1
|
Martinez JA, Larion M, Conejo MS, Porter CM, Miller BG. Role of connecting loop I in catalysis and allosteric regulation of human glucokinase. Protein Sci 2014; 23:915-22. [PMID: 24723372 DOI: 10.1002/pro.2473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/07/2014] [Accepted: 04/07/2014] [Indexed: 11/09/2022]
Abstract
Glucokinase (GCK, hexokinase IV) is a monomeric enzyme with a single glucose binding site that displays steady-state kinetic cooperativity, a functional characteristic that affords allosteric regulation of GCK activity. Structural evidence suggests that connecting loop I, comprised of residues 47-71, facilitates cooperativity by dictating the rate and scope of motions between the large and small domains of GCK. Here we investigate the impact of varying the length and amino acid sequence of connecting loop I upon GCK cooperativity. We find that sequential, single amino acid deletions from the C-terminus of connecting loop I cause systematic decreases in cooperativity. Deleting up to two loop residues leaves the kcat value unchanged; however, removing three or more residues reduces kcat by 1000-fold. In contrast, the glucose K0.5 and KD values are unaffected by shortening the connecting loop by up to six residues. Substituting alanine or glycine for proline-66, which adopts a cis conformation in some GCK crystal structures, does not alter cooperativity, indicating that cis/trans isomerization of this loop residue does not govern slow conformational reorganizations linked to hysteresis. Replacing connecting loop I with the corresponding loop sequence from the catalytic domain of the noncooperative isozyme human hexokinase I (HK-I) eliminates cooperativity without impacting the kcat and glucose K0.5 values. Our results indicate that catalytic turnover requires a minimal length of connecting loop I, whereas the loop has little impact upon the binding affinity of GCK for glucose. We propose a model in which the primary structure of connecting loop I affects cooperativity by influencing conformational dynamics, without altering the equilibrium distribution of GCK conformations.
Collapse
Affiliation(s)
- Juliana A Martinez
- Department of Chemistry and Biochemistry, 4005 Chemical Sciences Laboratory, Florida State University, Tallahassee, Florida, 32306-4390
| | | | | | | | | |
Collapse
|
2
|
Aleshin AE, Kirby C, Liu X, Bourenkov GP, Bartunik HD, Fromm HJ, Honzatko RB. Crystal structures of mutant monomeric hexokinase I reveal multiple ADP binding sites and conformational changes relevant to allosteric regulation. J Mol Biol 2000; 296:1001-15. [PMID: 10686099 DOI: 10.1006/jmbi.1999.3494] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hexokinase I, the pacemaker of glycolysis in brain tissue, is composed of two structurally similar halves connected by an alpha-helix. The enzyme dimerizes at elevated protein concentrations in solution and in crystal structures; however, almost all published data reflect the properties of a hexokinase I monomer in solution. Crystal structures of mutant forms of recombinant human hexokinase I, presented here, reveal the enzyme monomer for the first time. The mutant hexokinases bind both glucose 6-phosphate and glucose with high affinity to their N and C-terminal halves, and ADP, also with high affinity, to a site near the N terminus of the polypeptide chain. Exposure of the monomer crystals to ADP in the complete absence of glucose 6-phosphate reveals a second binding site for adenine nucleotides at the putative active site (C-half), with conformational changes extending 15 A to the contact interface between the N and C-halves. The structures reveal distinct conformational states for the C-half and a rigid-body rotation of the N-half, as possible elements of a structure-based mechanism for allosteric regulation of catalysis.
Collapse
Affiliation(s)
- A E Aleshin
- Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Aleshin AE, Malfois M, Liu X, Kim CS, Fromm HJ, Honzatko RB, Koch MH, Svergun DI. Nonaggregating mutant of recombinant human hexokinase I exhibits wild-type kinetics and rod-like conformations in solution. Biochemistry 1999; 38:8359-66. [PMID: 10387081 DOI: 10.1021/bi990523n] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hexokinase I governs the rate-limiting step of glycolysis in brain tissue, being inhibited by its product, glucose 6-phosphate, and allosterically relieved of product inhibition by phosphate. On the basis of small-angle X-ray scattering, the wild-type enzyme is a monomer in the presence of glucose and phosphate at protein concentrations up to 10 mg/mL, but in the presence of glucose 6-phosphate, is a dimer down to protein concentrations as low as 1 mg/mL. A mutant form of hexokinase I, specifically engineered by directed mutation to block dimerization, remains monomeric at high protein concentration under all conditions of ligation. This nondimerizing mutant exhibits wild-type activity, potent inhibition by glucose 6-phosphate, and phosphate reversal of product inhibition. Small-angle X-ray scattering data from the mutant hexokinase I in the presence of glucose/phosphate, glucose/glucose 6-phosphate, and glucose/ADP/Mg2+/AlF3 are consistent with a rodlike conformation for the monomer similar to that observed in crystal structures of the hexokinase I dimer. Hence, any mechanism for allosteric regulation of hexokinase I should maintain a global conformation of the polypeptide similar to that observed in crystallographic structures.
