in the absence of RBBR. This RBBR-decolorizing enzymatic activity in crude enzyme preparations of 14- and 20-day-old cultures exhibited an apparent Km for RBBR of 31 and 52 microM, respectively. The RBBR-decolorizing enzyme activity was maximal in the pH range 3.5 to 4.0. This activity was independent of manganese, and veratryl alcohol had no influence on it. Manganese peroxidase of P. ostreatus did not decolorize RBBR. This H2O2-dependent RBBR-decolorizing enzymatic activity behaved like an oxygenase possessing a catalytic metal center, perhaps heme, because it was inhibited by Na2S2O5, NaCN, NaN3, and depletion of dissolved oxygen. Na2S2O5 brought an early end to the reaction without interfering with the initial reaction rate of RBBR oxygenase. The activity was also inhibited by cysteine. Concentrations of H2O2 higher than 154 microM were observed to be inhibitory as well. Decolorization of RBBR by P. ostreatus is an oxidative process.
Collapse
Affiliation(s)
- B R Vyas
- Botanical Institute, University of Regensburg, Germany
| | | |
Collapse
|
15
|
Reddy CA, D'Souza TM. Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol Rev 1994; 13:137-52. [PMID: 8167033 DOI: 10.1111/j.1574-6976.1994.tb00040.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The white-rot basidiomycete Phanerochaete chrysosporium produces lignin peroxidases (LiPs), a family of extracellular glycosylated heme proteins, as major components of its lignin-degrading system. Up to 15 LiP isozymes, ranging in M(r) values from 38,000 to 43,000, are produced depending on culture conditions and strains employed. Manganese-dependent peroxidases (MnPs) are a second family of extracellular heme proteins produced by P. chrysosporium that are also believed to be important in lignin degradation by this organism. LiP and MnP production is seen during secondary metabolism and is completely suppressed under conditions of excess nitrogen and carbon. Excess Mn(II) in the medium, on the other hand, suppresses LiP production but enhances MnP production. Nitrogen regulation of LiP and MnP production is independent of carbon and Mn(II) regulation. LiP activity is also affected by idiophasic extracellular proteases. Intracellular cAMP levels appear to be important in regulating the production of LiPs and MnPs, although LiP production is affected more than MnP production. Studies on the sequencing and characterization of lip cDNAs and genes of P. chrysosporium have shown that the major LiP isozymes are each encoded by a separate gene. Each lip gene encodes a mature protein that is 343-344 amino acids long, contains 1 putative N-glycosylation site, a number of putative O-glycosylation sites, and is preceded by a 27-28-amino acid leader peptide ending in a Lys-Arg cleavage site. The coding region of each lip gene is interrupted by 8-9 introns (50-63 bp), and the positions of the last two introns appear to be highly conserved. There are substantial differences in the temporal transcription patterns of the major lip genes. The sequence data suggest the presence of three lip gene subfamilies. The genomic DNA of P. chrysosporium strain BKMF-1767 was resolved into 10 chromosomes (genome size of 29 Mb), and that of strain ME-446 into 11 chromosomes (genome size of 32 Mb). The lip genes have been localized to five chromosomes in BKMF-1767 and to four chromosomes in ME-446. DNA transformation studies have reported both integrative and non-integrative transformation in P. chrysosporium.
