1
|
Furtmüller PG, Zederbauer M, Jantschko W, Helm J, Bogner M, Jakopitsch C, Obinger C. Active site structure and catalytic mechanisms of human peroxidases. Arch Biochem Biophys 2005; 445:199-213. [PMID: 16288970 DOI: 10.1016/j.abb.2005.09.017] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 09/27/2005] [Accepted: 09/28/2005] [Indexed: 11/30/2022]
Abstract
Myeloperoxidase (MPO), eosinophil peroxidase, lactoperoxidase, and thyroid peroxidase are heme-containing oxidoreductases (EC 1.7.1.11), which bind ligands and/or undergo a series of redox reactions. Though sharing functional and structural homology, reflecting their phylogenetic origin, differences are observed regarding their spectral features, substrate specificities, redox properties, and kinetics of interconversion of the relevant redox intermediates ferric and ferrous peroxidase, compound I, compound II, and compound III. Depending on substrate availability, these heme enzymes path through the halogenation cycle and/or the peroxidase cycle and/or act as poor (pseudo-)catalases. Based on the published crystal structures of free MPO and its complexes with cyanide, bromide and thiocyanate as well as on sequence analysis and modeling, we critically discuss structure-function relationships. This analysis highlights similarities and distinguishing features within the mammalian peroxidases and intents to provide the molecular and enzymatic basis to understand the prominent role of these heme enzymes in host defense against infection, hormone biosynthesis, and pathogenesis.
Collapse
Affiliation(s)
- Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, Metalloprotein Research Group, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
2
|
Jantschko W, Furtmüller PG, Zederbauer M, Neugschwandtner K, Jakopitsch C, Obinger C. Reaction of ferrous lactoperoxidase with hydrogen peroxide and dioxygen: an anaerobic stopped-flow study. Arch Biochem Biophys 2005; 434:51-9. [PMID: 15629108 DOI: 10.1016/j.abb.2004.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 10/14/2004] [Indexed: 11/19/2022]
Abstract
Lactoperoxidase (LPO) is found in mucosal surfaces and exocrine secretions including milk, tears, and saliva and has physiological significance in antimicrobial defense which involves (pseudo-)halide oxidation. LPO compound III (a ferrous-dioxygen complex) is known to be formed rapidly by an excess of hydrogen peroxide and could participate in the observed catalase-like activity of LPO. The present anaerobic stopped-flow kinetic analysis was performed in order to elucidate the catalytic mechanism of LPO and the kinetics of compound III formation by probing the reactivity of ferrous LPO with hydrogen peroxide and molecular oxygen. It is shown that ferrous LPO heterolytically cleaves hydrogen peroxide forming water and oxyferryl LPO (compound II). The two-electron oxidation reaction follows second-order kinetics with the apparent bimolecular rate constant being (7.2+/-0.3) x 10(4) M(-1) s(-1) at pH 7.0 and 25 degrees C. The H2O2-mediated conversion of compound II to compound III follows also second-order kinetics (220 M(-1) s(-1) at pH 7.0 and 25 degrees C). Alternatively, compound III is also formed by dioxygen binding to ferrous LPO at an apparent bimolecular rate constant of (1.8+/-0.2) x 10(5) M(-1) s(-1). Dioxygen binding is reversible and at pH 7.0 the dissociation constant (K(D)) of the oxyferrous form is 6 microM. The rate constant of dioxygen dissociation from compound III is higher than conversion of compound III to ferric LPO, which is not affected by the oxygen concentration and follows a biphasic kinetics. A reaction cycle including the redox intermediates compound II, compound III, and ferrous LPO is proposed, which explains the observed (pseudo-)catalase activity of LPO in the absence of one-electron donors. The relevance of these findings in LPO catalysis is discussed.
Collapse
Affiliation(s)
- Walter Jantschko
- Division of Biochemistry, Department of Chemistry, Metalloprotein Research Group, BOKU--University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
3
|
Ghibaudi E, Laurenti E. Unraveling the catalytic mechanism of lactoperoxidase and myeloperoxidase. A reflection on some controversial features. ACTA ACUST UNITED AC 2003; 270:4403-12. [PMID: 14622268 DOI: 10.1046/j.1432-1033.2003.03849.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although belonging to the widely investigated peroxidase superfamily, lactoperoxidase (LPO) and myeloperoxidase (MPO) share structural and functional features that make them peculiar with respect to other enzymes of the same group. A survey of the available literature on their catalytic intermediates enabled us to ask some questions that remained unanswered. These questions concern controversial features of the LPO and MPO catalytic cycle, such as the existence of Compound I and Compound II isomers and the identification of their spectroscopic properties. After addressing each of these questions, we formulated a hypothesis that describes an integrated vision of the catalytic mechanism of both enzymes. The main points are: (a) a re-evaluation of the role of superoxide as a reductant in the catalytic cycle; (b) the existence of Cpd I isomers; (c) reciprocal interactions between catalytic intermediates and (d) a mechanistic explanation for catalase activity in both enzymes.
