1
|
Zhou J, Yuan W, Qing Y, Du G, Li Q. A Coordinating Small Organic Molecule with Tunable Lower Critical Solution Temperature for Efficient Management of Solar Radiation. Macromol Rapid Commun 2024; 45:e2400167. [PMID: 38847293 DOI: 10.1002/marc.202400167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Indexed: 08/09/2024]
Abstract
Structurally well-defined small molecules with lower critical solution temperature (LCST) behavior offer enormous prospects for fine-tuning their phase transition properties to be "on-demand" applied in the specific scene but are still underexplored. Herein, a novel amphiphilic small LCST molecule is rationally designed and synthesized. The molecule, namely TG, features a conjugation of multiple short ethylene glycol (EG) chains with the functional coordinating terpyridine (Tpy) moiety. The molecule TG demonstrates excellent LCST behavior down to 0.05 × 10-3 m in a water solution. And a cloud point Tcp = 30.9 °C with a very short thermal hysteresis ΔT = 0.2 °C and good reversibility can be achieved when c = 0.1 × 10-3 m. The excellent LCST properties of TG have enabled its successful performance as the smart window for solar radiation management with the ∆Tlum, ∆TIR, and ∆Tsol being 83.6%, 49.1%, and 67.2%, respectively. Moreover, the presence of Tpy moiety in TG enables its coordination with Ru3+ and the resulting complex also exhibits modulated LCST behavior with different concentration-dependent Tcp. These studies would provide novel small-molecule-based scaffolds for constructing better solar radiation management systems as well as other thermal-responsive smart materials.
Collapse
Affiliation(s)
- Junnan Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou City, 310014, P. R. China
| | - Weidong Yuan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou City, 310014, P. R. China
| | - Yuxi Qing
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou City, 310014, P. R. China
| | - Guangyan Du
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou City, 310014, P. R. China
| | - Quan Li
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| |
Collapse
|
2
|
Cai Y, Naser NY, Ma J, Baneyx F. Precision Loading and Delivery of Molecular Cargo by Size-Controlled Coacervation of Gold Nanoparticles Functionalized with Elastin-like Peptides. Biomacromolecules 2024; 25:2390-2398. [PMID: 38478587 DOI: 10.1021/acs.biomac.3c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Thermoresponsive elastin-like peptides (ELPs) have been extensively investigated in biotechnology and medicine, but little attention has been paid to the process by which coacervation causes ELP-decorated particles to aggregate. Using gold nanoparticles (AuNPs) functionalized with a cysteine-terminated 96-repeat of the VPGVG sequence (V96-Cys), we show that the size of the clusters that reversibly form above the ELP transition temperature can be finely controlled in the 250 to 930 nm range by specifying the concentration of free V96-Cys in solution and using AuNPs of different sizes. We further find that the localized surface plasmon resonance peak of the embedded AuNPs progressively red-shifts with cluster size, likely due to an increase in particle-particle contacts. We exploit this fine control over size to homogeneously load precise amounts of the dye Nile Red and the antibiotic Tetracycline into clusters of different hydrodynamic diameters and deliver cargos near-quantitatively by deconstructing the aggregates below the ELP transition temperature. Beyond establishing a key role for free ELPs in the agglomeration of ELP-functionalized particles, our results provide a path for the thermally controlled delivery of precise quantities of molecular cargo. This capability might prove useful in combination photothermal therapies and theranostic applications, and to trigger spatially and temporally uniform responses from biological, electronic, or optical systems.
Collapse
Affiliation(s)
- Yifeng Cai
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Nada Y Naser
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jinrong Ma
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Babiak PM, Minnich J, Torres JE, Madduri S, Liu JC. Recombinant Elastin-Based Bioelastomers for Biomedical Applications. Methods Mol Biol 2024; 2720:101-113. [PMID: 37775660 DOI: 10.1007/978-1-0716-3469-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Recombinant elastin-based proteins (ELPs) are used in applications that include therapeutics, drug delivery, and tissue engineering due to their biocompatibility and unique ability to undergo simple coacervation. Here, we describe a cost-effective method to purify ELPs utilizing salt precipitation and their reversible phase transition property when heated above their lower critical solution temperature (LCST). Furthermore, we describe the post-translational modification of converting tyrosine residues to L-3,4-dihydroxyphenylalanine (DOPA) for adhesive applications.
Collapse
Affiliation(s)
- Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jason Minnich
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sathvik Madduri
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Garanger E, Lecommandoux S. Emerging opportunities in bioconjugates of Elastin-like polypeptides with synthetic or natural polymers. Adv Drug Deliv Rev 2022; 191:114589. [PMID: 36323382 DOI: 10.1016/j.addr.2022.114589] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 01/24/2023]
Abstract
Nature is an everlasting source of inspiration for chemical and polymer scientists seeking to develop ever more innovative materials with greater performances. Natural structural proteins are particularly scrutinized to design biomimetic materials. Often characterized by repeat peptide sequences, that together interact by inter- and intramolecular interactions and form a 3D skeleton, they contribute to the mechanical properties of individual cells, tissues, organs, and whole organisms. (Numata, K. Polymer Journal 2020, 52, 1043-1056) Among them elastin, and its main repeat sequences, have been a source of intense studies for more than 50 years resulting in the specific research field dedicated to elastin-like polypeptides (ELPs). These are currently widely investigated in different applications, namely protein purification, tissue engineering, and drug delivery, and some technologies based on ELPs are currently explored by several start-up companies. In the present review, we have summarized pioneering contributions on ELPs, progress made in their genetic engineering, and understanding of their thermal behavior and self-assembly properties. Considered as intrinsically disordered protein polymers, we have finally focused on the works where ELPs have been conjugated to other synthetic macromolecules as covalent hybrid, statistical, graft, or block copolymers, highlighting the huge opportunities that have still not been explored so far.
Collapse
Affiliation(s)
- Elisabeth Garanger
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, ENSCBP, 16 Avenue Pey-Berland, Pessac F-33600, France.
| | - Sébastien Lecommandoux
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, ENSCBP, 16 Avenue Pey-Berland, Pessac F-33600, France.
| |
Collapse
|
5
|
Lei Y, Guo K, Zhang Y, Zhang X, Qin L, Wang X, Zhu H, Guo Y, Yang W, Li B, Xia Q, Zhao P, Dong Z. Adhesive property and mechanism of silkworm egg glue protein. Acta Biomater 2021; 134:499-512. [PMID: 34311106 DOI: 10.1016/j.actbio.2021.07.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/01/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Egg glue proteins (EGPs) are produced by female insects, which can make the eggs firmly attached to the oviposition sites, not affected by wind and rain. Although EGPs are widespread in insects, they have been rarely characterized in molecular detail. Here, the full-length sequence and secondary structure of silkworm EGP is reported. A pentapeptide motif, G-G-N/K/D-Q/E/K-Q/P, was found to repeat 346 times, forming a hydrophilic and elastic β-spiral structure in the silkworm EGP. To reveal the adhesive property and mechanism, we extracted natural EGP from silkworm colleterial gland, and expressed recombinant EGP in Escherichia coli and Pichia pastoris. The glycosylated natural EGP and recombinant EGP from P. pastoris was found to have better adhesive strength than the non-glycosylated recombinant EGP from E. coli. In addition, two transglutaminases in the colleterial gland were found to contribute to the high adhesion of EGP by catalyzing the cross-linking. This study provides important insights into the structure-function relationships associated with this protein, thereby creating new opportunities for the use of insect EGP as a biomaterial. STATEMENT OF SIGNIFICANCE: Egg glue proteins are produced by female insects, which can make the eggs firmly attached to the oviposition sites, not affected by wind and rain. However, genes encoding insect egg glue proteins have not yet been reported, and the molecular mechanism underpinning their adhesion is still unknown. Our study makes a significant contribution to the literature as it identifies the sequence, structure, adhesive property, and mechanism of silkworm egg glue protein. Furthermore, it outlines key insights into the structure-function relationships associated with egg glue proteins. We believe that this paper will be of interest to the readership of your journal as it identifies the first complete sequence of insect egg glue proteins, thereby highlighting their potentials future applications in both the biomedical and technical fields.
