1
|
Oosterheert W, Klink BU, Belyy A, Pospich S, Raunser S. Structural basis of actin filament assembly and aging. Nature 2022; 611:374-379. [DOI: 10.1038/s41586-022-05241-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022]
Abstract
AbstractThe dynamic turnover of actin filaments (F-actin) controls cellular motility in eukaryotes and is coupled to changes in the F-actin nucleotide state1–3. It remains unclear how F-actin hydrolyses ATP and subsequently undergoes subtle conformational rearrangements that ultimately lead to filament depolymerization by actin-binding proteins. Here we present cryo-electron microscopy structures of F-actin in all nucleotide states, polymerized in the presence of Mg2+ or Ca2+ at approximately 2.2 Å resolution. The structures show that actin polymerization induces the relocation of water molecules in the nucleotide-binding pocket, activating one of them for the nucleophilic attack of ATP. Unexpectedly, the back door for the subsequent release of inorganic phosphate (Pi) is closed in all structures, indicating that Pi release occurs transiently. The small changes in the nucleotide-binding pocket after ATP hydrolysis and Pi release are sensed by a key amino acid, amplified and transmitted to the filament periphery. Furthermore, differences in the positions of water molecules in the nucleotide-binding pocket explain why Ca2+-actin shows slower polymerization rates than Mg2+-actin. Our work elucidates the solvent-driven rearrangements that govern actin filament assembly and aging and lays the foundation for the rational design of drugs and small molecules for imaging and therapeutic applications.
Collapse
|
2
|
Smith GE, Tolkatchev D, Risi C, Little M, Gregorio CC, Galkin VE, Kostyukova AS. Ca 2+ attenuates nucleation activity of leiomodin. Protein Sci 2022; 31:e4358. [PMID: 35762710 PMCID: PMC9207750 DOI: 10.1002/pro.4358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022]
Abstract
A transient increase in Ca2+ concentration in sarcomeres is essential for their proper function. Ca2+ drives striated muscle contraction via binding to the troponin complex of the thin filament to activate its interaction with the myosin thick filament. In addition to the troponin complex, the myosin essential light chain and myosin-binding protein C were also found to be Ca2+ sensitive. However, the effects of Ca2+ on the function of the tropomodulin family proteins involved in regulating thin filament formation have not yet been studied. Leiomodin, a member of the tropomodulin family, is an actin nucleator and thin filament elongator. Using pyrene-actin polymerization assay and transmission electron microscopy, we show that the actin nucleation activity of leiomodin is attenuated by Ca2+ . Using circular dichroism and nuclear magnetic resonance spectroscopy, we demonstrate that the mostly disordered, negatively charged region of leiomodin located between its first two actin-binding sites binds Ca2+ . We propose that Ca2+ binding to leiomodin results in the attenuation of its nucleation activity. Our data provide further evidence regarding the role of Ca2+ as an ultimate regulator of the ensemble of sarcomeric proteins essential for muscle function. SUMMARY STATEMENT: Ca2+ fluctuations in striated muscle sarcomeres modulate contractile activity via binding to several distinct families of sarcomeric proteins. The effects of Ca2+ on the activity of leiomodin-an actin nucleator and thin filament length regulator-have remained unknown. In this study, we demonstrate that Ca2+ binds directly to leiomodin and attenuates its actin nucleating activity. Our data emphasizes the ultimate role of Ca2+ in the regulation of the sarcomeric protein interactions.
Collapse
Affiliation(s)
- Garry E. Smith
- Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanWashingtonUSA
| | - Dmitri Tolkatchev
- Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanWashingtonUSA
| | - Cristina Risi
- Department of Physiological SciencesEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Madison Little
- Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanWashingtonUSA
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research ProgramUniversity of ArizonaTucsonArizonaUSA
| | - Vitold E. Galkin
- Department of Physiological SciencesEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Alla S. Kostyukova
- Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanWashingtonUSA
| |
Collapse
|
3
|
Lehne F, Pokrant T, Parbin S, Salinas G, Großhans J, Rust K, Faix J, Bogdan S. Calcium bursts allow rapid reorganization of EFhD2/Swip-1 cross-linked actin networks in epithelial wound closure. Nat Commun 2022; 13:2492. [PMID: 35524157 PMCID: PMC9076686 DOI: 10.1038/s41467-022-30167-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Changes in cell morphology require the dynamic remodeling of the actin cytoskeleton. Calcium fluxes have been suggested as an important signal to rapidly relay information to the actin cytoskeleton, but the underlying mechanisms remain poorly understood. Here, we identify the EF-hand domain containing protein EFhD2/Swip-1 as a conserved lamellipodial protein strongly upregulated in Drosophila macrophages at the onset of metamorphosis when macrophage behavior shifts from quiescent to migratory state. Loss- and gain-of-function analysis confirm a critical function of EFhD2/Swip-1 in lamellipodial cell migration in fly and mouse melanoma cells. Contrary to previous assumptions, TIRF-analyses unambiguously demonstrate that EFhD2/Swip-1 proteins efficiently cross-link actin filaments in a calcium-dependent manner. Using a single-cell wounding model, we show that EFhD2/Swip-1 promotes wound closure in a calcium-dependent manner. Mechanistically, our data suggest that transient calcium bursts reduce EFhD2/Swip-1 cross-linking activity and thereby promote rapid reorganization of existing actin networks to drive epithelial wound closure.
Collapse
Affiliation(s)
- Franziska Lehne
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany
| | - Thomas Pokrant
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Sabnam Parbin
- NGS-Integrative Genomics Core Unit, Department of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Department of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Jörg Großhans
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Katja Rust
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Sven Bogdan
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
4
|
Hill DR, Huang S, Tsai YH, Spence JR, Young VB. Real-time Measurement of Epithelial Barrier Permeability in Human Intestinal Organoids. J Vis Exp 2017:56960. [PMID: 29286482 PMCID: PMC5755602 DOI: 10.3791/56960] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Advances in 3D culture of intestinal tissues obtained through biopsy or generated from pluripotent stem cells via directed differentiation, have resulted in sophisticated in vitro models of the intestinal mucosa. Leveraging these emerging model systems will require adaptation of tools and techniques developed for 2D culture systems and animals. Here, we describe a technique for measuring epithelial barrier permeability in human intestinal organoids in real-time. This is accomplished by microinjection of fluorescently-labeled dextran and imaging on an inverted microscope fitted with epifluorescent filters. Real-time measurement of the barrier permeability in intestinal organoids facilitates the generation of high-resolution temporal data in human intestinal epithelial tissue, although this technique can also be applied to fixed timepoint imaging approaches. This protocol is readily adaptable for the measurement of epithelial barrier permeability following exposure to pharmacologic agents, bacterial products or toxins, or live microorganisms. With minor modifications, this protocol can also serve as a general primer on microinjection of intestinal organoids and users may choose to supplement this protocol with additional or alternative downstream applications following microinjection.