Collapse
Affiliation(s)
- C A Reddy
- Department of Microbiology, Michigan State University, East Lansing 48824-1101
| | | |
Collapse
|
16
|
Decolorization of PolyR-478 (Polyvinylamine sulfonate anthrapyridone) byCyathus bulleri. Folia Microbiol (Praha) 1994. [DOI: 10.1007/bf02814532] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Leontievsky A, Myasoedova N, Golovleva L. Production of ligninolytic enzymes of the white rot fungus Panus tigrinus. J Biotechnol 1994. [DOI: 10.1016/0168-1656(94)90216-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Affiliation(s)
- H Fukuda
- Department of Applied Microbial Technology, Kumamoto Institute of Technology, Japan
| | | | | |
Collapse
|
19
|
Barr DP, Shah MM, Grover TA, Aust SD. Production of hydroxyl radical by lignin peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 1992; 298:480-5. [PMID: 1329659 DOI: 10.1016/0003-9861(92)90438-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mechanism for the production of hydroxyl radical by lignin peroxidase from the white rot fungus Phanerochaete chrysosporium was investigated. Ferric iron reduction was demonstrated in reaction mixtures containing lignin peroxidase isozyme H2 (LiPH2), H2O2, veratryl alcohol, oxalate, ferric chloride, and 1,10-phenanthroline. The rate of iron reduction was dependent on the concentration of oxalate and was inhibited by the addition of superoxide dismutase. The addition of ferric iron inhibited oxygen consumption in reaction mixtures containing LiPH2, H2O2, veratryl alcohol, and oxalate. Thus, the reduction of ferric iron was thought to be dependent on the LiPH2-catalyzed production of superoxide in which veratryl alcohol and oxalate serve as electron mediators. Oxalate production and degradation in nutrient nitrogen-limited cultures of P. chrysosporium was also studied. The concentration of oxalate in these cultures decreased during the period in which maximum lignin peroxidase activity (veratryl alcohol oxidation) was detected. Electron spin resonance studies using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide were used to obtain evidence for the production of the hydroxyl radical in reaction mixtures containing LiPH2, H2O2, veratryl alcohol, EDTA, and ferric chloride. It was concluded that the white rot fungus might produce hydroxyl radical via a mechanism that includes the secondary metabolites veratryl alcohol and oxalate. Such a mechanism may contribute to the ability of this fungus to degrade environmental pollutants.
Collapse
Affiliation(s)
- D P Barr
- Utah State University, Biotechnology Center, Logan 84322-4705
| | | | | | | |
Collapse
|
20
|
Kerem Z, Friesem D, Hadar Y. Lignocellulose Degradation during Solid-State Fermentation:
Pleurotus ostreatus
versus
Phanerochaete chrysosporium. Appl Environ Microbiol 1992; 58:1121-7. [PMID: 16348683 PMCID: PMC195564 DOI: 10.1128/aem.58.4.1121-1127.1992] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lignocellulose degradation and activities related to lignin degradation were studied in the solid-state fermentation of cotton stalks by comparing two white rot fungi,
Pleurotus ostreatus
and
Phanerochaete chrysosporium. P. chrysosporium
grew vigorously, resulting in rapid, nonselective degradation of 55% of the organic components of the cotton stalks within 15 days. In contrast,
P. ostreatus
grew more slowly with obvious selectivity for lignin degradation and resulting in the degradation of only 20% of the organic matter after 30 days of incubation. The kinetics of
14
C-lignin mineralization exhibited similar differences. In cultures of
P. chrysosporium
, mineralization ceased after 18 days, resulting in the release of 12% of the total radioactivity as
14
CO
2
. In
P. ostreatus
, on the other hand, 17% of the total radioactivity was released in a steady rate throughout a period of 60 days of incubation. Laccase activity was only detected in water extracts of the
P. ostreatus
fermentation. No lignin peroxidase activity was detected in either the water extract or liquid cultures of this fungus. 2-Keto-4-thiomethyl butyric acid cleavage to ethylene correlated to lignin degradation in both fungi. A study of fungal activity under solid-state conditions, in contrast to those done under defined liquid culture, may help to better understand the mechanisms involved in lignocellulose degradation.
Collapse
Affiliation(s)
- Z Kerem
- The Otto Warburg Center for Biotechnology in Agriculture, Faculty of Agriculture, The Hebrew University, Rehovot 76-100, Israel
| | | | | |
Collapse
|
21
|
Rajarathnam S, Shashireka MN, Bano Z. Biopotentialities of the basidiomacromycetes. ADVANCES IN APPLIED MICROBIOLOGY 1992; 37:233-361. [PMID: 1642158 DOI: 10.1016/s0065-2164(08)70256-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- S Rajarathnam
- Central Food Technological Research Institute, Mysore, India
| | | | | |
Collapse
|
22
|
Maltseva OV, Golovleva LA, Leontievsky AA, Nerud F, Mišurcová Z, Musílek V. Dynamics of enzymes generating hydrogen peroxide in solid-state fermentation ofPanus tigrinus on wheat straw. Folia Microbiol (Praha) 1989. [DOI: 10.1007/bf02821301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
|
24
|
Biodegradation of environmental pollutants by the white rot fungusPhanerochaete chrysosporium: Involvement of the lignin degrading system. Bioessays 1987. [DOI: 10.1002/bies.950060405] [Citation(s) in RCA: 167] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Tien M. Properties of ligninase from Phanerochaete chrysosporium and their possible applications. Crit Rev Microbiol 1987; 15:141-68. [PMID: 3322681 DOI: 10.3109/10408418709104456] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The wood-degrading fungus Phanerochaete chrysosporium Burds produces a family of enzymes which degrade lignin and lignin-like substrates. These ligninases exhibit a high degree of homology in being hemeprotein peroxidases, in Mr, in cross reactivity to polyclonal antibodies, in being glycosylated, and in catalytic properties. The predominant ligninase is able to generate cation radicals in its aromatic substrates. These radicals can undergo a variety of reactions thus explaining the nonspecific nature of the enzyme. A similar mechanism is suggested for the other isoenzymes. There are numerous potential applications for ligninases. These include: biopulping, waste treatment of byproduct lignins, detoxification of environmental pollutants, and modification of lignins to produce small molecular weight organics.