Collapse
|
6
|
Ganguly HK, Basu G. Conformational landscape of substituted prolines. Biophys Rev 2020; 12:25-39. [PMID: 31953795 PMCID: PMC7040156 DOI: 10.1007/s12551-020-00621-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
The cyclic side chain of the amino acid proline confers unique conformational restraints on its backbone and side chain dihedral angles. This affects two equilibria-one at the backbone (cis/trans) and the other at the side chain (endo/exo). Substitutions on the proline ring impose additional steric and stereoelectronic effects that can further modulate both these equilibria, which in turn can also affect the backbone dihedral angle (ϕ, ψ) preferences. In this review, we have explored the conformational landscape of several termini capped mono-(2-, 3-, 4-, and 5-) substituted proline derivatives in the Cambridge Structural Database, correlating observed conformations with the nature of substituents and deciphering the underlying interactions for the observed structural biases. The impact of incorporating these derivatives within model peptides and proteins are also discussed for selected cases. Several of these substituents have been used to introduce bioorthogonal functionality and modulate structure-specific ligand recognition or used as spectroscopic probes. The incorporation of these diversely applicable functional groups, coupled with their ability to define an amino acid conformation via stereoelectronic effects, have a broad appeal among chemical biologists, molecular biophysicists, and medicinal chemists.
Collapse
Affiliation(s)
- Himal Kanti Ganguly
- Department of Biophysics, Bose Institute, P-1/12 CIT scheme VII M, Kolkata, 700054, India.
| | - Gautam Basu
- Department of Biophysics, Bose Institute, P-1/12 CIT scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
7
|
Sarangthem V, Seo BY, Yi A, Lee YJ, Cheon SH, Kim SK, Singh TD, Lee BH, Park RW. Effects of molecular weight and structural conformation of multivalent-based elastin-like polypeptides on tumor accumulation and tissue biodistribution. Nanotheranostics 2020; 4:57-70. [PMID: 32190533 PMCID: PMC7064738 DOI: 10.7150/ntno.39804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
In order to improve clinical outcomes for novel drug delivery systems, distinct optimization of size, shape, multifunctionality, and site-specificity are of utmost importance. In this study, we designed various multivalent elastin-like polypeptide (ELP)-based tumor-targeting polymers in which multiple copies of IL-4 receptor (IL-4R)-targeting ligand (AP1 peptide) were periodically incorporated into the ELP polymer backbone to enhance the affinity and avidity towards tumor cells expressing high levels of IL-4R. Several ELPs with different molecular sizes and structures ranging from unimer to micelle-forming polymers were evaluated for their tumor accumulation as well as in vivo bio-distribution patterns. Different percentages of cell binding and uptake were detected corresponding to polymer size, number of targeting peptides, or unimer versus micelle structure. As compared to low molecular weight polypeptides, high molecular weight AP1-ELP showed superior binding activity with faster entry and efficient processing in the IL-4R-dependent endocytic pathway. In addition, in vivo studies revealed that the high molecular weight micelle-forming AP1-ELPs (A86 and A100) displayed better tumor penetration and extensive retention in tumor tissue along with reduced non-specific accumulation in vital organs, when compared to low molecular weight non-micelle forming AP1-ELPs. It is suggested that the superior binding activities shown by A86 and A100 may depend on the multiple presentation of ligands upon transition to a micelle-like structure rather than a larger molecular weight. Thus, this study has significance in elucidating the different patterns underlying unimer and micelle-forming ELP-mediated tumor targeting as well as the in vivo biodistribution.
Collapse
Affiliation(s)
- Vijaya Sarangthem
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea.,Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Bo-Yeon Seo
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Aena Yi
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Young-Jin Lee
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sun-Ha Cheon
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sang Kyoon Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Cheombok, Daegu, 41061, Republic of Korea
| | - Thoudam Debraj Singh
- Department of Medical Oncology Lab., All India Institute of Medical Sciences, New Delhi-110029, India
| | - Byung-Heon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
8
|
Kuroyanagi S, Shimada N, Fujii S, Furuta T, Harada A, Sakurai K, Maruyama A. Highly Ordered Polypeptide with UCST Phase Separation Behavior. J Am Chem Soc 2018; 141:1261-1268. [DOI: 10.1021/jacs.8b10168] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sotaro Kuroyanagi
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Yokohama 226-8501, Japan
| | - Naohiko Shimada
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Yokohama 226-8501, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu City, Fukuoka 808-0135, Japan
| | - Tadaomi Furuta
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Yokohama 226-8501, Japan
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu City, Fukuoka 808-0135, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Yokohama 226-8501, Japan
| |
Collapse
|
9
|
Cipriani F, Krüger M, de Torre IG, Sierra LQ, Rodrigo MA, Kock L, Rodriguez-Cabello JC. Cartilage Regeneration in Preannealed Silk Elastin-Like Co-Recombinamers Injectable Hydrogel Embedded with Mature Chondrocytes in an Ex Vivo Culture Platform. Biomacromolecules 2018; 19:4333-4347. [PMID: 30346149 DOI: 10.1021/acs.biomac.8b01211] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue engineering for cartilage repair requires biomaterials that show rapid gelation and adequate mechanical properties. Although the use of hydrogel is the most promising biomaterial, it often lacks in rigidity and anchorage of cells when they are surrounded by synovial fluid while they are subjected to heavy loads. We developed and produced the Silk Elastin-Like co-Recombinamer (SELR), which contains both the physical interaction from elastin motifs and from silk motifs. In the first part of this work, we set up and optimized a preannealing treatment based on the evolution of silk motifs into β-sheet structures in order to fulfill the required mechanical properties of hydrogels for cartilage repair. The new preannealed SELRs (pA(EIS)2-(I5R)6) were characterized with the combination of several experimental techniques (CD, TEM, SEM, and rheology) to provide a deep insight into the material features. Finally, the regeneration properties of the pA(EIS)2-(I5R)6 hydrogel embedded with chondrocytes were evaluated. After 4 weeks of culturing in a standardized and representative ex vivo model, the biochemical and histological analysis revealed the production of glycosaminglycans and collagen. Moreover, the immunohistochemistry showed the absence of fibro-cartilage and the presence of hyaline cartilage. Hence, we conclude that the pA(EIS)2-(I5R)6 hydrogel presents improved mechanical properties while conserving the injectability, which leads to successful regeneration of hyaline cartilage in an ex vivo model.