Collapse
Affiliation(s)
- David R Hill
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan;
| | - Sha Huang
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan; Department of Cell and Developmental Biology, University of Michigan
| | - Vincent B Young
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan; Department of Internal Medicine, Division of Infectious Disease, University of Michigan
| |
Collapse
|
5
|
Umetskaya VN. The mechanism of ATP–G-actin hydrolysis in Mg2+-containing solutions. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916040242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Bidone TC, Kim T, Deriu MA, Morbiducci U, Kamm RD. Multiscale impact of nucleotides and cations on the conformational equilibrium, elasticity and rheology of actin filaments and crosslinked networks. Biomech Model Mechanobiol 2015; 14:1143-55. [PMID: 25708806 DOI: 10.1007/s10237-015-0660-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 01/01/2023]
Abstract
Cells are able to respond to mechanical forces and deformations. The actin cytoskeleton, a highly dynamic scaffolding structure, plays an important role in cell mechano-sensing. Thus, understanding rheological behaviors of the actin cytoskeleton is critical for delineating mechanical behaviors of cells. The actin cytoskeleton consists of interconnected actin filaments (F-actin) that form via self-assembly of actin monomers. It has been shown that molecular changes of the monomer subunits impact the rigidity of F-actin. However, it remains inconclusive whether or not the molecular changes can propagate to the network level and thus alter the rheological properties of actin networks. Here, we focus on how cation binding and nucleotide state tune the molecular conformation and rigidity of F-actin and a representative rheological behavior of actin networks, strain-stiffening. We employ a multiscale approach by combining established computational techniques: molecular dynamics, normal mode analysis and Brownian dynamics. Our findings indicate that different combinations of nucleotide (ATP, ADP or ADP-Pi) and cation [Formula: see text] or [Formula: see text] at one or multiple sites) binding change the molecular conformation of F-actin by varying inter- and intra-strand interactions which bridge adjacent subunits between and within F-actin helical strands. This is reflected in the rigidity of actin filaments against bending and stretching. We found that differences in extension and bending rigidity of F-actin induced by cation binding to the low-, intermediate- and high-affinity sites vary the strain-stiffening response of actin networks crosslinked by rigid crosslinkers, such as scruin, whereas they minimally impact the strain-stiffening response when compliant crosslinkers, such as filamin A or [Formula: see text]-actinin, are used.
Collapse
Affiliation(s)
- Tamara Carla Bidone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | | | | | | | | |
Collapse
|
7
|
Saunders MG, Voth GA. Comparison between actin filament models: coarse-graining reveals essential differences. Structure 2012; 20:641-53. [PMID: 22483111 DOI: 10.1016/j.str.2012.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
The interconversion of actin between monomeric and polymeric forms is a fundamental process in cell biology that is incompletely understood, in part because there is no high-resolution structure for filamentous actin. Several models have been proposed recently; identifying structural and dynamic differences between them is an essential step toward understanding actin dynamics. We compare three of these models, using coarse-grained analysis of molecular dynamics simulations to analyze the differences between them and evaluate their relative stability. Based on this analysis, we identify key motions that may be associated with polymerization, including a potential energetic barrier in the process. We also find that actin subunits are polymorphic; during simulations they assume a range of configurations remarkably similar to those seen in recent cryoEM images.
Collapse
Affiliation(s)
- Marissa G Saunders
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637, USA
| | | |
Collapse
|
8
|
Sato T, Shimozawa T, Fukasawa T, Ohtaki M, Aramaki K, Wakabayashi K, Ishiwata S. Actin oligomers at the initial stage of polymerization induced by increasing temperature at low ionic strength: Study with small-angle X-ray scattering. Biophysics (Nagoya-shi) 2010; 6:1-11. [PMID: 27857581 PMCID: PMC5036667 DOI: 10.2142/biophysics.6.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 12/31/2022] Open
Abstract
Using small-angle X-ray scattering (SAXS), we have studied the initial stage (nucleation and oligomerization) of actin polymerization induced by raising temperature in a stepwise manner from 1°C to 30°C at low ionic strength (4.0 mg ml−1 actin in G-buffer). The SAXS experiments were started from the mono-disperse G-actin state, which was confirmed by comparing the scattering pattern in q- and real space with X-ray crystallographic data. We observed that the forward scattering intensity I(q → 0), used as an indicator for the extent of poly-merization, began to increase at ∼14°C for Mg-actin and ∼20°C for Ca-actin, and this critical temperature did not depend on the nucleotide species, i.e., ATP or ADP. At the temperatures higher than ∼20°C for Mg-actin and ∼25°C for Ca-actin, the coherent reflection peak, which is attributed to the helical structure of F-actin, appeared. The pair-distance distribution functions, p(r), corresponding to the frequency of vector lengths (r) within the molecule, were obtained by the indirect Fourier transformation (IFT) of the scattering curves, I(q). Next, the size distributions of oligomers at each temperature were analyzed by fitting the experimentally obtained p(r) with the theoretical p(r) for the helical and linear oligomers (2–13mers) calculated based on the X-ray crystallographic data. We found that p(r) at the initial stage of polymerization was well accounted for by the superposition of monomer, linear/helical dimers, and helical trimer, being independent of the type of divalent cations and nucleotides. These results suggest that the polymerization of actin in G-buffer induced by an increase in temperature proceeds via the elongation of the helical trimer, which supports, in a structurally resolved manner, a widely believed hypothesis that the polymerization nucleus is a helical trimer.
Collapse
Affiliation(s)
- Takaaki Sato
- Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Togo Shimozawa
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Toshiko Fukasawa
- Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masako Ohtaki
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kenji Aramaki
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Katsuzo Wakabayashi
- Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Shin'ichi Ishiwata
- Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Waseda Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-01/02 Helios, 138667 Singapore
| |
Collapse
|
9
|
Galińska-Rakoczy A, Wawro B, Strzelecka-Gołaszewska H. New aspects of the spontaneous polymerization of actin in the presence of salts. J Mol Biol 2009; 387:869-82. [PMID: 19340945 DOI: 10.1016/j.jmb.2009.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mechanism of salt-induced actin polymerization involves the energetically unfavorable nucleation step, followed by filament elongation by the addition of monomers. The use of a bifunctional cross-linker, N,N'-(1,4-phenylene)dimaleimide, revealed rapid formation of the so-called lower dimers (LD) in which actin monomers are arranged in an antiparallel fashion. The filament elongation phase is characterized by a gradual LD decay and an increase in the yield of "upper dimers" (UD) characteristic of F-actin. Here we have used 90 degrees light scattering, electron microscopy, and N, N'-(1,4-phenylene)dimaleimide cross-linking to reinvestigate relationships between changes in filament morphology, LD decay, and increase in the yield of UD during filament growth in a wide range of conditions influencing the rate of the nucleation reaction. The results show irregularity and instability of filaments at early stages of polymerization under all conditions used, and suggest that an earlier documented coassembling of LD with monomeric actin contributes to the initial disordering of the filaments rather than to the nucleation of polymerization. The effects of the type of G-actin-bound divalent cation (Ca2+/Mg2+), nucleotide (ATP/ADP), and polymerizing salt on the relation between changes in filament morphology and progress in G-actin-to-F-actin transformation show that ligand-dependent alterations in G-actin conformation determine not only the nucleation rate but also the kinetics of ordering of the filament structure in the elongation phase. The time courses of changes in the yield of UD suggest that filament maturation involves cooperative propagation of "proper" interprotomer contacts. Acceleration of this process by the initially bound MgATP supports the view that the filament-destabilizing conformational changes triggered by ATP hydrolysis and Pi liberation during polymerization are constrained by the intermolecular contacts established between MgATP monomers prior to ATP hydrolysis. An important role of contacts involving the DNase-I-binding loop and the C-terminus of actin is proposed.