Collapse
Affiliation(s)
- M Tien
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park
| |
Collapse
|
26
|
Glenn JK, Akileswaran L, Gold MH. Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 1986; 251:688-96. [PMID: 3800395 DOI: 10.1016/0003-9861(86)90378-4] [Citation(s) in RCA: 345] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The manganese peroxidase (MnP), from the lignin-degrading fungus Phanerochaete chrysosporium, an H2O2-dependent heme enzyme, oxidizes a variety of organic compounds but only in the presence of Mn(II). The homogeneous enzyme rapidly oxidizes Mn(II) to Mn(III) with a pH optimum of 5.0; the latter was detected by the characteristic spectrum of its lactate complex. In the presence of H2O2 the enzyme oxidizes Mn(II) significantly faster than it oxidizes all other substrates. Addition of 1 M equivalent of H2O2 to the native enzyme in 20 mM Na-succinate, pH 4.5, yields MnP compound II, characterized by a Soret maximum at 416 nm. Subsequent addition of 1 M equivalent of Mn(II) to the compound II form of the enzyme results in its rapid reduction to the native Fe3+ species. Mn(III)-lactate oxidizes all of the compounds which are oxidized by the enzymatic system. The relative rates of oxidation of various substrates by the enzymatic and chemical systems are similar. In addition, when separated from the polymeric dye Poly B by a semipermeable membrane, the enzyme in the presence of Mn(II)-lactate and H2O2 oxidizes the substrate. All of these results indicate that the enzyme oxidizes Mn(II) to Mn(III) and that the Mn(III) complexed to lactate or other alpha-hydroxy acids acts as an obligatory oxidation intermediate in the oxidation of various dyes and lignin model compounds. In the absence of exogenous H2O2, the Mn-peroxidase oxidized NADH to NAD+, generating H2O2 in the process. The H2O2 generated by the oxidation of NADH could be utilized by the enzyme to oxidize a variety of other substrates.
Collapse
|
27
|
Identification of glucose oxidase activity as the primary source of hydrogen peroxide production in ligninolytic cultures of Phanerochaete chrysosporium. Arch Microbiol 1986. [DOI: 10.1007/bf00410957] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Kelley RL, Reddy CA. Purification and characterization of glucose oxidase from ligninolytic cultures of Phanerochaete chrysosporium. J Bacteriol 1986; 166:269-74. [PMID: 3957868 PMCID: PMC214586 DOI: 10.1128/jb.166.1.269-274.1986] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glucose oxidase, an important source of hydrogen peroxide in lignin-degrading cultures of Phanerochaete chrysosporium, was purified to electrophoretic homogeneity by a combination of ion-exchange and molecular sieve chromatography. The enzyme is a flavoprotein with an apparent native molecular weight of 180,000 and a denatured molecular weight of 80,000. This enzyme does not appear to be a glycoprotein. It gives optimal activity with D-glucose, which is stoichiometrically oxidized to D-gluconate. The enzyme has a relatively broad pH optimum of 4 to 5. It is inhibited by Ag+ (10 mM) and o-phthalate (100 mM), but not by Cu2+, NaF, or KCN (each 10 mM).