Collapse
Affiliation(s)
- Filippo Cipriani
- Technical Proteins Nanobiotechnology S.L. , Paseo Belén 9A , 47001 Valladolid , Spain
| | - Melanie Krüger
- LifeTec Group B.V. , 5611 ZS Eindhoven , The Netherlands
| | - Israel Gonzalez de Torre
- Technical Proteins Nanobiotechnology S.L. , Paseo Belén 9A , 47001 Valladolid , Spain.,Bioforge , University of Valladolid CIBER-BNN , Paseo de Belén 19 , 47001 Valladolid , Spain
| | - Luis Quintanilla Sierra
- Bioforge , University of Valladolid CIBER-BNN , Paseo de Belén 19 , 47001 Valladolid , Spain
| | - Matilde Alonso Rodrigo
- Technical Proteins Nanobiotechnology S.L. , Paseo Belén 9A , 47001 Valladolid , Spain.,Bioforge , University of Valladolid CIBER-BNN , Paseo de Belén 19 , 47001 Valladolid , Spain
| | - Linda Kock
- LifeTec Group B.V. , 5611 ZS Eindhoven , The Netherlands
| | - José Carlos Rodriguez-Cabello
- Technical Proteins Nanobiotechnology S.L. , Paseo Belén 9A , 47001 Valladolid , Spain.,Bioforge , University of Valladolid CIBER-BNN , Paseo de Belén 19 , 47001 Valladolid , Spain
| |
Collapse
|
10
|
Zong J, Cobb SL, Cameron NR. Short elastin-like peptide-functionalized gold nanoparticles that are temperature responsive under near-physiological conditions. J Mater Chem B 2018; 6:6667-6674. [PMID: 32254875 DOI: 10.1039/c8tb01827h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Thermally-responsive, short elastin-like peptides (ELPs) of sequence VPGVG (V, P and G represent valine, proline and glycine respectively), bearing different N-terminal functional groups (amino-, N-acetyl and thiol) and a non-ionisable C-terminal group, were prepared by solid phase synthesis. The conformation and aggregation properties of the ELPs were studied in different pH aqueous buffer solutions using UV-vis spectroscopy and circular dichroism (CD). The thiol-capped ELPs were used to prepare functionalized gold nanoparticles (GNPs), which were found to undergo thermally-triggered reversible aggregation at 40 °C. The peptide conformation and nanoparticle aggregation behaviour of the ELP-GNPs in aqueous solution were investigated by transmission electron microscopy (TEM), circular dichroism (CD) and UV-vis spectroscopy. It was found that the ELP-GNP conjugates were capable of reversible, thermally triggered aggregation at near-physiological temperatures (transition temperature of 40 °C at pH = 7.4), opening up applications in photothermal cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Jingyi Zong
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | | | | |
Collapse
|
11
|
Zai-Rose V, West SJ, Kramer WH, Bishop GR, Lewis EA, Correia JJ. Effects of Doxorubicin on the Liquid-Liquid Phase Change Properties of Elastin-Like Polypeptides. Biophys J 2018; 115:1431-1444. [PMID: 30292393 DOI: 10.1016/j.bpj.2018.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/23/2018] [Accepted: 09/05/2018] [Indexed: 01/03/2023] Open
Abstract
The lower critical solution temperature (LCST) of the thermo-responsive engineered elastin-like polypeptide (ELP) biopolymer is being exploited for the thermal targeted delivery of doxorubicin (Dox) to solid tumors. We examine the impact of Dox labeling on the thermodynamic and hydrodynamic behavior of an ELP drug carrier and how Dox influences the liquid-liquid phase separation (LLPS). Turbidity, dynamic light scattering (DLS), and differential scanning calorimetry measurements show that ELP undergoes a cooperative liquid-liquid phase separation from a soluble to insoluble coacervated state that is enhanced by Dox labeling. Circular dichroism measurements show that below the LCST ELP consists of both random coils and temperature-dependent β-turn structures. Labeling with Dox further enhances β-turn formation. DLS measurements reveal a significant increase in the hydrodynamic radius of ELP below the LCST consistent with weak self-association. Dox-labeled SynB1-ELP1 (Dox-ELP) has a significant increase in the hydrodynamic radius by DLS measurements that is consistent with stable oligomers and, at high Dox-ELP concentrations, micelle structures. Enhanced association by Dox-ELP is confirmed by sedimentation velocity analytical ultracentrifugation measurements. Both ELP self-association and the ELP inverse phase transition are entropically driven with positive changes in enthalpy and entropy. We show by turbidity and DLS that the ELP phase transition is monophasic, whereas mixtures of ELP and Dox-ELP are biphasic, with Dox-labeled ELP phase changing first and unlabeled ELP partitioning into the coacervate as the temperature is raised. DLS reveals a complex growth in droplet sizes consistent with coalescence and fusion of liquid droplets. Differential scanning calorimetry measurements show a -11 kcal/mol change in enthalpy for Dox-ELP coacervation relative to the unlabeled ELP, consistent with droplet formation being stabilized by favorable enthalpic interactions. We propose that the ELP phase change is initiated by ELP self-association, enhanced by increased Dox-ELP oligomer and micelle formation and stabilized by favorable enthalpic interactions in the liquid droplets.
Collapse
Affiliation(s)
- Valeria Zai-Rose
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Savannah J West
- Department of Chemistry, Mississippi State University, Starkville, Mississippi
| | - Wolfgang H Kramer
- Department of Chemistry and Biochemistry, Millsaps College, Jackson, Mississippi
| | - G Reid Bishop
- Department of Chemistry, Belhaven University, Jackson, Mississippi
| | - Edwin A Lewis
- Department of Chemistry, Mississippi State University, Starkville, Mississippi
| | - John J Correia
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi.
| |
Collapse
|
12
|
Selig O, Cunha AV, van Eldijk MB, van Hest JCM, Jansen TLC, Bakker HJ, Rezus YLA. Temperature-Induced Collapse of Elastin-like Peptides Studied by 2DIR Spectroscopy. J Phys Chem B 2018; 122:8243-8254. [PMID: 30067028 PMCID: PMC6143280 DOI: 10.1021/acs.jpcb.8b05221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/31/2018] [Indexed: 12/21/2022]
Abstract
Elastin-like peptides are hydrophobic biopolymers that exhibit a reversible coacervation transition when the temperature is raised above a critical point. Here, we use a combination of linear infrared spectroscopy, two-dimensional infrared spectroscopy, and molecular dynamics simulations to study the structural dynamics of two elastin-like peptides. Specifically, we investigate the effect of the solvent environment and temperature on the structural dynamics of a short (5-residue) elastin-like peptide and of a long (450-residue) elastin-like peptide. We identify two vibrational energy transfer processes that take place within the amide I' band of both peptides. We observe that the rate constant of one of the exchange processes is strongly dependent on the solvent environment and argue that the coacervation transition is accompanied by a desolvation of the peptide backbone where up to 75% of the water molecules are displaced. We also study the spectral diffusion dynamics of the valine(1) residue that is present in both peptides. We find that these dynamics are relatively slow and indicative of an amide group that is shielded from the solvent. We conclude that the coacervation transition of elastin-like peptides is probably not associated with a conformational change involving this residue.
Collapse
Affiliation(s)
- Oleg Selig
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ana V. Cunha
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Mark B. van Eldijk
- Institute
for Molecules and Materials, Radboud University
Nijmegen, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Jan C. M. van Hest
- Department
of Chemical Engineering and Chemistry Kranenveld, Eindhoven University of Technology, Building 14, 5600 MB Eindhoven, The Netherlands
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Huib J. Bakker
- FOM
institute AMOLF, Science
Park 104, 1098 XG Amsterdam, The Netherlands
| | | |
Collapse
|
13
|
Brennan MJ, Hollingshead SE, Wilker JJ, Liu JC. Critical factors for the bulk adhesion of engineered elastomeric proteins. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171225. [PMID: 29892346 PMCID: PMC5990844 DOI: 10.1098/rsos.171225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Many protein-based materials, such as soy and mussel adhesive proteins, have been the subject of scientific and commercial interest. Recently, a variety of protein adhesives have been isolated from diverse sources such as insects, frogs and squid ring teeth. Many of these adhesives have similar amino acid compositions to elastomeric proteins such as elastin. Although elastin is widely investigated for a structural biomaterial, little work has been done to assess its adhesive potential. In this study, recombinant elastin-like polypeptides were created to probe the factors affecting adhesion strength. Lap shear adhesion was used to examine the effects of both extrinsic factors (pH, concentration, cross-linker, humidity, cure time and cure temperature) and intrinsic factors (protein sequence, structure and molecular weight). Of the extrinsic factors tested, only humidity, cure time and cure temperature had a significant effect on adhesion strength. As water content was reduced, adhesion strength increased. Of the intrinsic factors tested, amino acid sequence did not significantly affect adhesion strength, but less protein structure and higher molecular weights increased adhesion strength directly. The strengths of proteins in this study (greater than 2 MPa) were comparable to or higher than those of two commercially available protein-based adhesives, hide glue and a fibrin sealant. These results may provide general rules for the design of adhesives from elastomeric proteins.