Collapse
Affiliation(s)
- Elena Ghibaudi
- Dipartimento di Chimica I.F.M., Università di Torino, Italy.
| | | |
Collapse
|
4
|
Lardinois OM, Ortiz de Montellano PR. Intra- and intermolecular transfers of protein radicals in the reactions of sperm whale myoglobin with hydrogen peroxide. J Biol Chem 2003; 278:36214-26. [PMID: 12855712 DOI: 10.1074/jbc.m304726200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reaction of sperm whale metmyoglobin (SwMb) with H2O2 produces a ferryl (MbFeIV=O) species and a protein radical and leads to the formation of oligomeric products. The ferryl species is maximally formed with one equivalent of H2O2, and the maximum yields of the dimer (28%) and trimer (17%) with 1 or 2 eq. Co-incubation of the SwMb Y151F mutant with native apoSwMb and H2O2 produced dimeric products, which requires radical transfer from the nondimerizing Y151F mutant to apoSwMb. Autoreduction of ferryl SwMb to the ferric state is biphasic with t = 3.4 and 25.9 min. An intramolecular autoreduction process is implicated at low protein concentrations, but oligomerization decreases the lifetime of the ferryl species at high protein concentrations. A fraction of the protein remained monomeric. This dimerization-resistant protein was in the ferryl state, but after autoreduction it underwent normal dimerization with H2O2. Proteolytic digestion established the presence of both dityrosine and isodityrosine cross-links in the oligomeric proteins, with the isodityrosine links primarily forged by Tyr151-Tyr151 coupling. The tyrosine content decreased by 47% in the dimer and 14% in the recovered monomer, but the yields of isodityrosine and dityrosine in the dimer were only 15.2 and 6.8% of the original tyrosine content. Approximately 23% of the lost tyrosines therefore have an alternative but unknown fate. The results clearly demonstrate the concurrence of intra- and intermolecular electron transfer processes involving Mb protein radicals. Intermolecular electron transfers that generate protein radicals on bystander proteins are likely to propagate the cellular damage initiated by the reaction of metalloproteins with H2O2.
Collapse
Affiliation(s)
- Olivier M Lardinois
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-2280, USA
| | | |
Collapse
|
5
|
Colas C, Ortiz de Montellano PR. Autocatalytic radical reactions in physiological prosthetic heme modification. Chem Rev 2003; 103:2305-32. [PMID: 12797831 DOI: 10.1021/cr0204303] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Christophe Colas
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143-0446, USA
| | | |
Collapse
|
6
|
Lardinois OM, de Montellano PR. H2O2-mediated cross-linking between lactoperoxidase and myoglobin: elucidation of protein-protein radical transfer reactions. J Biol Chem 2001; 276:23186-91. [PMID: 11297563 DOI: 10.1074/jbc.m102084200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The H(2)O(2)-dependent reaction of lactoperoxidase (LPO) with sperm whale myoglobin (SwMb) or horse myoglobin (HoMb) produces LPO-Mb cross-linked species, in addition to LPO and SwMb homodimers. The HoMb products are a LPO(HoMb) dimer and LPO(HoMb)(2) trimer. Dityrosine cross-links are shown by their fluorescence to be present in the oligomeric products. Addition of H(2)O(2) to myoglobin (Mb), followed by catalase to quench excess H(2)O(2) before the addition of LPO, still yields LPO cross-linked products. LPO oligomerization therefore requires radical transfer from Mb to LPO. In contrast to native LPO, recombinant LPO undergoes little self-dimerization in the absence of Mb but occurs normally in its presence. Simultaneous addition of 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) and LPO to activated Mb produces a spin-trapped radical electron paramagnetic resonance signal located primarily on LPO, confirming the radical transfer. Mutation of Tyr-103 or Tyr-151 in SwMb decreased cross-linking with LPO, but mutation of Tyr-146, Trp-7, or Trp-14 did not. However, because DBNBS-trapped LPO radicals were observed with all the mutants, DBNBS traps LPO radicals other than those involved in protein oligomerization. The results clearly establish that radical transfer occurs from Mb to LPO and suggest that intermolecularly transferred radicals may reside on residues other than those that are generated by intramolecular reactions.