Collapse
|
29
|
Characterization of glucose oxidase-negative mutants of a lignin degrading basidiomycete Phanerochaete chrysosporium. Arch Microbiol 1986. [DOI: 10.1007/bf00410958] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Upham BL, Jahnke LS. Photooxidative reactions in chloroplast thylakoids. Evidence for a Fenton-type reaction promoted by superoxide or ascorbate. PHOTOSYNTHESIS RESEARCH 1986; 8:235-247. [PMID: 24443261 DOI: 10.1007/bf00037131] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/1984] [Revised: 07/01/1985] [Accepted: 07/08/1985] [Indexed: 06/03/2023]
Abstract
A methyl viologen (MV)(*) mediated Mehler reaction was studied using Type C and D chloroplasts (thylakoids) from spinach. The extent of photooxidative reactions were measured as (a) rate of ethylene formation from methional oxidation indicating the production of oxygen radicals, and (b) rate of malondialdehyde (MDA) formation as a measure of lipid peroxidation. Without added ascorbate, 1 μM FerricEDTA increased ethylene formation by greater than 4-fold, but had no effect on MDA production. Ascorbate (1 mM) produced a tripling of ethylene while it reduced MDA formation in the presence of iron. Radical scavengers diethyldithiocarbamate (DDTC), formate, 1,4-diazabicyclo (2.2.2octane) (DABCO), inhibited ethylene formation. Using 0,4 M mannitol to scavenge hydroxyl radicals, the rates of ethylene formation were reduced 40 to 60% with or without 1 μM Fe(III) EDTA. The strong oxidant(s) not scavenged by mannitol are hypothesized to be either alkoxyl radicals from lipid peroxidation, or 'site specific' formation of hydroxyl radicals in a lipophillic environment not exposed to mannitol. Singlet oxygen does not appear to be a significant factor in this system. Catalase strongly inhibited both ethylene and MDA synthesis under all conditions; 1 mM ascorbate did not reverse this inhibition. However, the strong superoxide dismutase (SOD) inhibition of ethylene and MDA formation was completely reversed by 1 mM ascorbate. This suggests that superoxide was functioning as an iron reducing agent and that in its absence, ascorbate was similarly promoting oxidations. Therefore, these oxidative processes were dependent on the presence of H2O2 and a reducing agent, suggesting the involvement of a Fenton-type reaction.
Collapse
Affiliation(s)
- B L Upham
- Department of Botany and Plant Pathology, University of New Hampshire, 03824, Durham, N.H., USA
| | | |
Collapse
|
31
|
Glenn JK, Gold MH. Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 1985; 242:329-41. [PMID: 4062285 DOI: 10.1016/0003-9861(85)90217-6] [Citation(s) in RCA: 429] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A Mn(II)-dependent peroxidase found in the extracellular medium of ligninolytic cultures of the white rot fungus, Phanerochaete chrysosporium, was purified by DEAE-Sepharose ion-exchange chromatography, Blue Agarose chromatography, and gel filtration on Sephadex G-100. Sodium dodecyl sulfate-gel electrophoresis indicated that the homogeneous protein has an Mr of 46,000. The absorption spectrum of the enzyme indicates the presence of a heme prosthetic group. The pyridine hemochrome absorption spectrum indicates that the enzyme contained one molecule of heme as iron protoporphyrin IX. The absorption maximum of the native enzyme (406 nm) shifted to 433 nm in the reduced enzyme and to 423 nm in the reduced-CO complex. Both CN- and N-3 readily bind to the native enzyme, indicating an available coordination site and that the heme iron is high spin. The absorption spectrum of the H2O2 enzyme complex, maximum at 420 nm, is similar to that of horseradish peroxidase compound II. P. chrysosporium peroxidase activity is dependent on Mn(II), with maximal activity attained above 100 microM. The enzyme is also stimulated to varying degrees by alpha-hydroxy acids (e.g., malic, lactic) and protein (e.g., gelatin, albumin). The peroxidase is capable of oxidizing NADH and a wide variety of dyes, including Poly B-411 and Poly R-481. Several of the substrates (indigo trisulfonate, NADH, Poly B-411, variamine blue RT salt, and Poly R-481) are oxidized by this Mn(II)-dependent peroxidase at considerably faster rates than those catalyzed by horseradish peroxidase. The enzyme rapidly oxidizes Mn(II) to Mn(III); the latter was detected by the characteristic absorption spectrum of its pyrophosphate complex. Inhibition of the oxidation of the substrate diammonium 2,2-azino-bis(3-ethyl-6-benzothiazolinesulfonate) (ABTS) by Na-pyrophosphate suggests that Mn(III) plays a role in the enzyme mechanism.