Collapse
Affiliation(s)
- A E Aleshin
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Aleshin AE, Zeng C, Bartunik HD, Fromm HJ, Honzatko RB. Regulation of hexokinase I: crystal structure of recombinant human brain hexokinase complexed with glucose and phosphate. J Mol Biol 1998; 282:345-57. [PMID: 9735292 DOI: 10.1006/jmbi.1998.2017] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hexokinase I, the pacemaker of glycolysis in brain tissue and red blood cells, is comprised of two similar domains fused into a single polypeptide chain. The C-terminal half of hexokinase I is catalytically active, whereas the N-terminal half is necessary for the relief of product inhibition by phosphate. A crystalline complex of recombinant human hexokinase I with glucose and phosphate (2.8 A resolution) reveals a single binding site for phosphate and glucose at the N-terminal half of the enzyme. Glucose and phosphate stabilize the N-terminal half in a closed conformation. Unexpectedly, glucose binds weakly to the C-terminal half of the enzyme and does not by itself stabilize a closed conformation. Evidently a stable, closed C-terminal half requires either ATP or glucose 6-phosphate along with glucose. The crystal structure here, in conjunction with other studies in crystallography and directed mutation, puts the phosphate regulatory site at the N-terminal half, the site of potent product inhibition at the C-terminal half, and a secondary site for the weak interaction of glucose 6-phosphate at the N-terminal half of the enzyme. The relevance of crystal structures of hexokinase I to the properties of monomeric hexokinase I and oligomers of hexokinase I bound to the surface of mitochondria is discussed.
Collapse
Affiliation(s)
- A E Aleshin
- Department of Biochemistry and Biophysics, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
5
|
Fang TY, Alechina O, Aleshin AE, Fromm HJ, Honzatko RB. Identification of a phosphate regulatory site and a low affinity binding site for glucose 6-phosphate in the N-terminal half of human brain hexokinase. J Biol Chem 1998; 273:19548-53. [PMID: 9677378 DOI: 10.1074/jbc.273.31.19548] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystal structures of human hexokinase I reveal identical binding sites for phosphate and the 6-phosphoryl group of glucose 6-phosphate in proximity to Gly87, Ser88, Thr232, and Ser415, a binding site for the pyranose moiety of glucose 6-phosphate in proximity to Asp84, Asp413, and Ser449, and a single salt link involving Arg801 between the N- and C-terminal halves. Purified wild-type and mutant enzymes (Asp84 --> Ala, Gly87 --> Tyr, Ser88 --> Ala, Thr232 --> Ala, Asp413 --> Ala, Ser415 --> Ala, Ser449 --> Ala, and Arg801 --> Ala) were studied by kinetics and circular dichroism spectroscopy. All eight mutant hexokinases have kcat and Km values for substrates similar to those of wild-type hexokinase I. Inhibition of wild-type enzyme by 1,5-anhydroglucitol 6-phosphate is consistent with a high affinity binding site (Ki = 50 microM) and a second, low affinity binding site (Kii = 0.7 mM). The mutations of Asp84, Gly87, and Thr232 listed above eliminate inhibition because of the low affinity site, but none of the eight mutations influence Ki of the high affinity site. Relief of 1,5-anhydroglucitol 6-phosphate inhibition by phosphate for Asp84 --> Ala, Ser88 --> Ala, Ser415 --> Ala, Ser449 --> Ala and Arg801 --> Ala mutant enzymes is substantially less than that of wild-type hexokinase and completely absent in the Gly87 --> Tyr and Thr232 --> Ala mutants. The results support several conclusions. (i) The phosphate regulatory site is at the N-terminal domain as identified in crystal structures. (ii) The glucose 6-phosphate binding site at the N-terminal domain is a low affinity site and not the high affinity site associated with potent product inhibition. (iii) Arg801 participates in the regulatory mechanism of hexokinase I.