Collapse
|
10
|
Newman J, Estes JE, Selden LA, Gershman LC. Presence of oligomers at subcritical actin concentrations. Biochemistry 2002. [DOI: 10.1021/bi00327a037] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Yao X, Rubenstein PA. F-actin-like ATPase activity in a polymerization-defective mutant yeast actin (V266G/L267G). J Biol Chem 2001; 276:25598-604. [PMID: 11328808 DOI: 10.1074/jbc.m011797200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polymerization increases a low level G-actin ATPase activity yielding ADP-P(i) F-actin and then ADP F-actin following release of P(i). By monitoring P(i) release, we explored the relationship between the ATPase activity and polymerization characteristics of a mutant yeast actin, GG. In this mutant, two hydrophobic residues at the tip of a proposed hydrophobic plug between actin subdomains 3 and 4, Val(266) and Leu(267), were mutated to Gly. Although GG-actin does not polymerize by itself in vitro, GG cells are viable. We show that GG-actin ATPase activity increases under normal polymerization conditions, although stable filaments do not form. A plot of P(i) release rate versus actin concentration yields an apparent critical concentration, like that seen for actin polymerization, of approximately 8 microm for Mg(2+) GG-actin and 11 microm for Ca(2+) GG-actin. In contrast to WT-actin, P(i) release from GG-actin is cold-sensitive, reflecting the temperature sensitivity associated with mutations that decrease hydrophobicity in this region. Thus, under polymerization conditions, GG-actin exhibits a continuous F-actin-like ATPase activity resulting from the temperature-sensitive formation of unstable cycling F-actin oligomers. Tropomyosin limits the extent and rate of this activity and restores polymerization by capturing and stabilizing these oligomers rather than enhancing filament nucleation.
Collapse
Affiliation(s)
- X Yao
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | |
Collapse
|
12
|
Abstract
Actin, one of the main proteins of muscle and cytoskeleton, exists as a variety of highly conserved isoforms whose distribution in vertebrates is tissue-specific. Synthesis of specific actin isoforms is accompanied by their subcellular compartmentalization, with both processes being regulated by factors of cell proliferation and differentiation. Actin isoforms cannot substitute for each other, and the high-level synthesis of exogenous actins leads to alterations in cell organization and morphology. This indicates that the highly conserved actins are functionally specialized for the tissues in which they predominate. The first goal of this review is to analyze the data on the polymerizability of actin isoforms to show that cytoskeleton isoactins form less stable polymers than skeletal muscle actin. This difference correlates with the dynamics of actin microfilaments versus the stability of myofibrillar systems. The three-dimensional actin structure as well as progress in the analysis of conformational changes in both the actin monomer and the filament allows us to view the data on the structure and polymerization of isoactins in terms of structure-function relationships within the actin molecule. Most of the amino acid substitutions that distinguish actin isoforms are located apart from actin-actin contact sites in the polymer. We suggest that these substitutions can modulate the ability of actin monomers to form more or less stable polymers by long-range (allosteric) regulation of the contact sites.
Collapse
Affiliation(s)
- S Y Khaitlina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg
| |
Collapse
|
13
|
Negulyaev YA, Khaitlina SY, Hinssen H, Shumilina EV, Vedernikova EA. Sodium channel activity in leukemia cells is directly controlled by actin polymerization. J Biol Chem 2000; 275:40933-7. [PMID: 11016945 DOI: 10.1074/jbc.m008219200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The actin cytoskeleton has been shown to be involved in the regulation of sodium-selective channels in non-excitable cells. However, the molecular mechanisms underlying the changes in channel function remain to be defined. In the present work, inside-out patch experiments were employed to elucidate the role of submembranous actin dynamics in the control of sodium channels in human myeloid leukemia K562 cells. We found that the application of cytochalasin D to the cytoplasmic surface of membrane fragments resulted in activation of non-voltage-gated sodium channels of 12 picosiemens conductance. Similar effects could be evoked by addition of the actin-severing protein gelsolin to the bath cytosol-like solution containing 1 microm [Ca(2+)](i). The sodium channel activity induced by disassembly of submembranous microfilaments with cytochalasin D or gelsolin could be abolished by intact actin added to the bath cytosol-like solution in the presence of 1 mm MgCl(2) to induce actin polymerization. In the absence of MgCl(2), addition of intact actin did not abolish the channel activity. Moreover, the sodium currents were unaffected by heat-inactivated actin or by actin whose polymerizability was strongly reduced by cleavage with specific Escherichia coli A2 protease ECP32. Thus, the inhibitory effect of actin on channel activity was observed only under conditions promoting rapid polymerization. Taken together, our data show that sodium channels are directly controlled by dynamic assembly and disassembly of submembranous F-actin.
Collapse
Affiliation(s)
- Y A Negulyaev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | | | | | | | | |
Collapse
|
14
|
Schüler H, Korenbaum E, Schutt CE, Lindberg U, Karlsson R. Mutational analysis of Ser14 and Asp157 in the nucleotide-binding site of beta-actin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:210-20. [PMID: 10491176 DOI: 10.1046/j.1432-1327.1999.00716.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This paper compares wild-type and two mutant beta-actins, one in which Ser14 was replaced by a cysteine, and a second in which both Ser14 and Asp157 were exchanged (Ser14-->Cys and Ser14-->Cys, Asp157-->Ala, respectively). Both of these residues are part of invariant sequences in the loops, which bind the ATP phosphates, in the interdomain cleft of actin. The increased nucleotide exchange rate, and the decreased thermal stability and affinity for DNase I seen with the mutant actins indicated that the mutations disturbed the interdomain coupling. Despite this, the two mutant actins retained their ATPase activity. In fact, the mutated actins expressed a significant ATPase activity even in the presence of Ca2+ ions, conditions under which actin normally has a very low ATPase activity. In the presence of Mg2+ ions, the ATPase activity of actin was decreased slightly by the mutations. The mutant actins polymerized as the wild-type protein in the presence of Mg2+ ions, but slower than the wild-type in a K+/Ca2+ milieu. Profilin affected the lag phases and elongation rates during polymerization of the mutant and wild-type actins to the same extent, whereas at steady-state, the concentration of unpolymerized mutant actin appeared to be elevated. Decoration of mutant actin filaments with myosin subfragment 1 appeared to be normal, as did their movement in the low-load motility assay system. Our results show that Ser14 and Asp157 are key residues for interdomain communication, and that hydroxyl and carboxyl groups in positions 14 and 157, respectively, are not necessary for ATP hydrolysis in actin.