Collapse
Affiliation(s)
- M. Jane Brennan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sydney E. Hollingshead
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jonathan J. Wilker
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Julie C. Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
14
|
Da Silva J, Lameiras P, Beljebbar A, Berquand A, Villemin M, Ramont L, Dukic S, Nuzillard JM, Molinari M, Gautier M, Brassart-Pasco S, Brassart B. Structural characterization and in vivo pro-tumor properties of a highly conserved matrikine. Oncotarget 2018; 9:17839-17857. [PMID: 29707150 PMCID: PMC5915158 DOI: 10.18632/oncotarget.24894] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/25/2018] [Indexed: 01/13/2023] Open
Abstract
Elastin-derived peptides (EDPs) exert protumor activities by increasing tumor growth, migration and invasion. A number of studies have highlighted the potential of VGVAPG consensus sequence-derived elastin-like polypeptides whose physicochemical properties and biocompatibility are particularly suitable for in vivo applications, such as drug delivery and tissue engineering. However, among the EDPs, the influence of elastin-derived nonapeptides (xGxPGxGxG consensus sequence) remains unknown. Here, we show that the AGVPGLGVG elastin peptide (AG-9) present in domain-26 of tropoelastin is more conserved than the VGVAPG elastin peptide (VG-6) from domain-24 in mammals. The results demonstrate that the structural features of AG-9 and VG-6 peptides are similar. CD, NMR and FTIR spectroscopies show that AG-9 and VG-6 present the same conformation, which includes a mixture of random coils and β-turn structures. On the other hand, the supraorganization differs between peptides, as demonstrated by AFM. The VG-6 peptide gathers in spots, whereas the AG-9 peptide aggregates into short amyloid-like fibrils. An in vivo study showed that AG-9 peptides promote tumor progression to a greater extent than do VG-6 peptides. These results were confirmed by in vitro studies such as 2D and 3D proliferation assays, migration assays, adhesion assays, proteinase secretion studies and pseudotube formation assays to investigate angiogenesis. Our findings suggest the possibility that the AG-9 peptide present in patient sera may dramatically influence cancer progression and could be used in the design of new, innovative antitumor therapies.
Collapse
Affiliation(s)
- Jordan Da Silva
- UMR CNRS/URCA 7369 MEDyC, Université de Reims Champagne Ardenne, UFR Médecine, 51095 Reims, France
| | - Pedro Lameiras
- ICMR, CNRS UMR 7312, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Abdelilah Beljebbar
- UMR CNRS/URCA 7369 MEDyC, Université de Reims Champagne Ardenne, UFR Médecine, 51095 Reims, France
| | - Alexandre Berquand
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Matthieu Villemin
- UMR CNRS/URCA 7369 MEDyC, Université de Reims Champagne Ardenne, UFR Médecine, 51095 Reims, France
| | - Laurent Ramont
- UMR CNRS/URCA 7369 MEDyC, Université de Reims Champagne Ardenne, UFR Médecine, 51095 Reims, France
- CHU de Reims, Laboratoire Central de Biochimie, 51092 Reims, France
| | - Sylvain Dukic
- UMR CNRS/URCA 7369 MEDyC, Université de Reims Champagne Ardenne, UFR Médecine, 51095 Reims, France
| | - Jean-Marc Nuzillard
- ICMR, CNRS UMR 7312, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Michael Molinari
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Mathieu Gautier
- Laboratoire de Physiologie Cellulaire et Moléculaire, LPCM - EA4667, Université de Picardie Jules Verne, UFR Sciences, F-80039 Amiens, France
| | - Sylvie Brassart-Pasco
- UMR CNRS/URCA 7369 MEDyC, Université de Reims Champagne Ardenne, UFR Médecine, 51095 Reims, France
| | - Bertrand Brassart
- UMR CNRS/URCA 7369 MEDyC, Université de Reims Champagne Ardenne, UFR Médecine, 51095 Reims, France
| |
Collapse
|
15
|
Cai H, Gabryelczyk B, Manimekalai MSS, Grüber G, Salentinig S, Miserez A. Self-coacervation of modular squid beak proteins - a comparative study. SOFT MATTER 2017; 13:7740-7752. [PMID: 29043368 DOI: 10.1039/c7sm01352c] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The beak of the Humboldt squid is a biocomposite material made solely of organic components - chitin and proteins - which exhibits 200-fold stiffness and hardness gradients from the soft base to the exceptionally hard tip (rostrum). The outstanding mechanical properties of the squid beak are achieved via controlled hydration and impregnation of the chitin-based scaffold by protein coacervates. Molecular-based understanding of these proteins is essential to mimic the natural beak material. Here, we present detailed studies of two histidine-rich beak proteins (HBP-1 and -2) that play central roles during beak bio-fabrication. We show that both proteins have the ability to self-coacervate, which is governed intrinsically by the sequence modularity of their C-terminus and extrinsically by pH and ionic strength. We demonstrate that HBPs possess dynamic structures in solution and achieve maximum folding in the coacervate state, and propose that their self-coacervation is driven by hydrophobic interactions following charge neutralization through salt-screening. Finally, we show that subtle differences in the modular repeats of HBPs result in significant changes in the rheological response of the coacervates. This knowledge may be exploited to design self-coacervating polypeptides for a wide range of engineering and biomedical applications, for example bio-inspired composite materials, smart hydrogels and adhesives, and biomedical implants.
Collapse
Affiliation(s)
- Hao Cai
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 637553.
| | | | | | | | | | | |
Collapse
|
16
|
Hollingshead S, Lin CY, Liu JC. Designing Smart Materials with Recombinant Proteins. Macromol Biosci 2017; 17:10.1002/mabi.201600554. [PMID: 28337848 PMCID: PMC6020822 DOI: 10.1002/mabi.201600554] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/08/2017] [Indexed: 01/07/2023]
Abstract
Recombinant protein design allows modular protein domains with different functionalities and responsive behaviors to be easily combined. Inclusion of these protein domains can enable recombinant proteins to have complex responses to their environment (e.g., temperature-triggered aggregation followed by enzyme-mediated cleavage for drug delivery or pH-triggered conformational change and self-assembly leading to structural stabilization by adjacent complementary residues). These "smart" behaviors can be tuned by amino acid identity and sequence, chemical modifications, and addition of other components. A wide variety of domains and peptides have smart behavior. This review focuses on protein designs for self-assembly or conformational changes due to stimuli such as shifts in temperature or pH.
Collapse
Affiliation(s)
- Sydney Hollingshead
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-2100, USA
| | - Charng-Yu Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-2100, USA
| | - Julie C. Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-2100, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907-2032, USA
| |
Collapse
|
17
|
Le DHT, Tsutsui Y, Sugawara-Narutaki A, Yukawa H, Baba Y, Ohtsuki C. Double-hydrophobic elastin-like polypeptides with added functional motifs: Self-assembly and cytocompatibility. J Biomed Mater Res A 2017; 105:2475-2484. [PMID: 28486777 DOI: 10.1002/jbm.a.36105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 11/10/2022]
Abstract
We have recently developed a novel double-hydrophobic elastin-like triblock polypeptide called GPG, designed after the uneven distribution of two different hydrophobic domains found in elastin, an extracellular matrix protein providing elasticity and resilience to tissues. Upon temperature trigger, GPG undergoes a sequential self-assembling process to form flexible beaded nanofibers with high homogeneity and excellent dispersibility in water. Given that GPG might be a potential elastin-mimetic material, we sought to explore the biological activities of this block polypeptide. Besides GPG, several functionalized derivatives were also constructed by fusing functional motifs such as KAAK or KAAKGRGDS at the C-terminal of GPG. Although the added motifs affected the kinetics of fiber formation and β-sheet contents, all three GPGs assembled into beaded nanofibers at the physiological temperature. The resulting GPG nanofibers preserved their beaded structures in cell culture medium; therefore, they were coated on polystyrene substrates to study their cytocompatibility toward mouse embryonic fibroblasts, NIH-3T3. Among the three polypeptides, GPG having the cell-binding motif GRGDS derived from fibronectin showed excellent cell adhesion and cell proliferation properties compared to other conventional materials, suggesting its promising applications as extracellular matrices for mammalian cells. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2475-2484, 2017.