Collapse
Affiliation(s)
- T Y Fang
- Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
6
|
Aleshin AE, Zeng C, Bourenkov GP, Bartunik HD, Fromm HJ, Honzatko RB. The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate. Structure 1998; 6:39-50. [PMID: 9493266 DOI: 10.1016/s0969-2126(98)00006-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hexokinase I is the pacemaker of glycolysis in brain tissue. The type I isozyme exhibits unique regulatory properties in that physiological levels of phosphate relieve potent inhibition by the product, glucose-6-phosphate (Gluc-6-P). The 100 kDa polypeptide chain of hexokinase I consists of a C-terminal (catalytic) domain and an N-terminal (regulatory) domain. Structures of ligated hexokinase I should provide a basis for understanding mechanisms of catalysis and regulation at an atomic level. RESULTS The complex of human hexokinase I with glucose and Gluc-6-P (determined to 2.8 A resolution) is a dimer with twofold molecular symmetry. The N- and C-terminal domains of one monomer interact with the C- and N-terminal domains, respectively, of the symmetry-related monomer. The two domains of a monomer are connected by a single alpha helix and each have the fold of yeast hexokinase. Salt links between a possible cation-binding loop of the N-terminal domain and a loop of the C-terminal domain may be important to regulation. Each domain binds single glucose and Gluc-6-P molecules in proximity to each other. The 6-phosphoryl group of bound Gluc-6-P at the C-terminal domain occupies the putative binding site for ATP, whereas the 6-phosphoryl group at the N-terminal domain may overlap the binding site for phosphate. CONCLUSIONS The binding synergism of glucose and Gluc-6-P probably arises out of the mutual stabilization of a common (glucose-bound) conformation of hexokinase I. Conformational changes in the N-terminal domain in response to glucose, phosphate, and/or Gluc-6-P may influence the binding of ATP to the C-terminal domain.
Collapse
Affiliation(s)
- A E Aleshin
- Department of Biochemistry and Biophysics, Iowa State University, Ames 50011, USA
| | | | | | | | | | | |
Collapse
|
7
|
Zeng C, Aleshin AE, Chen G, Honzatko RB, Fromm HJ. The roles of glycine residues in the ATP binding site of human brain hexokinase. J Biol Chem 1998; 273:700-4. [PMID: 9422720 DOI: 10.1074/jbc.273.2.700] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mutants of hexokinase I (Arg539 --> Lys, Thr661 --> Ala, Thr661 --> Val, Gly534 --> Ala, Gly679 --> Ala, and Gly862 --> Ala), located putatively in the vicinity of the ATP binding pocket, were constructed, purified to homogeneity, and studied by circular dichroism (CD) spectroscopy, fluorescence spectroscopy, and initial velocity kinetics. The wild-type and mutant enzymes have similar secondary structures on the basis of CD spectroscopy. The mutation Gly679 --> Ala had little effect on the kinetic properties of the enzyme. Compared with the wild-type enzyme, however, the Gly534 --> Ala mutant exhibited a 4000-fold decrease in kcat and the Gly862 --> Ala mutant showed an 11-fold increase in Km for ATP. Glucose 6-phosphate inhibition of the three glycine mutants is comparable to that of the wild-type enzyme. Inorganic phosphate is, however, less effective in relieving glucose 6-phosphate inhibition of the Gly862 --> Ala mutant, relative to the wild-type enzyme and entirely ineffective in relieving inhibition of the Gly534 --> Ala mutant. Although the fluorescence emission spectra showed some difference for the Gly862 --> Ala mutant relative to that of the wild-type enzyme, indicating an environmental alteration around tryptophan residues, no change was observed for the Gly534 --> Ala and Gly679 --> Ala mutants. Gly862 --> Ala and Gly534 --> Ala are the first instances of single residue mutations in hexokinase I that affect the binding affinity of ATP and abolish phosphate-induced relief of glucose 6-phosphate inhibition, respectively.