Collapse
|
32
|
Tanaka M, Matsuno R. Conversion of lignocellulosic materials to single-cell protein (SCP): Recent developments and problems. Enzyme Microb Technol 1985. [DOI: 10.1016/s0141-0229(85)80002-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Evans CS. Laccase activity in lignin degradation byCoriolus versicolorin vivo and in vitro studies. FEMS Microbiol Lett 1985. [DOI: 10.1111/j.1574-6968.1985.tb00693.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Levonen-Munoz E, Bone DH. Effect of different gas environments on bench-scale solid state fermentation of oat straw by white-rot fungi. Biotechnol Bioeng 1985; 27:382-7. [DOI: 10.1002/bit.260270324] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Free hydroxyl radical is not involved in an important reaction of lignin degradation by Phanerochaete chrysosporium Burds. Biochem J 1985; 226:455-60. [PMID: 2986597 PMCID: PMC1144732 DOI: 10.1042/bj2260455] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hydroxyl radical (HO.) has been implicated in the degradation of lignin by Phanerochaete chrysosporium. This study assessed the possible involvement of HO. in degradation of lignin substructural models by intact cultures and by an extracellular ligninase isolated from the cultures. Two non-phenolic lignin model compounds [aryl-C(alpha)HOH-C(beta)HR-C(gamma)H2OH, in which R = aryl (beta-1) or R = O-aryl (beta-O-4)] were degraded by cultures, by the purified ligninase, and by Fenton's reagent (H2O2 + Fe2+), which generates HO.. The ligninase and the cultures formed similar products, derived via an initial cleavage between C(alpha) and C(beta) (known to be an important biodegradative reaction), indicating that the ligninase is responsible for model degradation in cultures. Products from the Fenton degradation were mainly polar phenolics that exhibited little similarity to those from the biological systems. Mass-spectral analysis, however, revealed traces of the same products in the Fenton reaction as seen in the biological reactions; even so, an 18O2-incorporation study showed that the mechanism of formation differed. E.s.r. spectroscopy with a spin-trapping agent readily detected HO. in the Fenton system, but indicated that no HO. is formed during ligninase catalysis. We conclude, therefore that HO. is not involved in fungal C(alpha)-C(beta) cleavage in the beta-1 and beta-O-4 models and, by extension, in the same reaction in lignin.
Collapse
|
36
|
Gould JM. Studies on the mechanism of alkaline peroxide delignification of agricultural residues. Biotechnol Bioeng 1985; 27:225-31. [DOI: 10.1002/bit.260270303] [Citation(s) in RCA: 198] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
|
38
|
Gold MH, Kuwahara M, Chiu AA, Glenn JK. Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 1984; 234:353-62. [PMID: 6497376 DOI: 10.1016/0003-9861(84)90280-7] [Citation(s) in RCA: 283] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An H2O2-requiring oxygenase found in the extracellular medium of ligninolytic cultures of the white rot fungus Phanerochaete chrysosporium was purified by DEAE-Sepharose ion-exchange chromatography and gel filtration on Sephadex G-100. Sodium dodecyl sulfate (SDS)-disc gel electrophoresis indicated that the purified protein was homogeneous. The Mr of the enzyme as determined by gel filtration and SDS-polyacrylamide gel electrophoresis was 41,000. The absorption spectrum of the enzyme indicated the presence of a heme prosthetic group. The absorption maximum of the native enzyme (407 nm) shifted to 435 nm in the reduced enzyme and to 420 nm in the reduced-CO complex. The pyridine hemochrome absorption spectrum indicated that the enzyme contained one molecule of heme as iron protoporphyrin IX. Both CN- and N-3 bound readily to the native enzyme, indicating an available coordination site and that the heme iron was high spin. The purified enzyme generated ethylene from 2-keto-4-thiomethyl butyric acid, and oxidized a variety of lignin model compounds, including the diarylpropane, 1-(3'4'-diethoxyphenyl)1,3-dihydroxy-2-(4"-methoxyphenyl)propane (I); a beta-ether dimer, 1-(4'-ethoxy-3'-methoxyphenyl)glycerol-beta-guaiacyl ether (V); an olefin, 1-(4'-ethoxy-3'-methoxyphenyl)-1,2 propene (III); and a diol, 1-(4'-ethoxy-3'-methoxyphenyl)-1,2-propane diol (IV). The products found were equivalent to the metabolic products previously isolated from intact ligninolytic cultures.