Collapse
Affiliation(s)
- Duc H T Le
- Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.,Venture Business Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yoko Tsutsui
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Ayae Sugawara-Narutaki
- Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroshi Yukawa
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yoshinobu Baba
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.,Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.,Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hayashi-cho, Takamatsu, 761-0395, Japan
| | - Chikara Ohtsuki
- Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
18
|
Tarakanova A, Huang W, Weiss AS, Kaplan DL, Buehler MJ. Computational smart polymer design based on elastin protein mutability. Biomaterials 2017; 127:49-60. [DOI: 10.1016/j.biomaterials.2017.01.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/13/2017] [Accepted: 01/28/2017] [Indexed: 12/16/2022]
|
19
|
A bioinspired elastin-based protein for a cytocompatible underwater adhesive. Biomaterials 2017; 124:116-125. [DOI: 10.1016/j.biomaterials.2017.01.034] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/20/2016] [Accepted: 01/27/2017] [Indexed: 01/04/2023]
|
20
|
Goto M, Endo T. High-molecular-weight poly(Gly-Val-Gly-Val-Pro) synthesis through microwave irradiation. J Pept Sci 2016; 22:452-60. [PMID: 27352997 DOI: 10.1002/psc.2866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 11/06/2022]
Abstract
In this study, we synthesized a polypeptide from its pentapeptide unit using microwave irradiation. Effective methods for polypeptide synthesis from unit peptides have not been reported. Here, we used a key elastin peptide, H-GlyValGlyValPro-OH (GVGVP), as the monomer peptide. It is difficult to obtain poly(Gly-Val-Gly-Val-Pro) (poly(GVGVP)) from the pentapeptide unit of elastin, GVGVP, via polycondensation. Poly(GVGVP) prepared from genetically recombinant Escherichia coli is a well-known temperature-sensitive polypeptide, and this temperature sensitivity is known as the lower critical solution temperature. When microwave irradiation was performed in the presence of various additives, the pentapeptide (GVGVP) polycondensation reaction proceeded smoothly, resulting in a product with a high molecular weight in a relatively good yield. The reaction conditions, like microwave irradiation, coupling agents, and solvents, were optimized to increase the reaction efficiency. The product exhibited a molecular weight greater than Mr 7000. Further, the product could be synthesized on a gram scale. The synthesized polypeptide exhibited a temperature sensitivity that was similar to that of poly(GVGVP) prepared from genetically recombinant E. coli. Therefore, this technique offers a facile and quick approach to prepare polypeptides in large amounts. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mitsuaki Goto
- Molecular Engineering Institute, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka, 820-8555, Japan
| | - Takeshi Endo
- Molecular Engineering Institute, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka, 820-8555, Japan
| |
Collapse
|
21
|
Kojima C, Fukushima D. Applications of Gold Nanoparticle-Loaded Thermosensitive Elastin-Mimetic Dendrimer to Photothermal Therapy. J PHOTOPOLYM SCI TEC 2016. [DOI: 10.2494/photopolymer.29.519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Evolution of amphiphilic elastin-like co-recombinamer morphologies from micelles to a lyotropic hydrogel. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Fernández-Colino A, Arias FJ, Alonso M, Rodríguez-Cabello JC. Amphiphilic Elastin-Like Block Co-Recombinamers Containing Leucine Zippers: Cooperative Interplay between Both Domains Results in Injectable and Stable Hydrogels. Biomacromolecules 2015; 16:3389-98. [PMID: 26391850 DOI: 10.1021/acs.biomac.5b01103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many biological processes are regulated by reversible binding events, with these interactions between macromolecules representing the core of dynamic chemistry. As such, any attempt to gain a better understanding of such interactions, which would pave the way to the extrapolation of natural designs to create new advanced systems, is clearly of interest. This work focuses on the development of a leucine zipper-elastin-like recombinamer (ZELR) in order to elucidate the behavior of such domains when coexisting along the same molecule and to engineer reversible, injectable and stable hydrogels. The unique propensity of the Z-moiety selected to dimerize, together with the thermosensitive behavior of the ELR, which has been constructed as a thermosensitive amphiphilic tetrablock, has been engineered into a single recombinant molecule. In this molecular design, the Z-moieties are unable to form a network, while the ELR is below its Tt, thus, guaranteeing the liquid-like state of the system. However, this situation changes rapidly as the temperature increases above Tt, where a stable hydrogel is formed, as demostrated by rheological tests. The inability of the ELR molecule (without Z-domains) to form such a stable hydrogel above Tt clearly points to a positive cooperative effect between these two domains (Z and EL), and no conformational changes in the former are involved, as demonstrated by circular dichroism analysis. AFM shows that Z-motifs seem to induce the aggregation of micelles, which supports the enhanced stability displayed by ZELRs when compared to ELR at the macroscale level. To the best of our knowledge, this is the first time that such an interplay between these two domains has been reported. Furthermore, the cytocompatibility of the resulting hydrogels opens the door to their use in biomedical applications.
Collapse
Affiliation(s)
- Alicia Fernández-Colino
- G.I.R. Bioforge, University of Valladolid, CIBER-BBN , Paseo de Belén 11, 47011 Valladolid, Spain
| | - F Javier Arias
- G.I.R. Bioforge, University of Valladolid, CIBER-BBN , Paseo de Belén 11, 47011 Valladolid, Spain
| | - Matilde Alonso
- G.I.R. Bioforge, University of Valladolid, CIBER-BBN , Paseo de Belén 11, 47011 Valladolid, Spain
| | | |
Collapse
|
24
|
Fukushima D, Sk UH, Sakamoto Y, Nakase I, Kojima C. Dual stimuli-sensitive dendrimers: Photothermogenic gold nanoparticle-loaded thermo-responsive elastin-mimetic dendrimers. Colloids Surf B Biointerfaces 2015; 132:155-60. [PMID: 26037705 DOI: 10.1016/j.colsurfb.2015.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/24/2015] [Accepted: 05/07/2015] [Indexed: 11/19/2022]
Abstract
Dendrimers are synthetic macromolecules with unique structures that can work as nanoplatforms for both photothermogenic gold nanoparticles (AuNPs) and thermosensitive elastin-like peptides (ELPs) with valine-proline-glycine-valine-glycine (VPGVG) repeats. In this study, photothermogenic AuNPs were loaded into thermo-responsive elastin-mimetic dendrimers (dendrimers conjugating ELPs at their periphery) to produce dual stimuli-sensitive nanoparticles. Polyamidoamine G4 dendrimers were modified with acetylated VPGVG and (VPGVG)2, and the resulting materials were named ELP1-den and ELP2-den, respectively. The AuNPs were prepared by the reduction of Au ions using a dendrimer-nanotemplated method. The AuNP-loaded elastin-mimetic dendrimers exhibited photothermal properties. ELP1-den and ELP2-den showed similar temperature-dependent changes in their conformations. Phase transitions were observed at around 55°C and 35°C for the AuNP-loaded ELP1-den and AuNP-loaded ELP2-den, respectively, but not for the corresponding PEGylated dendrimer. In contrast to the AuNP-loaded PEGylated dendrimer, AuNP-loaded ELP2-den readily associated with cells and induced efficient photocytotoxicity at 37°C. The cell association and the photocytotoxicity properties of AuNP-loaded ELP2-den could be controlled by temperature. These results therefore suggest that dual stimuli-sensitive dendrimer nanoparticles of this type could be used for photothermal therapy.