Collapse
Affiliation(s)
- O M Lardinois
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143-0446, USA
| | | |
Collapse
|
7
|
Brück TB, Fielding RJ, Symons MC, Harvey PJ. Mechanism of nitrite-stimulated catalysis by lactoperoxidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3214-22. [PMID: 11389723 DOI: 10.1046/j.1432-1327.2001.02213.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The reactions of lactoperoxidase (LPO) intermediates compound I, compound II and compound III, with nitrite (NO2(-)) were investigated. Reduction of compound I by NO2(-) was rapid (k2 = 2.3 x 10(7) M(-1) x s(-1); pH = 7.2) and compound II was not an intermediate, indicating that NO2* radicals are not produced when NO2(-) reacts with compound I. The second-order rate constant for the reaction of compound II with NO2(-) at pH = 7.2 was 3.5 x 10(5) M(-1) x s(-1). The reaction of compound III with NO2(-) exhibited saturation behaviour when the observed pseudo first-order rate constants were plotted against NO2(-) concentrations and could be quantitatively explained by the formation of a 1 : 1 ratio compound III/NO2(-) complex. The Km of compound III for NO2(-) was 1.7 x 10(-4) M and the first-order decay constant of the compound III/ NO2(-) complex was 12.5 +/- 0.6 s(-1). The second-order rate constant for the reaction of the complex with NO2(-) was 3.3 x 10(3) M(-1) x s(-1). Rate enhancement by NO2(-) does not require NO2* as a redox intermediate. NO2(-) accelerates the overall rate of catalysis by reducing compound II to the ferric state. With increasing levels of H2O2, there is an increased tendency for the catalytically dead-end intermediate compound III to form. Under these conditions, the 'rescue' reaction of NO2(-) with compound III to form compound II will maintain the peroxidatic cycle of the enzyme.
Collapse
Affiliation(s)
- T B Brück
- Department of Chemical and Life Sciences, University of Greenwich, London, UK
| | | | | | | |
Collapse
|
8
|
Mitra SN, Slungaard A, Hazen SL. Role of eosinophil peroxidase in the origins of protein oxidation in asthma. Redox Rep 2001; 5:215-24. [PMID: 10994876 DOI: 10.1179/135100000101535771] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Eosinophils are uniquely endowed with an arsenal of enzymes that enable them to generate an array of reactive oxidants and diffusible radical species. The formidable arsenal at their disposal likely evolved because of the central role these phagocytes play in combating invading helminths and other large metazoan pathogens. Although these leukocytes constitute an essential component of the effector limb of host defenses, they also are implicated in contributing to inflammatory tissue injury. The growing prevalence and severity of asthma, a respiratory disease characterized by recruitment and activation of eosinophils in the airways of affected individuals, has focused research efforts on elaborating the many potential mechanisms through which eosinophils may contribute to tissue injury and oxidative modification of biological targets in asthma. Eosinophil activation is strongly suspected as playing a contributory role in the pathogenesis of asthma. Accordingly, an understanding of the basic chemical pathways available to the leukocytes for generating specific reactive oxidants and diffusible radical species in vivo is required. In the following review, recent progress in the elaboration of specific mechanisms through which eosinophils generate oxidants and other reactive species are discussed. The potential contributions of these intermediates to modification of biological targets during asthma are described. Particular emphasis is placed upon the secreted hemoprotein eosinophil peroxidase (EPO), a central participant in generation of reactive oxidants and diffusible radical species by the phagocytes.