Collapse
Affiliation(s)
- H Schüler
- Department of Cell Science, The Wenner-Gren Institute, Stockholm University, Sweden
| | | | | | | | | |
Collapse
|
15
|
Moraczewska J, Wawro B, Seguro K, Strzelecka-Golaszewska H. Divalent cation-, nucleotide-, and polymerization-dependent changes in the conformation of subdomain 2 of actin. Biophys J 1999; 77:373-85. [PMID: 10388764 PMCID: PMC1300336 DOI: 10.1016/s0006-3495(99)76896-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Conformational changes in subdomain 2 of actin were investigated using fluorescence probes dansyl cadaverine (DC) or dansyl ethylenediamine (DED) covalently attached to Gln41. Examination of changes in the fluorescence emission spectra as a function of time during Ca2+/Mg2+ and ATP/ADP exchange at the high-affinity site for divalent cation-nucleotide complex in G-actin confirmed a profound influence of the type of nucleotide but failed to detect a significant cation-dependent difference in the environment of Gln41. No significant difference between Ca- and Mg-actin was also seen in the magnitude of the fluorescence changes resulting from the polymerization of these two actin forms. Evidence is presented that earlier reported cation-dependent differences in the conformation of the loop 38-52 may be related to time-dependent changes in the conformation of subdomain 2 in DED- or DC-labeled G-actin, accelerated by substitution of Mg2+ for Ca2+ in CaATP-G-actin and, in particular, by conversion of MgATP- into MgADP-G-actin. These spontaneous changes are associated with a denaturation-driven release of the bound nucleotide that is promoted by two effects of DED or DC labeling: lowered affinity of actin for nucleotide and acceleration of ATP hydrolysis on MgATP-G-actin that converts it into a less stable MgADP form. Evidence is presented that the changes in the environment of Gln41 accompanying actin polymerization result in part from the release of Pi after the hydrolysis of ATP on the polymer. A similarity of this change to that accompanying replacement of the bound ATP with ADP in G-actin is discussed.
Collapse
Affiliation(s)
- J Moraczewska
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, PL-02-093 Warsaw, Poland
| | | | | | | |
Collapse
|
16
|
DalleDonne I, Milzani A, Ciapparelli C, Comazzi M, Gioria MR, Colombo R. The assembly of Ni2+-actin: some peculiarities. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1426:32-42. [PMID: 9878683 DOI: 10.1016/s0304-4165(98)00120-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nickel alters the organisation of highly dynamic cytoskeletal elements. In cultured cells Ni2+ causes microtubule aggregation and bundling as well as microfilament aggregation and redistribution. Here, we have analysed the effect(s) of Ni2+ on in vitro actin polymerisation. Using limited proteolysis by trypsin we have suggested that the regions around Arg-62 and Lys-68 change their conformation following Ni2+ binding to the single high-affinity site for divalent cations in the G-actin molecule. We have found that Ni2+ shortens the lag phase of actin polymerisation and increases the rate of assembly mainly because of an increased elongation rate. Ni2+ has no significant effect on the final plateau of actin polymerisation nor on the actin critical concentration. Electron microscopy revealed that actin filaments polymerised by 2 mM Ni2+ showed some tendency to lateral aggregation, being frequently formed by the cohesion of two or three filaments. Furthermore, they often appeared shorter than those of control as also confirmed by the larger amount of free filament ends as well as the faster depolymerisation rate than control.
Collapse
Affiliation(s)
- I DalleDonne
- University of Milan, Department of Biology, Laboratory of Biochemistry and Biophysics of Cytoskeleton Structures, via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
17
|
DalleDonne I, Milzani A, Colombo R. Effect of replacement of the tightly bound Ca2+ by Ba2+ on actin polymerization. Arch Biochem Biophys 1998; 351:141-8. [PMID: 9514647 DOI: 10.1006/abbi.1997.0545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G-actin has a single tight-binding (high-affinity) site for divalent cations per mole of protein, whose occupancy is important for the stability of the molecule. Different tightly bound divalent cations differently influence the polymerization properties of actin. The tightly bound metal ion easily exchanges for free exogenous cations. Moreover, biochemical and structural evidence demonstrates that actin, in both the G- and F-forms, assumes different conformations depending on the metal ion bound with high affinity in the cleft between two main domains of the molecule. In this work, we used proteolytic susceptibility to detect possible local conformational alterations of the actin molecule following a brief incubation of Ca-G-actin with barium chloride and ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. We found that substitution of Ba2+ for the tightly bound Ca2+ affects the regions around Arg-62 and Lys-68 in subdomain 2 of G-actin, as judged from inhibition of tryptic cleavage at these residues. Using the fluorescent chelator Quin-2, we observed that about 0.95 mol of Ba2+ is released per 1 mol of actin. We also examined the effect of replacement of the tightly bound Ca2+ by Ba2+ on actin polymerization. With respect to Ca-actin, Ba-actin shows an increased polymerization rate, mainly due to its enhanced nucleation and a higher critical concentration.
Collapse
Affiliation(s)
- I DalleDonne
- Laboratory of Biochemistry & Biophysics of Cytoskeletal Structures, University of Milan, Via Celoria, 26, Milan, 20133, Italy
| | | | | |
Collapse
|
18
|
Steinmetz MO, Goldie KN, Aebi U. A correlative analysis of actin filament assembly, structure, and dynamics. J Biophys Biochem Cytol 1997; 138:559-74. [PMID: 9245786 PMCID: PMC2141646 DOI: 10.1083/jcb.138.3.559] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The effect of the type of metal ion (i.e., Ca2+, Mg2+, or none) bound to the high-affinity divalent cation binding site (HAS) of actin on filament assembly, structure, and dynamics was investigated in the absence and presence of the mushroom toxin phalloidin. In agreement with earlier reports, we found the polymerization reaction of G-actin into F-actin filaments to be tightly controlled by the type of divalent cation residing in its HAS. Moreover, novel polymerization data are presented indicating that LD, a dimer unproductive by itself, does incorporate into growing F-actin filaments. This observation suggests that during actin filament formation, in addition to the obligatory nucleation- condensation pathway involving UD, a productive filament dimer, a facultative, LD-based pathway is implicated whose abundance strongly depends on the exact polymerization conditions chosen. The "ragged" and "branched" filaments observed during the early stages of assembly represent a hallmark of LD incorporation and might be key to producing an actin meshwork capable of rapidly assembling and disassembling in highly motile cells. Hence, LD incorporation into growing actin filaments might provide an additional level of regulation of actin cytoskeleton dynamics. Regarding the structure and mechanical properties of the F-actin filament at steady state, no significant correlation with the divalent cation residing in its HAS was found. However, compared to native filaments, phalloidin-stabilized filaments were stiffer and yielded subtle but significant structural changes. Together, our data indicate that whereas the G-actin conformation is tightly controlled by the divalent cation in its HAS, the F-actin conformation appears more robust than this variation. Hence, we conclude that the structure and dynamics of the Mg-F-actin moiety within the thin filament are not significantly modulated by the cyclic Ca2+ release as it occurs in muscle contraction to regulate the actomyosin interaction via troponin.