Collapse
|
39
|
|
40
|
MacDonald MJ, Paterson A, Broda P. Possible relationship between cyclic AMP and idiophasic metabolism in the white rot fungus Phanerochaete chrysosporium. J Bacteriol 1984; 160:470-2. [PMID: 6090435 PMCID: PMC214748 DOI: 10.1128/jb.160.1.470-472.1984] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In the hymenomycete Phanerochaete chrysosporium, a 10-fold increase in intracellular cyclic AMP preceded the onset of the two idiophasic activities, lignin degradation and veratryl alcohol production. Further, addition of L-glutamate during this period reduced cyclic AMP levels and suppressed ligninolytic activity.
Collapse
|
41
|
Shimada M, Habe T, Umezawa T, Higuchi T, Okamoto T. The C-C bond cleavage of a lignin model compound, 1,2-diarylpropane-1,3-diol, with a heme-enzyme model catalyst tetraphenylporphyrinatoiron(III)chloride in the presence of tert-butylhydroperoxide. Biochem Biophys Res Commun 1984; 122:1247-52. [PMID: 6477560 DOI: 10.1016/0006-291x(84)91226-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The catalytic C-C bond cleavage of a lignin model compound was investigated by use of tetraphenylporphyrinatoiron(III)chloride as a model for enzymic degradation of lignin. The C-C bond of the lignin model compound 1,2-bis(4-ethoxy-3-methoxyphenyl) propane-1,3-diol was oxidatively cleaved by catalysis of iron-porphyrins in the presence of tert-butylhydroperoxide or iodosylbenzene at a room temperature. The products formed after complete oxidation of the substrate were identified as 4-O-ethylvanillin, alpha-hydroxy-4-ethoxy-3-methoxyacetophenone, 4-O-ethylvanillic acid, 4-ethoxy-3-methoxyphenylglycol, 4-ethoxy-3-methoxy-alpha-(4-ethoxy-3-methoxyphenyl)-beta-hydroxypropi ophenone and formaldehyde.
Collapse
|
42
|
Gould JM, Freer SN. High-efficiency ethanol production from lignocellulosic residues pretreated with alkaline H2O2. Biotechnol Bioeng 1984; 26:628-31. [DOI: 10.1002/bit.260260613] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Ulmer DC, Leisola MS, Fiechter A. Possible induction of the ligninolytic system of Phanerochaete chrysosporium. J Biotechnol 1984. [DOI: 10.1016/s0168-1656(84)90055-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Paice MG, Jurasek L. Peroxidase-catalyzed color removal from bleach plant effluent. Biotechnol Bioeng 1984; 26:477-80. [DOI: 10.1002/bit.260260511] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Leisola MSA, Ulmer DC, Fiechter A. Factors affecting lignin degradation in lignocellulose by Phanerochaete chrysosporium. Arch Microbiol 1984. [DOI: 10.1007/bf00414462] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Greene RV, Gould JM. Fatty acyl-coenzyme A oxidase activity and H2O2 production in Phanerochaete chrysosporium mycelia. Biochem Biophys Res Commun 1984; 118:437-43. [PMID: 6538411 DOI: 10.1016/0006-291x(84)91322-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mycelia of the lignin-degrading fungus Phanerochaete chrysosporium consume O2 and produce extracellular H2O2 when incubated with fatty acyl-CoA substrates, even in the presence of mitochondrial respiratory chain inhibitors such as antimycin A and cyanide. These results suggest the possibility that peroxisomal fatty acyl-CoA oxidase activity in P. chrysosporium mycelia may be an important metabolic source for the extracellular H2O2 believed to be involved in lignin biodegradation.