Collapse
Affiliation(s)
- S N Mitra
- Department of Cell Biology, Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | |
Collapse
|
9
|
Lardinois OM, Medzihradszky KF, Ortiz de Montellano PR. Spin trapping and protein cross-linking of the lactoperoxidase protein radical. J Biol Chem 1999; 274:35441-8. [PMID: 10585414 DOI: 10.1074/jbc.274.50.35441] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lactoperoxidase (LPO) reacts with H(2)O(2) to sequentially give two Compound I intermediates: the first with a ferryl (Fe(IV)=O) species and a porphyrin radical cation, and the second with the same ferryl species and a presumed protein radical. However, little actual evidence is available for the protein radical. We report here that LPO reacts with the spin trap 3,5-dibromo-4-nitroso-benzenesulfonic acid to give a 1:1 protein-bound radical adduct. Furthermore, LPO undergoes the H(2)O(2)-dependent formation of dimeric and trimeric products. Proteolytic digestion and mass spectrometric analysis indicates that the dimer is held together by a dityrosine link between Tyr-289 in each of two LPO molecules. The dimer retains full catalytic activity and reacts to the same extent with the spin trap, indicating that the spin trap reacts with a radical center other than Tyr-289. The monomeric protein recovered from incubations of LPO with H(2)O(2) is fully active but no longer forms dimers when incubated with H(2)O(2), clear evidence that it has also been structurally modified. Myeloperoxidase, a naturally dimeric protein, and eosinophil peroxidase do not undergo H(2)O(2)-dependent oligomerization. Analysis of the interface in the LPO dimers indicates that the same protein surface is involved in LPO dimerization as in the normal formation of myeloperoxidase dimers. Oligomerization of LPO alters its physical properties and may alter its ability to interact with macromolecular substrates.
Collapse
Affiliation(s)
- O M Lardinois
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143-0446, USA
| | | | | |
Collapse
|
10
|
Abstract
Many reactions catalyzed by heme proteins involve an oxidation of the heme to one or two equivalents above the ferric state. Such intermediates are often referred to as Compound II and Compound I, respectively. Several different notations are used in the literature to describe the chemical structures of these compounds, which has led to errors and misinterpretations. The main problems are: 1. For many biochemists the notations X - FeIV = O and X - Fe + = O are equivalent and are used interchangeably, whereas other biochemists interpret these notations to have quite different meanings. 2. It is inaccurate and misleading to illustrate the increased oxidation state of Compound I by just adding two positive charges to the structure. 3. The bond between the oxygen and iron is not a conventional double bond and illustrating it as such leads to misconceptions concerning its properties. 4. In several instances, including horseradish peroxidase Compound I, there is reason to doubt that the radical moiety of the porphyrin ring (or of the protein in other peroxidases) carries a positive charge. The purpose of this article is to promote the use of uniform, as well as chemically correct, formulae and equations in describing the structures and reactivities of Compounds I and II. To accomplish this, a new notation is proposed for the iron-oxygen bond in these compounds.
Collapse
Affiliation(s)
- J Everse
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock 79430, USA.
| |
Collapse
|
11
|
Gebicka L, Gebicki JL. The effect of ultrasound on heme enzymes in aqueous solution. JOURNAL OF ENZYME INHIBITION 1997; 12:133-41. [PMID: 9247855 DOI: 10.3109/14756369709035814] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effect of cavitating 22 kHz ultrasound on aqueous solutions of hydrogen peroxide-consuming enzymes, catalase and peroxidases, both plant (horseradish peroxidase) and animal (lactoperoxidase) was studied. Catalase did not undergo inactivation during sonication, whereas activity of peroxidases decreased with increased duration of sonication. It is suggested, basing on the absorption spectra, that some conformational changes occur in peroxidases upon sonolysis. It is concluded from the experiments with free radical scavengers that partial enzyme inactivation and modification has not a chemical but a mechanical basis.
Collapse
Affiliation(s)
- L Gebicka
- Institute of Applied Radiation Chemistry, Technical University of Lódź, Poland.
| | | |
Collapse
|
12
|
Miller VP, Goodin DB, Friedman AE, Hartmann C, Ortiz de Montellano PR. Horseradish peroxidase Phe172-->Tyr mutant. Sequential formation of compound I with a porphyrin radical cation and a protein radical. J Biol Chem 1995; 270:18413-9. [PMID: 7629167 DOI: 10.1074/jbc.270.31.18413] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A gene coding for the F172Y mutant of horseradish peroxidase isozyme C (HRP) has been constructed and expressed in both Spodoptera frugiperda (SF-9) and Trichoplusia ni egg cell homogenate (HighFive) cells. Homology modeling with respect to three peroxidases for which crystal structures are available places Phe172 on the proximal side of the heme in the vicinity of porphyrin pyrrole ring C. The pH optimum and spectroscopic properties of the F172Y mutant are essentially identical to those of wild type HRP. Vmax values show that the mutant protein retains most of the guaiacol oxidizing activity. Stopped flow studies indicate that Compound I is formed with H2O2 at the same rate (kappa 1 = 1.6 x 10(7) M-1 s-1) at both pH 6.0 and 8.0 as it is with the wild type enzyme. This Compound I species decays rapidly at a rate kappa 2 = 1.01 s-1, pH 7.0, to a second two-electron oxidized species that retains the ferryl (FeIV = O) absorption. EPR studies establish that a ferryl porphyrin radical cation is present in the initial Compound I, but electron transfer from the protein results in formation of a second Compound I species with an unpaired electron on the protein (presumably on Tyr172). The presence or absence of oxidizable amino acids adjacent to the heme is thus a key determinant of whether the second oxidation equivalent in Compound I is found as a porphyrin or protein radical cation.