Collapse
Affiliation(s)
- C Zeng
- Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
8
|
Zeng C, Fromm HJ. Active site residues of human brain hexokinase as studied by site-specific mutagenesis. J Biol Chem 1995; 270:10509-13. [PMID: 7737985 DOI: 10.1074/jbc.270.18.10509] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The truncated gene of hexokinase, mini-hexokinase, starting with methionine 455 and ending at the C terminus was expressed in Escherichia coli. Mini-hexokinase lost its ability to ameliorate inhibition of glucose-6-P-inhibited mini-hexokinase in the presence of phosphate (P(i)). We suggest that the P(i) site either resides in the N-terminal half of hexokinase I or requires the N-terminal portion of the enzyme. Site-directed mutagenesis was performed to obtain two mutants of mini-hexokinase: C606S and C628S. Both are thought to be associated with the active site of hexokinase I. These mutants exhibited a 3-fold increase in Km for glucose but no change in either the Km for ATP or the kcat. The circular dichroism (CD) spectra showed no differences among the wild-type or mutant enzymes. These results suggest that Cys606 and Cys628 are not involved in glucose binding directly. The putative ATP-binding site of full-length human brain hexokinase may involve Arg539 and Gly679, and these residues were mutated to Ile. For the mutant R539I, the kcat value decreased 114-fold relative to wild-type hexokinase, whereas the Km values for ATP and glucose changed only slightly. No change was observed in the Ki value for 1,5-anhydroglucitol 6-phosphate. CD spectra showed only a slight change in secondary structure. For the mutant G679I, overexpressed hexokinase is insoluble. We suggest that Arg539 is important for catalysis because it stabilizes the transition state product ADP-hexokinase. Gly679 is probably important for proper folding of the protein.
Collapse
Affiliation(s)
- C Zeng
- Department of Biochemistry and Biophysics, Iowa State University, Ames 50011, USA
| | | |
Collapse
|
9
|
White TK, Wilson JE. Binding of nucleoside triphosphates, inorganic phosphate, and other polyanionic ligands to the N-terminal region of rat brain hexokinase: relationship to regulation of hexokinase activity by antagonistic interactions between glucose 6-phosphate and inorganic phosphate. Arch Biochem Biophys 1990; 277:26-34. [PMID: 2306121 DOI: 10.1016/0003-9861(90)90545-a] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mg2(+)-chelates of several nucleoside triphosphates were shown to increase the inactivation of rat brain hexokinase (ATP:D-hexose-6-phosphotransferase, EC 2.7.1.1) by 0.6 M guanidine hydrochloride, with ATP-Mg2+ having the greatest effect; unchelated forms did not significantly affect inactivation. Since catalytic activity has been associated with the C-terminal half of the molecule, these results were interpreted as indicating a destabilization of this C-terminal region by binding of these chelates to the substrate nucleotide sites, with the particular effectiveness of ATP-Mg2+ reflecting the specificity for this species as a phosphoryl donor. These compounds were also shown to bind to the N-terminal half of the enzyme, as judged by their ability to protect against denaturation by guanidine hydrochloride and subsequent digestion with trypsin. Both free and Mg2(+)-chelated forms afforded protection, with the unchelated nucleotides being most effective; a preference for ATP was seen only with the chelated forms. Thus, it was concluded that the N-terminal half of hexokinase contains a relatively nonspecific nucleotide binding site, distinct from the substrate nucleotide site previously shown to reside in the C-terminal half. On the basis of this same ability to protect the N-terminal half against denaturation and proteolysis, several other polyanionic ligands were shown to bind to this region of the molecule. These included inorganic phosphate, its analogs, sulfate and arsenate, and its homologs, pyrophosphate and tripolyphosphate. All of these anionic ligands were also shown to antagonize inhibition by the glucose 6-phosphate (Glc-6-P) analog, 1,5-anhydroglucitol 6-phosphate. The allosteric site for binding of Glc-6-P has previously been shown to reside in the N-terminal half of the molecule, and it is suggested that the antagonism of inhibition by Glc-6-P (or its analog) by these anionic ligands results from interaction with an anion binding site for which the 6-phosphate group of inhibitory hexose 6-phosphates must compete. A model depicting possible relationships between ligand binding sites on brain hexokinase, and how their interactions might lead to observed regulatory properties, is developed based on these and previous studies of ligand binding as well as evidence that mammalian hexokinases (Mr 100,000) have evolved by duplication and fusion of a gene coding for an ancestral hexokinase with Mr 50,000 and which, like the mammalian enzyme, was sensitive to inhibition by Glc-6-P.