Collapse
Affiliation(s)
- M O Steinmetz
- M.E. Müller Institute for Microscopy, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
19
|
Strzelecka-Golaszewska H, Wozniak A, Hult T, Lindberg U. Effects of the type of divalent cation, Ca2+ or Mg2+, bound at the high-affinity site and of the ionic composition of the solution on the structure of F-actin. Biochem J 1996; 316 ( Pt 3):713-21. [PMID: 8670143 PMCID: PMC1217409 DOI: 10.1042/bj3160713] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
F-actins containing either Ca2+ or Mg2+ at the single high-affinity site for a divalent cation differ in their dynamic properties [Carlier (1991) J. Biol. Chem. 266, 1-4]. In an attempt to obtain information on the structural basis of this difference, we probed the conformation of specific sites in the subunits of Mg- and Ca-F-actin with limited proteolysis by subtilisin and trypsin. The influence of the kind of polymerizing salt was also investigated. At high proteinase concentrations required for digestion of actin in the polymer form, subtilisin gives a complex fragmentation pattern. In addition to the earlier known cleavage between Met47 and Gly48 in the DNAse-I-binding loop, cleavage of F-actin between Ser234 and Ser235 in subdomain 4 has recently been reported [Vahdat, Miller, Phillips, Muhlrad and Reisler (1995) FEBS Lett. 365, 149-151]. Here we show that actually a larger segment, comprising residues 227-235, is removed and the bond between Leu67 and Lys68 in subdomain 2 is split in both G- and F-actin, and that the differences in the fragmentation patterns of the G- and F-forms are accounted for by the protection of the bond 47-48 in F-actin. The subtilisin and trypsin cleavage sites in segment 61-69, subtilisin sites in segment 227-235 and trypsin sites between Lys373 and Cys374 were less accessible in Mg-F-actin than in Ca-F-actin. These are intramolecular effects, as similar changes were observed on Ca2+/Mg2+ replacement in G-actin. The cation-dependent effects, in particular those on segment 61-69, were however less pronounced in F-actin than in G-actin. The results suggest that substitution of Mg2+ for Ca2+, and KCl-induced polymerization of CaATP-G-actin, bring about a similar change in the conformation of subdomain 2 of the monomer. The presence of Mg2+ at the high-affinity site also resulted in an increased protection of the bond 47-48. This latter appears to be an intermolecular effect because it is specific for F-actin. The susceptibility to subtilisin and trypsin was also strongly influenced by the kind and concentration of polymerizing salt. The digestion patterns suggest that the exposure and/or flexibility of the regions containing the cleavage sites diminish with enhancement of the ionic strength of the solution. The results are discussed in terms of the current models of F-actin.
Collapse
|
20
|
Chen X, Rubenstein PA. A mutation in an ATP-binding loop of Saccharomyces cerevisiae actin (S14A) causes a temperature-sensitive phenotype in vivo and in vitro. J Biol Chem 1995; 270:11406-14. [PMID: 7744777 DOI: 10.1074/jbc.270.19.11406] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Ser14 hydroxyl group of actin is one of six groups that potentially form hydrogen bonds with the gamma-phosphate of the ATP bound in the cleft separating the two domains of the protein. To understand the importance of this group in actin function, we mutated Ser14 of Saccharomyces cerevisiae actin and studied the effects of these mutations in vivo and in vitro. Substitution of Cys of Gly resulted in cell death. Substitution of Thr for Ser resulted in an actin with wild-type properties in vivo and in vitro. Cells carrying the Ser14-->Ala (S14A) mutation were viable but displayed a temperature sensitive lethality at 37 degrees C preceded by delocalization of actin patches, the appearance of bar-like structures, and finally the disappearance of identifiable actin structures. The mutation caused no effect on the critical concentration of polymerization but resulted in an actin with an increased rate of polymerization, an altered protease susceptibility, and a decreased filament ATPase activity. At 37 degrees C, Mg-, but not Ca-S14A-actin irreversibly lost the ability to polymerize. These results demonstrate the importance of the ATP-Ser14 hydroxyl hydrogen bond in regulating actin function in vivo and in vitro and the magnification of the effects of the mutation when Mg2+ is substituted for Ca2+ in the protein.
Collapse
Affiliation(s)
- X Chen
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City 52242-1104, USA
| | | |
Collapse
|
21
|
Khaitlina SY, Moraczewska J, Strzelecka-Gołaszewska H. The actin/actin interactions involving the N-terminus of the DNase-I-binding loop are crucial for stabilization of the actin filament. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:911-20. [PMID: 8281943 DOI: 10.1111/j.1432-1033.1993.tb18447.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Actin can be specifically cleaved between residues 42 and 43 with a novel protease from Escherichia coli A2 strain (ECP) [Khaitlina, S. Y., Collins, J. H., Kuznetsova, I.M., Pershina, V.P., Synakevich, I.G., Turoverov, K.K. & Usmanova, A.M. (1991) FEBS Lett. 279, 49-51]. The resulting C-terminal and N-terminal fragments remained associated to one another in the presence of either Ca2+ or Mg2+. The protease-treated actin was, however, neither able to spontaneously assemble into filaments nor to copolymerize with intact actin unless its tightly bound Ca2+ was replaced with Mg2+. Substitution of Mg2+ for the bound Ca2+ was also necessary to partially restore the ability of the protease-treated actin to inhibit the DNase I activity. The critical concentration for KCl-induced polymerization of ECP-treated ATP-Mg-G-actin, determined by measuring the fluorescence of pyrenyl label, was approximately threefold higher than that for actin cleaved between residues 47 and 48 using subtilisin, and 36-fold higher than the critical concentration for polymerization of intact actin under the same conditions. Morphologically, the filaments of ECP-treated actin were indistinguishable from those of intact actin. Comparison of the fluorescence spectra of pyrenyl-labelled actins and chemical cross-linking with N,N'-1,2-phenylenebismaleimide have, however, revealed structural differences between the filaments assembled from ECP-treated actin and those of intact as well as subtilisin-treated actin. Moreover, the filaments of ECP-treated actin were easily disrupted by centrifugal forces or shearing stress unless they were stabilized by phalloidin. The results are consistent with the direct participation of the region around residues 42 and 43 in the monomer/monomer interactions as predicted from the atomic model of F-actin [Holmes, K.C., Popp, D., Gebhard, W. & Kabsch, W. (1990) Nature 347, 44-49] and suggest that the interactions involving this region are of primary importance for stabilization of the actin filament. The mechanism of the regulation of actin polymerization by the tightly bound divalent cation is also discussed.
Collapse
Affiliation(s)
- S Y Khaitlina
- Department of Cell Culture, Institute of Cytology, Saint Petersburg, Russia
| | | | | |
Collapse
|
22
|
Deaton JD, Guerrero T, Howard TH. Role of gelsolin interaction with actin in regulation and creation of actin nuclei in chemotactic peptide activated polymorphonuclear neutrophils. Mol Biol Cell 1992; 3:1427-35. [PMID: 1337290 PMCID: PMC275710 DOI: 10.1091/mbc.3.12.1427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin independent.