Collapse
Affiliation(s)
- V P Miller
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco 94143-0446, USA
| | | | | | | | | |
Collapse
|
13
|
Doerge DR, Divi RL. Porphyrin pi-cation and protein radicals in peroxidase catalysis and inhibition by anti-thyroid chemicals. Xenobiotica 1995; 25:761-7. [PMID: 7483672 DOI: 10.3109/00498259509061891] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
1. Thyroid peroxidase (TPO) catalyses the iodination and phenolic coupling reactions in the biosynthesis of thyroid hormones. 2. The two-electron oxidation of TPO by H2O2 produces an oxoferryl porphyrin pi-cation radical compound I that isomerizes spontaneously to a form of compound I that contains an oxoferryl haem and the second oxidizing equivalent as an amino acid radical. 3. The pi-cation radical compound I is the catalytic species that effects iodide ion oxidation and the protein radical compound I is most likely the catalytic species that catalyses coupling. 4. Methimazole, a therapeutic, anti-hyperthyroid drug, is a suicide substrate for TPO and effects irreversible inactivation by TPO-mediated S-oxygenation to a reactive sulphenic acid that binds covalently to the prosthetic haem. 5. Sulphamethazine and other arylamines containing electron-withdrawing substituents inhibit TPO compound I-mediated reactions by reversible, mixed-type inhibition. 6. Ethylenethiourea, a fungicide metabolite, blocks TPO-mediated iodination by reacting with the catalytic iodinating species as an alternate substrate. 7. Resorcinol and related dietary flavonoids are suicide substrates for TPO and act by covalent binding to amino acid residues, presumably those radical sites present in the compound I isomer. 8. Nitrosobenzene, a known radical-trapping agent, blocks TPO-mediated coupling but not iodination or phenolic oxidations presumably by interception of the 3,5-diiodotyrosyl radical species generated during the coupling reaction.
Collapse
Affiliation(s)
- D R Doerge
- National Center for Toxicological Research, Jefferson, AR 72079, USA
| | | |
Collapse
|
14
|
Fernandez M, Frydman RB, Hurst J, Buldain G. Structure/activity relationships in porphobilinogen oxygenase and horseradish peroxidase. An analysis using synthetic hemins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:251-9. [PMID: 8243471 DOI: 10.1111/j.1432-1033.1993.tb18372.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The apo-enzymes of porphobilinogen oxygenase and horseradish peroxidase were reconstituted with hemin IX, deuterohemin IX, 2,4-diacetyldeuterohemin IX, 2-vinyl-4-deuterohemin IX and hemin I. The apoproteins did not reconstitute with the dimethyl or diethyl esters of hemin IX. The native enzymes and the synthetic hemoproteins showed similar oxygenase activities toward porphobilinogen in the presence of dithionite and oxygen. They also showed peroxidase activity in the presence of H2O2, which was affected by the side-chain substitution pattern of the hemes. Oxygenase activities, however, were not affected by the heme structure. Iron chelators completely inhibited the oxygenase, but not the peroxidase activities. The EPR spectra of the native and synthetic porphobilinogen oxygenase showed that dithionite reduction produced a rapid disappearance of the high-spin heme-iron signal at g = 6.0. It reappeared 1 min later but the enzyme retained its catalytic activity. The changes in the EPR spectra could be correlated with the biphasic kinetics of the oxygenase reaction which was very fast during the first minute and then decreased to a half-value rate. The oxygenase reaction was inhibited by addition of superoxide dismutase during the fast rate phase, but not during the slower phase. These results could be explained by the formation of a superoxide anion during the first minute of the oxygenase reaction, after which a protein-stabilized radical (g = 2.0) is generated (very likely a tyrosyl radical). The latter then oxidizes the substrate porphobilinogen and facilitates its reaction with O2 to give oxopyrrolenines.