Collapse
Affiliation(s)
- Daichi Fukushima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Ugir Hossain Sk
- Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Yasuhiro Sakamoto
- Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Ikuhiko Nakase
- Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Chie Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan.
| |
Collapse
|
25
|
Monge C, Almodóvar J, Boudou T, Picart C. Spatio-Temporal Control of LbL Films for Biomedical Applications: From 2D to 3D. Adv Healthc Mater 2015; 4:811-30. [PMID: 25627563 PMCID: PMC4540079 DOI: 10.1002/adhm.201400715] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/19/2014] [Indexed: 12/15/2022]
Abstract
Introduced in the '90s by Prof. Moehwald, Lvov, and Decher, the layer-by-layer (LbL) assembly of polyelectrolytes has become a popular technique to engineer various types of objects such as films, capsules and free standing membranes, with an unprecedented control at the nanometer and micrometer scales. The LbL technique allows to engineer biofunctional surface coatings, which may be dedicated to biomedical applications in vivo but also to fundamental studies and diagnosis in vitro. Initially mostly developed as 2D coatings and hollow capsules, the range of complex objects created by the LbL technique has greatly expanded in the past 10 years. In this Review, the aim is to highlight the recent progress in the field of LbL films for biomedical applications and to discuss the various ways to spatially and temporally control the biochemical and mechanical properties of multilayers. In particular, three major developments of LbL films are discussed: 1) the new methods and templates to engineer LbL films and control cellular processes from adhesion to differentiation, 2) the major ways to achieve temporal control by chemical, biological and physical triggers and, 3) the combinations of LbL technique, cells and scaffolds for repairing 3D tissues, including cardio-vascular devices, bone implants and neuro-prosthetic devices.
Collapse
Affiliation(s)
- Claire Monge
- CNRS, UMR 5628, LMGP, 3 parvis Louis Néel, F-38016, Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, F-38016, Grenoble, France
| | | | | | | |
Collapse
|
26
|
Kojima C, Sk UH, Fukushima D, Irie K, Akazawa N, Umeda M, Niidome T. Effect of main chain conformation on thermosensitivity in elastin-like peptide-grafted polylysine. RSC Adv 2015. [DOI: 10.1039/c5ra23865j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Conformation change of the main chain promoted the phase transition of elastin-like peptide-grafted polymer.
Collapse
Affiliation(s)
- Chie Kojima
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai
- Japan
| | - Ugir Hossain Sk
- Nanoscience and Nanotechnology Research Center
- Research Organization for the 21st Century
- Osaka Prefecture University
- Sakai
- Japan
| | - Daichi Fukushima
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai
- Japan
| | - Kotaro Irie
- Nanoscience and Nanotechnology Research Center
- Research Organization for the 21st Century
- Osaka Prefecture University
- Sakai
- Japan
| | - Naotoshi Akazawa
- Department of Applied Chemistry and Biochemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Masafumi Umeda
- Department of Applied Chemistry and Biochemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Takuro Niidome
- Department of Applied Chemistry and Biochemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| |
Collapse
|
27
|
Corchero JL, Vázquez E, García-Fruitós E, Ferrer-Miralles N, Villaverde A. Recombinant protein materials for bioengineering and nanomedicine. Nanomedicine (Lond) 2014; 9:2817-28. [DOI: 10.2217/nnm.14.153] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Proteins are essential macromolecules supporting life. Being efficient catalyzers and offering specific cross-molecular contacts, proteins are largely exploited in biotechnology and biomedicine as therapeutics, in industrial catalysis or as molecular reagents. Recombinant enzymes, hormones, immunogens and antibodies are produced aiming to different applications, on the basis of their ability to interact with or modify substrates or biological targets. In nature, proteins also perform task-specific architectonic roles, and they can organize in supramolecular complexes with intriguing physical properties such as elasticity and adhesiveness, and with regulatable stiffness, flexibility and mechanical strength. Proteins have recently gained interest as materials for bioengineering and nanomedicine as they can combine these features with functionality, biocompatibility and degradability in unusually versatile composites. We revise here the fundamental properties of the diverse categories of emerging protein materials resulting from biological synthesis and how they can be genetically re-designed to engineer the interplay between mechanical and biological properties in a medically oriented exploitable way.
Collapse
Affiliation(s)
- José Luis Corchero
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Elena García-Fruitós
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Neus Ferrer-Miralles
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
28
|
Uversky VN. Proteins without unique 3D structures: biotechnological applications of intrinsically unstable/disordered proteins. Biotechnol J 2014; 10:356-66. [PMID: 25287424 DOI: 10.1002/biot.201400374] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/23/2014] [Accepted: 08/27/2014] [Indexed: 11/09/2022]
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are functional proteins or regions that do not have unique 3D structures under functional conditions. Therefore, from the viewpoint of their lack of stable 3D structure, IDPs/IDPRs are inherently unstable. As much as structure and function of normal ordered globular proteins are determined by their amino acid sequences, the lack of unique 3D structure in IDPs/IDPRs and their disorder-based functionality are also encoded in the amino acid sequences. Because of their specific sequence features and distinctive conformational behavior, these intrinsically unstable proteins or regions have several applications in biotechnology. This review introduces some of the most characteristic features of IDPs/IDPRs (such as peculiarities of amino acid sequences of these proteins and regions, their major structural features, and peculiar responses to changes in their environment) and describes how these features can be used in the biotechnology, for example for the proteome-wide analysis of the abundance of extended IDPs, for recombinant protein isolation and purification, as polypeptide nanoparticles for drug delivery, as solubilization tools, and as thermally sensitive carriers of active peptides and proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Faculty of Science, Biology Department, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| |
Collapse
|
29
|
Gagner JE, Kim W, Chaikof EL. Designing protein-based biomaterials for medical applications. Acta Biomater 2014; 10:1542-57. [PMID: 24121196 PMCID: PMC3960372 DOI: 10.1016/j.actbio.2013.10.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/29/2013] [Accepted: 10/01/2013] [Indexed: 02/01/2023]
Abstract
Biomaterials produced by nature have been honed through billions of years, evolving exquisitely precise structure-function relationships that scientists strive to emulate. Advances in genetic engineering have facilitated extensive investigations to determine how changes in even a single peptide within a protein sequence can produce biomaterials with unique thermal, mechanical and biological properties. Elastin, a naturally occurring protein polymer, serves as a model protein to determine the relationship between specific structural elements and desirable material characteristics. The modular, repetitive nature of the protein facilitates the formation of well-defined secondary structures with the ability to self-assemble into complex three-dimensional architectures on a variety of length scales. Furthermore, many opportunities exist to incorporate other protein-based motifs and inorganic materials into recombinant protein-based materials, extending the range and usefulness of these materials in potential biomedical applications. Elastin-like polypeptides (ELPs) can be assembled into 3-D architectures with precise control over payload encapsulation, mechanical and thermal properties, as well as unique functionalization opportunities through both genetic and enzymatic means. An overview of current protein-based materials, their properties and uses in biomedicine will be provided, with a focus on the advantages of ELPs. Applications of these biomaterials as imaging and therapeutic delivery agents will be discussed. Finally, broader implications and future directions of these materials as diagnostic and therapeutic systems will be explored.
Collapse
Affiliation(s)
- Jennifer E Gagner
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, and the Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA 02215, USA
| | - Wookhyun Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, and the Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA 02215, USA
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, and the Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA 02215, USA.
| |
Collapse
|
30
|
Lyons DF, Le V, Kramer WH, Bidwell GL, Lewis EA, Raucher D, Correia JJ. Effect of basic cell-penetrating peptides on the structural, thermodynamic, and hydrodynamic properties of a novel drug delivery vector, ELP[V5G3A2-150]. Biochemistry 2014; 53:1081-91. [PMID: 24450599 PMCID: PMC3985474 DOI: 10.1021/bi400955w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Elastin-like polypeptides (ELPs)
are large, nonpolar polypeptides
under investigation as components of a novel drug delivery system.