Collapse
Affiliation(s)
- J D Deaton
- Department of Pediatrics and Cell Biology and Anatomy, University of Alabama, School of Medicine, Birmingham
| | | | | |
Collapse
|
23
|
Estes JE, Selden LA, Kinosian HJ, Gershman LC. Tightly-bound divalent cation of actin. J Muscle Res Cell Motil 1992; 13:272-84. [PMID: 1527214 DOI: 10.1007/bf01766455] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Actin is known to undergo reversible monomer-polymer transitions that coincide with various cell activities such as cell shape changes, locomotion, endocytosis and exocytosis. This dynamic state of actin filament self-assembly and disassembly is thought to be regulated by the properties of the monomeric actin molecule and in vivo by the influence of actin-associated proteins. Of major importance to the properties of the monomeric actin molecule are the presence of one tightly-bound ATP and one tightly-bound divalent cation per molecule. In vivo the divalent cation is thought to be Mg2+ (Mg-actin) but in vitro standard purification procedures result in the preparation of Ca-actin. The affinity of actin for a divalent cation at the tight binding site is in the nanomolar range, much higher than earlier thought. The binding kinetics of Mg2+ and Ca2+ at the high affinity site on actin are considered in terms of a simple competitive binding mechanism. This model adequately describes the published observations regarding divalent cation exchange on actin. The effects of the tightly-bound cation, Mg2+ or Ca2+, on nucleotide binding and exchange on actin, actin ATP hydrolysis activity and nucleation and polymerization of actin are discussed. From the characteristics that are reviewed, it is apparent that the nature of the bound divalent cation has a significant effect on the properties of actin.
Collapse
Affiliation(s)
- J E Estes
- Research Service, Veterans Administration Medical Centre, Albany, New York 12208
| | | | | | | |
Collapse
|
24
|
Pring M, Weber A, Bubb MR. Profilin-actin complexes directly elongate actin filaments at the barbed end. Biochemistry 1992; 31:1827-36. [PMID: 1737036 DOI: 10.1021/bi00121a035] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We demonstrate that the profilin-G-actin complex can elongate actin filaments directly at the barbed end but cannot bind to the pointed end. During elongation, the profilin-actin complex binds to the barbed filament end, whereupon profilin is released, leaving the actin molecule behind. This was first proposed by Tilney [Tilney, L. G., et al. (1983) J. Cell Biol. 97, 112-124] and demonstrated by Pollard and Cooper [(1984) Biochemistry 23, 6631-6641] by electron microscopy. We show that a model without any outside energy supply, in contrast to the mechanism proposed by Pollard and Cooper, can be fitted to our and their [Kaiser et al. (1986) J. Cell Biol. 102, 221-226] findings. Input of outside energy is necessary only if profilin-mediated elongation continues after free G-actin has been lowered to or below the critical concentration observed at the barbed end in the absence of profilin.
Collapse
Affiliation(s)
- M Pring
- Department of Physiology, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
25
|
Kinosian HJ, Selden LA, Estes JE, Gershman LC. Thermodynamics of actin polymerization; influence of the tightly bound divalent cation and nucleotide. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1077:151-8. [PMID: 2015289 DOI: 10.1016/0167-4838(91)90052-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous work by this laboratory has shown that the tightly bound divalent cation of actin affects the enthalpy of the polymerization reaction for ATP-actin (Selden et al. (1986) J. Muscle Res. Cell Motil. 7, 215-224). In the present study, we have measured the temperature dependence of polymerization for actin containing ATP or ADP as the bound nucleotide and Mg2+ or Ca2+ (Mg-actin or Ca-actin) as the tightly bound divalent cation. In contrast to the marked effect of the tightly bound divalent cation on enthalpy and entropy changes for the polymerization of ATP-actin, ADP-actin polymerization is affected very little by the tightly bound divalent cation. The Arrhenius and van't Hoff plots for polymerization of Ca-ATP-, Mg-ADP- and Ca-ADP-actin were found to be non-linear. The free energy data for actin polymerization have been analyzed as a second order function of absolute temperature (Osborne et al. (1976) Biochemistry 15, 317-320). The values of the enthalpy change and activation enthalpy change for Ca-ATP-, Mg-ADP- and Ca-ADP-actin polymerization were found to be temperature-dependent, in contrast to those for Mg-ATP-actin, which were nearly constant over the temperature range studied. These results suggest that (1) polymerization of actin which does not contain both Mg2+ and ATP may be a multi-step reaction including a rate-limiting step and (2) Mg-ATP-actin has a unique conformation which enhances its ability to polymerize.
Collapse
Affiliation(s)
- H J Kinosian
- Department of Physiology and Cell Biology, Albany Medical College, NY
| | | | | | | |
Collapse
|
26
|
|
27
|
Howard T, Chaponnier C, Yin H, Stossel T. Gelsolin-actin interaction and actin polymerization in human neutrophils. J Cell Biol 1990; 110:1983-91. [PMID: 2161855 PMCID: PMC2116138 DOI: 10.1083/jcb.110.6.1983] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The fraction of polymerized actin in human blood neutrophils increases after exposure to formyl-methionyl-leucyl-phenylalanine (fmlp), is maximal 10 s after peptide addition, and decreases after 300 s. Most of the gelsolin (85 +/- 11%) in resting ficoll-hypaque (FH)-purified neutrophils is in an EGTA resistant, 1:1 gelsolin-actin complex, and, within 5 s after 10(-7) M fmlp activation, the amount of gelsolin complexed with actin decreases to 42 +/- 12%. Reversal of gelsolin binding to actin occurs concurrently with an increase in F-actin content, and the appearance of barbed-end nucleating activity. The rate of dissociation of EGTA resistant, 1:1 gelsolin-actin complexes is more rapid in cells exposed to 10(-7) M fmlp than in cells exposed to 10(-9) M fmlp, and the extent of dissociation 10 s after activation depends upon the fmlp concentration. Furthermore, 300 s after fmlp activation when F-actin content is decreasing, gelsolin reassociates with actin as evidenced by an increase in the amount of EGTA resistant, 1:1 gelsolin-actin complex. Since fmlp induces barbed end actin polymerization in neutrophils and since in vitro the gelsolin-actin complex caps the barbed ends of actin filaments and blocks their growth, the data suggests that in FH neutrophils fmlp-induced actin polymerization could be initiated by the reversal of gelsolin binding to actin and the uncapping of actin filaments or nuclei. The data shows that formation and dissociation of gelsolin-actin complexes, together with the effects of other actin regulatory proteins, are important steps in the regulation of actin polymerization in neutrophils. Finally, finding increased amounts of gelsolin-actin complex in basal FH cells and dissociation of the complex in fmlp-activated cells suggests a mechanism by which fmlp can cause actin polymerization without an acute increase in cytosolic Ca++.