Collapse
|
47
|
Greene RV, Gould JM. Electrogenic symport of glucose and protons in membrane vesicles of Phanerochaete chrysosporium. Arch Biochem Biophys 1984; 228:97-104. [PMID: 6320738 DOI: 10.1016/0003-9861(84)90050-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The white rot fungus, Phanerochaete chrysosporium, is one of the few organisms with documented ability to degrade lignin. Protoplasts from P. chrysosporium were disrupted by osmotic shock and membrane vesicles were isolated from the cell debris. The vesicles exhibit active glucose transport that is consistent with a glucose/H+ symport mechanism. An artificial gradient of H+ (outside greater than inside) stimulates glucose uptake. Conversely, a glucose gradient (outside greater than inside) results in the accumulation of H+ by the vesicles. Glucose uptake is not stimulated by either a Na+ or a K+ gradient. Furthermore, glucose transport is electrogenic, since glucose uptake may be driven by a membrane potential (negative interior) created by K+ diffusion mediated by valinomycin.
Collapse
|
48
|
Kirk TK, Tien M, Faison BD. Biochemistry of the oxidation of lignin by Phangerochate chrysosporium. Biotechnol Adv 1984; 2:183-99. [PMID: 14545695 DOI: 10.1016/0734-9750(84)90004-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this research was to identify the biochemical agents responsible for the oxidative degradation of lignin by the white-rot fungus Phanerochaete chrysosporium. We examined the hypothesis that activated oxygen species are involved, and we also sought the agent in ligninolytic cultures responsible for a specific oxidative degradative reaction in substructure model compounds. Results of studies of the production of activated oxygen species by cultures, of the effect of their removal on ligninolytic activity, and of their action on substructure model compounds support a role for hydrogen peroxide (H(2)O(2)) and possibly superoxide (O(2)(*)(-)) in lignin degradation. Involvement of hydroxyl radical (*OH) or singlet oxygen (1O(2)) is not supported by our data. The actual biochemical agent responsible for one important oxidative C-C bond cleavage reaction in non-phenolic lignin substructure model compounds, and in lignin itself, was found to be an enzyme. The enzyme is extracellular, has a molecular weight of 42,000 daltons, is azide-sensitive, and requires H(2)O(2) for activity.
Collapse
Affiliation(s)
- T K Kirk
- Forest Products Laboratory, USDA, Forest Service, Madison, Wisconsin 53705, USA
| | | | | |
Collapse
|
49
|
Crawford DL, Pometto AL, Crawford RL. Production of useful modified lignin polymers by bioconversion of lignocellulose with Streptomyces. Biotechnol Adv 1984; 2:217-32. [PMID: 14545697 DOI: 10.1016/0734-9750(84)90006-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lignin degrading strains of Streptomyces were grown on lignocelluloses from a variety of plant sources. These actinomycetes readily degraded the lignin present in the residues and released a major portion of the lignin into the growth medium as a water soluble, modified polymer. The polymer, an acid precipitable polyphenolic lignin (APPL), was recovered from spent culture media by acid precipitation or dialysis/lyophilization. APPL's were shown to be mostly free of nonlignin components. As compared to native lignin they were more oxidized, were especially enriched in phenolic hydroxyl groups, and were significantly reduced in methoxyl groups. The yield of APPL from different lignocelluloses correlated with their biodegradability. Grasses such as corn stover were the optimal lignocellulose type for APPL production by Streptomyces. In contrast white-rot fungi produced only small amounts of APPL as they decomposed lignin. A solid state bioconversion process was developed using Streptomyces viridosporus T7A to produce APPL from corn stover lignocellulose in yields >or= 30% of the initial lignin present in the substrate. APPL produced by S. viridosporus was examined for its properties and possible use as an antioxidant. The APPL was shown to have good antioxidant properties after mild chemical treatment to reduce the alpha-carbonyl groups present in the APPL. Oxidation of the APPL with hydroxyl radical (OH(*)) further improved its antioxidant properties probably as the result of aromatic ring hydroxylation reactions. As compared with currently used commercial antioxidants, the modified APPL was thought to be competitive when economics of production was considered. Native lignin on the other hand was shown to exhibit no antioxidant properties, even after reduction and/or oxidation.
Collapse
Affiliation(s)
- D L Crawford
- Department of Bacteriology and Biochemistry, University of Idaho, Moscow 83843, USA
| | | | | |
Collapse
|
50
|
|