Collapse
Affiliation(s)
- M Fernandez
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
15
|
Fernández M, Frydman RB. The dual oxygenase and peroxidase activities of porphobilinogen oxygenase and horseradish peroxidase: a study using the reaction with phenylhydrazine. Biochem Biophys Res Commun 1991; 180:360-6. [PMID: 1656973 DOI: 10.1016/s0006-291x(05)81301-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Porphobilinogen oxygenase and horseradish peroxidase show dual oxygenase and peroxidase activities. By treating porphobilinogen oxygenase with phenylhydrazine in the presence of H2O2 both activities were inhibited. When horseradish peroxidase was treated in the same manner only the peroxidase activity was lost while its oxygenase activity toward porphobilinogen remained unchanged. The phenylhydrazine treatment alkylated the prosthetic heme group of porphobilinogen oxygenase and N-phenylheme as well as N-phenylprotoporphyrin IX were isolated from the treated hemoprotein. In horseradish peroxidase the modified heme was mainly 8-hydroxymethylheme. The apoproteins of the alkylated enzymes were isolated and recombined with hemin IX. The oxygenase and peroxidase activities of porphobilinogen oxygenase were entirely recovered in the reconstituted enzyme, while the reconstituted horseradish peroxidase regained 75% of its peroxidase activity.
Collapse
Affiliation(s)
- M Fernández
- Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Argentina
| | | |
Collapse
|
16
|
Resonance Raman characterization of heme Fe(IV)=O groups of intermediates of yeast cytochrome C peroxidase and lactoperoxidase. J Mol Struct 1989. [DOI: 10.1016/0022-2860(89)80004-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Ator MA, Ortiz de Montellano PR. Protein control of prosthetic heme reactivity. Reaction of substrates with the heme edge of horseradish peroxidase. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)75669-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Virion A, Courtin F, Dème D, Michot JL, Kaniewski J, Pommier J. Spectral characteristics and catalytic properties of thyroid peroxidase-H2O2 compounds in the iodination and coupling reactions. Arch Biochem Biophys 1985; 242:41-7. [PMID: 2996435 DOI: 10.1016/0003-9861(85)90477-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hog thyroid peroxidase (TPO) was highly purified in order to study the spectral properties and catalytic specificities of its H2O2 compounds in iodothyronine biosynthesis. Purified TPO exhibited a Soret spectrum with an absorption maximum at 410 nm and had an A410/A280 value of 0.55. Protein iodination was only catalyzed under conditions which allowed formation of the transient TPO compound I (Fe(IV)-pi o+). On addition of an equimolar amount of H2O2, TPO formed a stable compound with an absorption maximum at 417 nm. This compound efficiently catalyzed the coupling reaction, but was unable to iodinate proteins. It catalyzed the formation of 1 mol iodothyronines/mol TPO, and therefore retained two oxidizing equivalents per molecule. It is proposed that this compound constitutes a second form of compound I whose structure might be Fe(IV)-Ro, analogous to that of cytochrome c peroxidase compound I. In the presence of an excess of H2O2, it formed TPO-compound III with an absorption maximum at 420 nm. TPO-compound III catalyzed neither the iodination nor the coupling reaction.
Collapse
|
19
|
Deme D, Virion A, Michot JL, Pommier J. Thyroid hormone synthesis and thyroglobulin iodination related to the peroxidase localization of oxidizing equivalents: studies with cytochrome c peroxidase and horseradish peroxidase. Arch Biochem Biophys 1985; 236:559-66. [PMID: 2982316 DOI: 10.1016/0003-9861(85)90659-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cytochrome c peroxidase (CcP) and horseradish peroxidase (HRP), when combined with a stoichiometric amount of H2O2, form stable compounds I which are known as FeIV Ro and FeIV o pi + structures, respectively. These compounds were assayed in the catalysis of thyroid hormone synthesis and the iodination reaction. As previously shown for the lactoperoxidase FeIV Ro compound, the CcP FeIV Ro compound was involved in the coupling and not in the iodination reactions. In contrast, the HRP FeIV o pi + compound catalyzed both iodination and hormone formation. The possible role of the different peroxidase-H2O2 compounds in the two sequential reactions, thyroglobulin iodination and thyroid hormone formation, is discussed.
Collapse
|