Collapse
Affiliation(s)
- T Howard
- Department of Pediatrics, University of Alabama, Birmingham 35233
| | | | | | | |
Collapse
|
28
|
Young CL, Southwick FS, Weber A. Kinetics of the interaction of a 41-kilodalton macrophage capping protein with actin: promotion of nucleation during prolongation of the lag period. Biochemistry 1990; 29:2232-40. [PMID: 2337601 DOI: 10.1021/bi00461a005] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A 41-kilodalton macrophage capping protein (MCP) has been isolated which is capable of forming complexes with actin monomers in addition to capping the barbed ends of actin filaments (Southwick & DiNubile, 1986). The protein is calcium activated in a fully reversible manner. Using kinetic assays, we determined a capping constant, defined here as a modified Kd, of 1 nM and a Kd of 3-4 microM for MCP-actin monomer complex formation. MCP weakly nucleates actin polymerization: more than 0.5 microM MCP is necessary to shorten the lag period, and 1 microM MCP at an actin/MCP ratio of 10 reduces the average length of actin filaments to about 200 molecules per filament. We determined that the actin nucleus that survives MCP inactivation contains a minimum number of five actin molecules. These experiments also make a point with respect to the interpretation of the prolongation of the lag period. We directly demonstrate that in the presence of an actin binding protein a prolongation of the lag period can be associated with increased nucleation, contrary to the usual interpretation in the literature that it indicates no or decreased nucleation by the actin binding protein.
Collapse
Affiliation(s)
- C L Young
- Department of Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
29
|
Valentin-Ranc C, Carlier MF. Evidence for the Direct Interaction Between Tightly Bound Divalent Metal Ion and ATP on Actin. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)30017-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Broschat KO, Weber A, Burgess DR. Tropomyosin stabilizes the pointed end of actin filaments by slowing depolymerization. Biochemistry 1989; 28:8501-6. [PMID: 2605200 DOI: 10.1021/bi00447a035] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tropomyosin is postulated to confer stability to actin filaments in nonmuscle cells. We have found that a nonmuscle tropomyosin isolated from the intestinal epithelium can directly stabilize actin filaments by slowing depolymerization from the pointed, or slow-growing, filament end. Kinetics of elongation and depolymerization from the pointed end were measured in fluorescence assays using pyrenylactin filaments capped at the barbed end by villin. The initial pointed end depolymerization rate in the presence of tropomyosin averaged 56% of the control rate. Elongation from the pointed filament end in the presence of tropomyosin occurred at a lower free G-actin concentration, although the on rate constant, kappa p+, was not greatly affected. Furthermore, in the presence of tropomyosin, the free G-actin concentration was lower at steady state. Therefore, nonmuscle tropomyosin stabilizes the pointed filament end by lowering the off rate constant, kappa p-.
Collapse
Affiliation(s)
- K O Broschat
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Florida 33101
| | | | | |
Collapse
|
31
|
Gershman LC, Selden LA, Kinosian HJ, Estes JE. Preparation and polymerization properties of monomeric ADP-actin. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 995:109-15. [PMID: 2930792 DOI: 10.1016/0167-4838(89)90068-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An improved method for the preparation of Mg-ADP-actin and Ca-ADP-actin which minimizes denaturation of the protein has been developed. Using ADP-actin prepared by this method, we have measured the polymerization characteristics of Mg-ADP-actin and Ca-ADP-actin. In contrast to the significant difference in Mg-ATP-actin and Ca-ATP-actin polymerization characteristics that we reported previously (J. Muscle Res. Cell Motility 7 (1986) 215-224), we show here that values for the critical concentration, the relative rate constant of elongation (mk+) and the relative rate constant of depolymerization (mk-) for Mg-ADP-actin are similar to those for Ca-ADP-actin. The value of mk+ for Mg-ATP-actin is about 8-fold higher than that for Mg-ADP-actin and the value of mk- for Mg-ADP-actin is 3-4-fold higher than that for Mg-ATP-actin. These factors may help explain the observation that the spontaneous nucleation rates of both types of ADP-actin are low in contrast to the rapid nucleation of Mg-ATP-actin.
Collapse
Affiliation(s)
- L C Gershman
- Medical Service, Veterans Administration Medical Center, NY, Albany 12208
| | | | | | | |
Collapse
|
32
|
Newman J, Mroczka N, Schick KL. Dynamic light scattering measurements of the diffusion of probes in filamentous actin solutions. Biopolymers 1989; 28:655-66. [PMID: 2713456 DOI: 10.1002/bip.360280209] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diffusion coefficients of monodisperse polystyrene latex spheres in solutions of polymerized actin were measured using dynamic light scattering. Four different probes with radii R, ranging from 50 to 500 nm, were separately used in actin solutions with concentrations c, ranging from 1.5 to 21 microM, which had been polymerized with either 1 mM MgCl2, 1 mM CaCl2, or 100 mM KCl. Under all conditions, and at four different scattering angles in the range of 30 degrees-90 degrees, the measured average diffusion coefficients D of the probes were systematically smaller for samples of increased actin concentration or of increased probe radius. Control experiments indicated that the probes did not bind to the actin. These data for Mg2+- and Ca2+-polymerized actin agree and were found to be quite well summarized by the scaling relation D/D0 = exp[-alpha R delta c nu], where D0 is the measured diffusion coefficient of the probes in water (and, as also measured, in the starting actin solutions prior to polymerization with added salt), with values of delta = 0.73 +/- 0.05, nu = 1.08 +/- 0.09, and alpha = (1.1 +/- 0.6) x 10(-3) (with c in microM and R in nm). Data for KCl-polymerized actin show much more restricted diffusivities of the probes at comparable actin concentrations. Inhomogeneities in the solution are reflected in the "effective polydispersity" of the probe diffusion coefficients, which depend on local microviscosity differences.
Collapse
|
33
|
GERSHMAN LEWISC, ESTES JAMESE, SELDEN LYNNA. Polymerization Characteristics of Divalent Cation-Free Actin. Ann N Y Acad Sci 1988. [DOI: 10.1111/j.1749-6632.1988.tb51477.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Larsson H, Lindberg U. The effect of divalent cations on the interaction between calf spleen profilin and different actins. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 953:95-105. [PMID: 3342244 DOI: 10.1016/0167-4838(88)90013-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The interaction between calf spleen profilin and actin depends critically on the status of the C-terminus of the actin, and in the case of profilin, the C-terminus is of great importance for the physiochemical behaviour of the protein. Both proteins easily lose their C-terminal amino acids during the preparation, and special care has to be taken to ensure the isolation of the proteins in the intact form. Another factor that may seriously influence the study of the interaction of profilin with actin is the presence of varying amounts of an activity that causes an apparent stabilization of the complex even at later stages of its purification. We have found conditions for the isolation of intact profilin and actin, and studied the interaction between the two proteins, including the determination of the Kdiss for the complex formed under various ionic conditions. The complex formed between profilin and actin from calf spleen was found to be significantly stronger (Kdiss less than or equal to 10(-8) M in 50 mM KCl, and Kdiss = 4.10(-7) M in 50 mM KCl, 1 mM MgCl2) than that formed between profilin and muscle alpha-actin (Kdiss = 10(-6) M in 50 mM KCl, +/- 1 mM MgCl2). The profilactin complex formed in the mammalian system was stronger than the complex formed between Acanthamoeba actin and the profilin-like protein isolated from this organism. Analysis of the formation of the calf spleen complex in the presence of varying concentrations of divalent cations gave evidence for the presence of a high-affinity divalent-cation-binding site on the spleen actin (beta, gamma) which appears to regulate the interaction with profilin.