Collapse
Affiliation(s)
- T K White
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | |
Collapse
|
10
|
Magnani M, Stocchi V, Serafini G, Chiarantini L. The interaction of phosphorylated sugars with human hexokinase I. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 954:336-42. [PMID: 3259434 DOI: 10.1016/0167-4838(88)90088-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glucose 6-phosphate as well as several other hexose mono- and diphosphates were found by kinetic studies to be competitive inhibitors of human hexokinase I (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) versus MgATP. Limited proteolysis by trypsin does not destroy the hexokinase activity but produces as well-defined peptide map when the digested enzyme is electrophoresed in the presence of sodium dodecyl sulfate. MgATP at subsaturating concentration protects hexokinase from trypsin digestion, while phosphorylated sugars, Mg2+, glucose and inorganic phosphate have no effect. Addition of glucose 6-phosphate to the MgATP-hexokinase complex at a concentration 100-times higher than its Ki was not able to reverse the MgATP-induced conformation of hexokinase, suggesting that the binding of glucose 6-phosphate and MgATP are not mutually exclusive. Similar evidence was also obtained by studies of the induced modifications of ultraviolet spectra of hexokinase by the binding of MgATP, glucose 6-phosphate and both compounds. Among a library of monoclonal antibodies produced against rat brain hexokinase I and that recognize human placenta hexokinase I, one (4A6) was found to be able to modify the Ki of glucose 6-phosphate (from 25 to 140 microM) for human hexokinase I. The same antibody also weakens the inhibition by all the other hexoses phosphate studied without affecting the apparent Km for MgATP (from 0.6 to 0.75 mM) or for glucose. These data support the view for the binding of glucose 6-phosphate at a regulatory site on the enzyme.
Collapse
Affiliation(s)
- M Magnani
- Istituto di Chimica Biologica, Università degli Studi di Urbino, Italy
| | | | | | | |
Collapse
|
11
|
The complete amino acid sequence of the catalytic domain of rat brain hexokinase, deduced from the cloned cDNA. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)69058-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
White TK, Wilson JE. Rat brain hexokinase: location of the allosteric regulatory site in a structural domain at the N-terminus of the enzyme. Arch Biochem Biophys 1987; 259:402-11. [PMID: 3426236 DOI: 10.1016/0003-9861(87)90506-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
After denaturation in 0.6 M guanidine hydrochloride, rat brain hexokinase becomes highly susceptible to proteolysis by trypsin. Glucose 6-phosphate (Glc-6-P) and its analog, 1,5-anhydroglucitol 6-phosphate, selectively protect the N-terminal half of the molecule from proteolysis. These compounds do not protect the C-terminal half of the molecule, nor do they protect enzyme activity; the Glc analog, N-acetylglucosamine, does protect the C-terminal domain and catalytic activity, but does not prevent proteolysis of the N-terminal half of the molecule. These results are consistent with previous work [M. Nemat-Gorgani and J. E. Wilson (1986) Arch. Biochem. Biophys. 251, 97-103; D. M. Schirch and J. E. Wilson (1987) Arch. Biochem. Biophys. 254, 385-396] demonstrating that binding sites for both hexose and nucleotide substrates, and thus catalytic function, are associated with a 40-kDa domain located at the C-terminus of the enzyme. They further demonstrate that the binding site for the allosteric effector, Glc-6-P, lies in the N-terminal half of the molecule and is distinct from the catalytic site. Using protection against proteolysis as a reflection of binding, it is shown that the Glc-6-P binding site in the N-terminal region has all the characteristics described for the allosteric effector site on this enzyme in terms of affinity for Glc-6-P, specificity, and synergistic interactions with the hexose binding site in the C-terminal region of the molecule. This disposition of catalytic and regulatory functions in discrete halves of the molecule is consistent with suggestions by several investigators that mammalian hexokinases evolved by a process of duplication and fusion of an ancestral gene coding for a hexokinase similar to the present-day yeast enzyme, with the regulatory site of mammalian hexokinases having evolved from what was originally a catalytic site.