ELPs are soluble at low temperatures, but they desolvate and aggregate
above a transition temperature (TT). This
aggregation is being utilized for targeting systemically delivered
ELP–drug conjugates to heated tumors. We previously examined
the structural, thermodynamic, and hydrodynamic properties of ELP[V5G3A2-150] to understand its behavior
as a therapeutic agent. In this study, we investigate the effect that
adding basic cell-penetrating peptides (CPPs) to ELP[V5G3A2-150] has on the polypeptide’s solubility,
structure, and aggregation properties. CPPs are known to enhance the
uptake of ELP into cultured cells in vitro and into
tumor tissue in vivo. Interestingly, the asymmetric
addition of basic residues decreased the solubility of ELP[V5G3A2-150], although below the TT we still observed a low level of self-association that
increased with temperature. The ΔH of the aggregation
process correlates with solubility, suggesting that the basic CPPs
stabilize the aggregated state. This is potentially beneficial as
the decreased solubility will increase the fraction aggregated and
enhance drug delivery efficacy at a heated tumor. Otherwise, the basic
CPPs did not significantly alter the biophysical properties of ELP.
All constructs were monomeric at low temperatures but self-associate
with increasing temperature through an indefinite isodesmic association.
This self-association was coupled to a structural transition to type
II β-turns. All constructs reversibly aggregated in an endothermic
reaction, consistent with a reaction driven by the release of water.
Collapse
Affiliation(s)
- Daniel F Lyons
- Department of Biochemistry, University of Mississippi Medical Center , 2500 North State Street, Jackson, Mississippi 39216, United States
| | | | | | | | | | | | | |
Collapse
|
31
|
Whittaker J, Balu R, Choudhury NR, Dutta NK. Biomimetic protein-based elastomeric hydrogels for biomedical applications. POLYM INT 2014. [DOI: 10.1002/pi.4670] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jasmin Whittaker
- Ian Wark Research Institute, Mawson Lakes Campus; University of South Australia; Mawson Lakes Adelaide SA 5095 Australia
| | - Rajkamal Balu
- Ian Wark Research Institute, Mawson Lakes Campus; University of South Australia; Mawson Lakes Adelaide SA 5095 Australia
| | - Namita R. Choudhury
- Ian Wark Research Institute, Mawson Lakes Campus; University of South Australia; Mawson Lakes Adelaide SA 5095 Australia
| | - Naba K. Dutta
- Ian Wark Research Institute, Mawson Lakes Campus; University of South Australia; Mawson Lakes Adelaide SA 5095 Australia
| |
Collapse
|
32
|
Structural and hydrodynamic analysis of a novel drug delivery vector: ELP[V5G3A2-150]. Biophys J 2013; 104:2009-21. [PMID: 23663844 DOI: 10.1016/j.bpj.2013.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 02/28/2013] [Accepted: 03/12/2013] [Indexed: 11/21/2022] Open
Abstract
The therapeutic potential of elastin-like polypeptide (ELP) conjugated to therapeutic compounds is currently being investigated as an approach to target drugs to solid tumors. ELPs are hydrophobic polymers that are soluble at low temperatures and cooperatively aggregate above a transition temperature (TT), allowing for thermal targeting of covalently attached drugs. They have been shown to cooperatively transition from a disordered structure to a repeating type II β-turn structure, forming a β-spiral above the TT. Here we present biophysical measurements of the structural, thermodynamic, and hydrodynamic properties of a specific ELP being investigated for drug delivery, ELP[V5G3A2-150]. We examine the biophysical properties below and above the TT to understand and predict the therapeutic potential of ELP-drug conjugates. We observed that below the TT, ELP[V5G3A2-150] is soluble, with an extended conformation consisting of both random coil and heterogeneous β structures. Sedimentation velocity experiments indicate that ELP[V5G3A2-150] undergoes weak self-association with increasing temperature, and above the TT the hydrophobic effect drives aggregation entropically. These experiments also reveal a previously unreported temperature-dependent critical concentration (Cc) that resembles a solubility constant. Labeling ELP[V5G3A2-150] with fluorescein lowers the TT by 3.5°C at 20 μM, whereas ELP[V5G3A2-150] dissolution in physiological media (fetal bovine serum) increases the TT by ∼2.2°C.
Collapse
|
33
|
Ghoorchian A, Vandemark K, Freeman K, Kambow S, Holland NB, Streletzky KA. Size and shape characterization of thermoreversible micelles of three-armed star elastin-like polypeptides. J Phys Chem B 2013; 117:8865-74. [PMID: 23777417 DOI: 10.1021/jp312591j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three-armed star elastin-like polypeptides are shown to have the capability of self-assembling into micellar constructs at certain environmental conditions. Here, a study of the size distribution, shape, and molecular weight of these micelles at different salt concentrations and pH values is presented. Multiangle dynamic light scattering was used to study the formation, reversibility, and size of the micelles at different environmental conditions. On the basis of the salt concentration of the solution, two distinct size distribution regimes and a transition region were observed. Static light scattering was performed to study the molecular weight and geometrical anisotropy of the micelles in each regime. The anisotropic behavior and elongation of the particles were independently confirmed by depolarized dynamic light scattering, and a model for micelles at each regime was proposed. The size and molecular weight of the micelles were verified using viscosity measurements. The results of this study suggest that there is big jump in the size and molecular weight of the micelles from the first salt-dependent regime to the other, and the shape of the micelles changes from spheres to cylindrical micelles with a higher than 10:1 axis ratio.
Collapse
Affiliation(s)
- Ali Ghoorchian
- Department of Chemical and Biochemical Engineering, Cleveland State University, Cleveland, Ohio 44115, USA
| | | | | | | | | | | |
Collapse
|
34
|
Le DHT, Hanamura R, Pham DH, Kato M, Tirrell DA, Okubo T, Sugawara-Narutaki A. Self-assembly of elastin-mimetic double hydrophobic polypeptides. Biomacromolecules 2013; 14:1028-34. [PMID: 23495825 DOI: 10.1021/bm301887m] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have constructed a novel class of "double-hydrophobic" block polypeptides based on the hydrophobic domains found in native elastin, an extracellular matrix protein responsible for the elasticity and resilience of tissues. The block polypeptides comprise proline-rich poly(VPGXG) and glycine-rich poly(VGGVG), both of which dehydrate at higher temperature but form distinct secondary structures, β-turn and β-sheet respectively. In water at 45 °C, the block polypeptides initially assemble into nanoparticles rich in β-turn structures, which further connect into long (>10 μm), beaded nanofibers along with the increase in the β-sheet content. The nanofibers obtained are well-dispersed in water, and show thermoresponsive properties. Polypeptides comprising each block component assemble into different morphologies, showing that the conjugation of poly(VPGXG) and poly(VGGVG) plays a role for beaded fiber formation. These results may provide innovative ideas for designing peptide-based materials but also opportunities for developing novel materials useful for tissue engineering and drug delivery systems.