Collapse
Affiliation(s)
- H Larsson
- Department of Zoological Cell Biology, Wenner-Gren Institute, University of Stockholm, Sweden
| | | |
Collapse
|
35
|
Carson M, Weber A, Zigmond SH. An actin-nucleating activity in polymorphonuclear leukocytes is modulated by chemotactic peptides. J Cell Biol 1986; 103:2707-14. [PMID: 3793753 PMCID: PMC2114615 DOI: 10.1083/jcb.103.6.2707] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We examined the actin-nucleating activity in polymorphonuclear leukocyte lysates prepared at various times after chemotactic peptide addition. The actin nucleation increases two- to threefold within 15 s after peptide addition, decays to basal levels within 90 s, and is largely independent of cytoplasmic calcium fluxes. The peptide-induced nucleation sites behave as free barbed ends and therefore may increase the level of polymerized actin in vivo. The new nucleation sites may also determine the cellular sites of actin polymerization. This localization of actin polymerization could be important for the directional extension of lamellipodia during chemotaxis.
Collapse
|
36
|
The effects of Mg2+ at the high-affinity and low-affinity sites on the polymerization of actin and associated ATP hydrolysis. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67455-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
Fluorescence measurements of the binding of cations to high-affinity and low-affinity sites on ATP-G-actin. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67454-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
38
|
Northrop J, Weber A, Mooseker MS, Franzini-Armstrong C, Bishop MF, Dubyak GR, Tucker M, Walsh TP. Different calcium dependence of the capping and cutting activities of villin. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67650-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Selden LA, Gershman LC, Estes JE. A kinetic comparison between Mg-actin and Ca-actin. J Muscle Res Cell Motil 1986; 7:215-24. [PMID: 3734052 DOI: 10.1007/bf01753554] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The kinetics of the elongation reaction in the polymerization of actin containing tightly-bound Mg2+ (Mg-actin) or tightly-bound Ca2+ (Ca-actin) have been studied. The reaction was monitored using the increase in fluorescence intensity of N-(1-pyrenyl)iodoacetamide-labelled monomeric actin as a measure of polymer formation. The actin nucleation reaction was circumvented by the addition of phalloidin-stabilized actin nuclei. Elongation rates were obtained at various actin concentrations and at various temperatures for polymerization induced by the presence of different monovalent and divalent salt concentrations. Values for the relative rate constant of forward polymerization (mk+) for Mg-actin were found to be larger than those for Ca-actin under similar conditions (m = number of polymer ends). The critical actin concentration (Cc) of Mg-actin is lower than the Cc for Ca-actin, as were estimates of the relative rate constant of depolymerization (mk-). The temperature dependence of Cc, mk+ and mk- for Mg-actin was different from that for Ca-actin, further suggesting a difference in monomeric properties due to the type of divalent cation tightly bound to actin. Estimates of the activation enthalpy change for the forward reaction in the G in equilibrium F transformation were similar for both types of actin, but the activation enthalpy change for the depolymerization of Mg-actin was significantly larger than that for Ca-actin.
Collapse
|
40
|
Gershman LC, Selden LA, Estes JE. High affinity binding of divalent cation to actin monomer is much stronger than previously reported. Biochem Biophys Res Commun 1986; 135:607-14. [PMID: 3964262 DOI: 10.1016/0006-291x(86)90036-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Monomeric actin is known to bind tightly one divalent cation per molecule. We have quantitatively reinvestigated the affinity of actin for Ca++ and Mg++ using the fluorescent Ca++ chelator Quin2 to induce and measure the dissociation of Ca++ from Ca-actin, supporting these studies with measurements using 45Ca. We found that the KD for Ca-actin is actually 1.9 +/- 0.7 nM. Kinetic analysis supported this result and demonstrated a dissociation rate constant (k-) of 0.013 s-1 and an association rate constant (k+) of 6.8 X 10(6)M-1 s-1 for Ca-actin. Competitive binding studies indicated that the binding affinity of actin for Ca++ is 5.4 times that for Mg++, yielding a calculated KD for Mg-actin of about 10 nM. Thus, the tight-binding of divalent cations to actin is 3-4 orders of magnitude stronger than previously thought.
Collapse
|
41
|
Abstract
Spectrin dimer is shown to influence the polymerization behaviour of actin. The polymerization of both Mg2+- and Ca2+-actin is regulated by an enhancement in the rate of nucleation and a fragmentation of preformed actin filaments. In addition, spectrin decreases the critical concentration of Ca2+-actin but not that of Mg2+-actin. This suggests that the two types of actin may differ in their interaction with spectrin dimer probably due to the different conformations. Band 4.1 elevates the effects of spectrin under non-equilibrium conditions but its contribution is less at steady state.
Collapse
|
42
|
Barden JA, dos Remedios CG. Conformational changes in actin resulting from Ca2+/Mg2+ exchange as detected by proton NMR spectroscopy. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 146:5-8. [PMID: 3967655 DOI: 10.1111/j.1432-1033.1985.tb08612.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Skeletal muscle actin can be maintained in a monomeric form in very low ionic strength solutions as well as in high concentrations (0.6 M) of MgCl2 or CaCl2. 400-MHz 1H-NMR spectra revealed characteristic changes which show that the conformation of actin alters by exchanging Ca2+ for Mg2+ in the single high-affinity cation binding site. When all low-affinity cation binding sites are filled (in the presence of high concentrations of Ca2+ or Mg2+), the spectra show that actin conformation differs from that in low-ionic-strength buffer. A comparison of actin in 0.6 M CaCl2 and 0.6 M MgCl2 revealed that the environment of only a small number of protons is affected by the exchange. A new proposal for the essential steps involved in actin polymerization is presented.
Collapse
|
43
|
Egly JM, Miyamoto NG, Moncollin V, Chambon P. Is actin a transcription initiation factor for RNA polymerase B? EMBO J 1984; 3:2363-71. [PMID: 6499833 PMCID: PMC557695 DOI: 10.1002/j.1460-2075.1984.tb02141.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have previously reported that two fractions derived from HeLa cell S100 extracts, the heparin flow-through and the heparin 0.6 M KCl eluate are required in vitro for efficient and accurate transcription by RNA polymerase class B (II). We have further purified a factor present in the heparin flow-through fraction, which markedly stimulates specific transcription catalyzed by the heparin 0.6 M KCl eluate. We report here that some of the properties of the stimulatory factor present in our most purified fractions are strikingly similar to those of actin. We demonstrate also that this factor acts at the pre-initiation level of the transcription reaction.
Collapse
|
44
|
Abstract
Under standard conditions, G-actin has been submitted to nine proteases of varying specificity, and in each case the pattern of fragments produced has been studied by NaDodSO4 gel electrophoresis. The results suggest that the actin monomer consists of a large region (ca. 33 kilodaltons) and a small, easily degraded region (ca. 9 kilodaltons). The COOH terminus is in the large region. Consideration of primary sequence homologies, medium resolution maps of actin crystals, and certain reactions of actin suggests that the NH2 terminus is in the small region, as is the negative sequence to which a divalent metal cation is normally chelated, but that the nucleotide-binding site is on the large region near the junction between the regions. From analysis of these results, numerous properties of actin are understandable.
Collapse
|