Collapse
Affiliation(s)
- T K White
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | |
Collapse
|
13
|
Schirch DM, Wilson JE. Rat brain hexokinase: amino acid sequence at the substrate hexose binding site is homologous to that of yeast hexokinase. Arch Biochem Biophys 1987; 257:1-12. [PMID: 3631958 DOI: 10.1016/0003-9861(87)90536-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A reactive Glc analog, N-(bromoacetyl)-D-glucosamine (GlcNBrAc), has recently been used (D. M. Schirch and J. E. Wilson (1987) Arch. Biochem. Biophys. 254, 385-396) to label the Glc binding site of rat brain Type I hexokinase. This site has been located in a 40-kDa domain at the C-terminus of the enzyme previously shown to be the location of the substrate ATP binding site (M. Nemat-Gorgani and J. E. Wilson (1986) Arch. Biochem. Biophys. 251, 97-103). In the present study, peptide mapping of hexokinase modified by radiolabeled GlcNBrAc yields three labeled peptides (Peptides I-III). Peptides I and III, as well as catalytic activity, are protected by inclusion of Glc or GlcNAc during reaction with GlcNBrAc. These two peptides show considerable homology to contiguous regions in the sequences of yeast hexokinase isozymes A and B. Peptide III is homologous to a sequence which, based on the X-ray crystallographic work by Steitz and co-workers, is located near the Glc binding site of yeast hexokinase; Peptide I is homologous to an immediately adjacent (toward the C-terminus) region of yeast hexokinase. An essential serine residue implicated in the binding of Glc to the yeast enzyme is also conserved in Peptide III from rat brain hexokinase. These results provide strong support for the view that the "catalytic domain" at the C-terminus of the mammalian Type I hexokinase shares a common ancestry with yeast hexokinase. Peptide II appears to be nonspecifically labeled by GlcNBrAc since labeling is insensitive to the presence of protective ligands such as Glc or GlcNAc; the sequence of Peptide II shows no detectable homology with the yeast isozymes.
Collapse
|
14
|
Schirch DM, Wilson JE. Rat brain hexokinase: location of the substrate hexose binding site in a structural domain at the C-terminus of the enzyme. Arch Biochem Biophys 1987; 254:385-96. [PMID: 3579310 DOI: 10.1016/0003-9861(87)90116-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A glucose analog, N-(bromoacetyl)-D-glucosamine (GlcNBrAc), previously used to label the glucose binding sites of rat muscle Type II and bovine brain Type I hexokinases, also inactivates rat brain hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) with pseudo-first-order kinetics. Inactivation occurs predominantly via a "specific" pathway involving formation of a complex between hexokinase and GlcNBrAc, but significant nonspecific (i.e., without prior complex formation) inactivation also occurs, and equations to describe this behavior are derived. Inactivation is dependent on deprotonation of a residue with an alkaline pKa, consistent with the modified residue being a sulfhydryl group as reported to be the case with the hexokinase of bovine brain. The affinity label modifies three residues (per molecule of enzyme) at indistinguishable rates, but only one of these residues appears to be critical for activity. Amino acid analysis of the modified enzyme indicates derivatization of three cysteine residues; there was no indication of modification of other residues potentially reactive with haloacetyl derivatives. Kinetic analysis and effects of protective ligands were consistent with location of the critical sulfhydryl at the glucose binding site. Peptide mapping techniques permitted localization of the critical residue, and thus the glucose binding site, in a 40-kDa domain at the C-terminus of the enzyme. This is the same domain recently shown to include the ATP binding site. Thus, catalytic function is assigned to the C-terminal domain of rat brain hexokinase.
Collapse
|
15
|
Ureta T, Lazo PA, Sols A. Allosteric inhibition of brain hexokinase by glucose 6-phosphate in the reverse reaction. Arch Biochem Biophys 1985; 239:315-9. [PMID: 4004267 DOI: 10.1016/0003-9861(85)90693-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A study of the reverse reaction of rat brain hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) has been performed using a photometric method based on a mutarotase-glucose oxidase-peroxidase-chromogen system to trap and visualize glucose, plus a glycerol kinase-glycerol system to trap ATP. Glucose 6-phosphate or 2-deoxyglucose 6-phosphate were used as phosphoryl donors at different concentrations of ADP. Variation of glucose 6-phosphate concentrations resulted in a biphasic curve from which apparent Km and Ki values of ca. 0.2 mM were calculated. In contrast, variation of 2-deoxyglucose 6-phosphate concentrations resulted in Michaelian kinetics with an apparent Km of 2 mM. The Km value for MgADP was 16 mM irrespective of the nature and concentration of the hexose 6-phosphate substrate. These results are fully consistent with an allosteric site for glucose 6-phosphate as an explanation for the inhibition of animal hexokinases by glucose 6-P and further indicate that the maximal rate is the parameter affected. From these observations and previous knowledge, the possible occurrence in animal hexokinases of a regulatory site for ATP to account for the competition between glucose 6-phosphate and ATP in the forward reaction is postulated.
Collapse
|