Collapse
Affiliation(s)
- Duc H T Le
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Huang J, Sun C, Mitchell O, Ng N, Wang ZN, Boutis GS. On the inverse temperature transition and development of an entropic elastomeric force of the elastin mimetic peptide [LGGVG](3, 7). J Chem Phys 2012; 136:085101. [PMID: 22380064 PMCID: PMC3306437 DOI: 10.1063/1.3685454] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/30/2012] [Indexed: 11/14/2022] Open
Abstract
We report on a molecular dynamics simulation based study of the thermal and mechanical properties of the elastin mimetic peptide [LGGVG](n) (n = 3, 7). Our findings indicate that this peptide undergoes an inverse temperature transition as the temperature is raised from ~20 °C to 42 °C. The thermal behavior is similar to what has been observed in other well studied short mimetic peptides of elastin. Both [LGGVG](n) (n = 3, 7) peptides exhibit an increase in the number of side chain contacts and peptide-peptide hydrogen bonds when the temperature is raised from ~20 °C to 42 °C. These observations are accompanied by a decrease in the number of proximal water molecules and number of peptide-water hydrogen bonds. This work also reports on a comparison of the thermal and mechanical properties of [LGGVG](3) and [VPGVG](3) and quantifies the interaction with surrounding waters of hydration under mechanically strained conditions. It is demonstrated, via a quasi-harmonic approach, that both model peptides exhibit a reduction in the population of low-frequency modes and an increase in population of high-frequency modes upon elongation. The shift in population of frequency modes causes the peptide entropy to decrease upon elongation and is responsible for the development of an entropic force that gives rise to elasticity. These observations are in disagreement with a previously published notion that model elastin peptides, such as [VPGVG](18), increase in entropy upon elongation.
Collapse
Affiliation(s)
- Jiaxin Huang
- Department of Physics, Brooklyn College, The City University of New York, Brooklyn, New York 11210, USA
| | | | | | | | | | | |
Collapse
|
36
|
Ma X, Sun C, Huang J, Boutis GS. Thermal hysteresis in the backbone and side-chain dynamics of the elastin mimetic peptide [VPGVG]3 revealed by 2H NMR. J Phys Chem B 2012; 116:555-64. [PMID: 22142235 PMCID: PMC3257400 DOI: 10.1021/jp208966k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on experimental measurements of the backbone and side-chain dynamics of the elastin mimetic peptide [VPGVG](3) by (2)H NMR echo spectroscopy and 2D T(1)-T(2) correlation relaxometry. The T(1) and T(2) relaxation times of the Gly α-deuterons and Val α-, β-, and γ-deuterons of a hydrated sample reveal a thermal hysteresis when the temperature is raised from -10 to 45 °C and then subsequently cooled back to -10 °C. In addition, near 30 °C we observe a reduction in the slope of the T(1)(T) and T(2)(T) heating curves, indicating a structural change that appears to be correlated well to the known inverse temperature transition of this peptide. The thermal dependence of the correlation times of the Gly α-deuterons are well fit by an Arrhenius Law, from which we measured E(act) = (20.0 ± 3.1) kJ/mol when the sample is heated and E(act) = (10.9 ± 2.8) kJ/mol when cooled. Molecular dynamics simulations support the notion that the measured activation energy is determined largely by the extent of localized water, which is observed to decrease with increasing temperature from approximately 25 to 42 °C.
Collapse
Affiliation(s)
- Xiang Ma
- Department of Physics, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210
| | - Cheng Sun
- Department of Physics, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210
| | - Jiaxin Huang
- Department of Physics, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210
| | - Gregory S. Boutis
- Department of Physics, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210
| |
Collapse
|
37
|
Maeda I, Fukumoto Y, Nose T, Shimohigashi Y, Nezu T, Terada Y, Kodama H, Kaibara K, Okamoto K. Structural requirements essential for elastin coacervation: favorable spatial arrangements of valine ridges on the three-dimensional structure of elastin-derived polypeptide (VPGVG)n. J Pept Sci 2011; 17:735-43. [DOI: 10.1002/psc.1394] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 05/30/2011] [Accepted: 06/15/2011] [Indexed: 11/11/2022]
|
38
|
Recombinant elastin-mimetic biomaterials: Emerging applications in medicine. Adv Drug Deliv Rev 2010; 62:1468-78. [PMID: 20441783 DOI: 10.1016/j.addr.2010.04.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/15/2010] [Accepted: 04/17/2010] [Indexed: 12/11/2022]
Abstract
Biomaterials derived from protein-based block copolymers are increasingly investigated for potential application in medicine. In particular, recombinant elastin block copolymers provide significant opportunities to modulate material microstructure and can be processed in various forms, including particles, films, gels, and fiber networks. As a consequence, biological and mechanical responses of elastin-based biomaterials are tunable through precise control of block size and amino acid sequence. In this review, the synthesis of a set of elastin-mimetic triblock copolymers and their diverse processing methods for generating material platforms currently applied in medicine will be discussed.
Collapse
|
39
|
Sun C, Boutis GS. Investigation of the dynamical properties of water in elastin by deuterium Double Quantum Filtered NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 205:86-92. [PMID: 20452263 PMCID: PMC2925226 DOI: 10.1016/j.jmr.2010.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/09/2010] [Indexed: 05/25/2023]
Abstract
The anisotropic motion of tightly bound waters of hydration in bovine nuchal ligament elastin has been studied by deuterium Double Quantum Filtered (DQF) NMR. The experiments have allowed for a direct measurement of the degree of anisotropy within pores of elastin over a time scale ranging from 100 micros to 30 ms, corresponding to a tortuous spatial displacement ranging from 0.2 to 7 microm. We studied the anisotropic motion of deuterium nuclei in D2O hydrated elastin over a temperature of -15 degrees C to 37 degrees C and in solvents with varying dielectric constants. Our experimental measurements of the residual quadrupolar interaction as a function of temperature are correlated to the existing notion of hydrophobic collapse near 20 degrees C.
Collapse
|
40
|
Haghpanah JS, Yuvienco C, Roth EW, Liang A, Tu RS, Montclare JK. Supramolecular assembly and small molecule recognition by genetically engineered protein block polymers composed of two SADs. MOLECULAR BIOSYSTEMS 2010; 6:1662-7. [PMID: 20480093 DOI: 10.1039/c002353a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genetically engineered protein block polymers are an important class of biomaterials that have gained significant attention in recent years due to their potential applications in biotechnology, electronics and medicine. The majority of the protein materials have been composed of at least a single self-assembling domain (SAD), enabling the formation of supramolecular structures. Recently, we developed block polymers consisting of two distinct SADs derived from an elastin-mimetic polypeptide (E) and the alpha-helical COMPcc (C). These protein polymers, synthesized as the block sequences--EC, CE, and ECE--were assessed for overall conformation and macroscopic thermoresponsive behavior. Here, we investigate the supramolecular assembly as well as the small molecule binding and release profile of these block polymers. Our results demonstrate that the protein polymers assemble into particles as well as fully or partially networked structures in a concentration dependent manner that is distinct from the individual E and C homopolymers and the E+C non-covalent mixture. In contrast to synthetic block polymers, the structured assembly, binding and release abilities are highly dependent on the composition and orientation of the blocks. These results reveal the promise for these block polymers for therapeutic delivery and biomedical scaffolds.
Collapse
Affiliation(s)
- Jennifer S Haghpanah
- Polytechnic Institute of New York University, 6 Metrotech Center, Brooklyn, NY 11201, USA
| | | | | | | | | | | |
Collapse
|
41
|
Fujimoto M, Hara M, Hayashi T, Furuta M. Effect of heating process on the formation of nanoparticles of elastin model polypeptide, (GVGVP)251, by gamma-ray crosslinking. Polym Bull (Berl) 2009. [DOI: 10.1007/s00289-009-0220-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Dyksterhuis LB, Carter EA, Mithieux SM, Weiss AS. Tropoelastin as a thermodynamically unfolded premolten globule protein: The effect of trimethylamine N-oxide on structure and coacervation. Arch Biochem Biophys 2009; 487:79-84. [DOI: 10.1016/j.abb.2009.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 05/29/2009] [Accepted: 06/02/2009] [Indexed: 01/12/2023]
|
43
|
|
44
|
Glaves R, Baer M, Schreiner E, Stoll R, Marx D. Conformational Dynamics of Minimal Elastin-Like Polypeptides: The Role of Proline Revealed by Molecular Dynamics and Nuclear Magnetic Resonance. Chemphyschem 2008; 9:2759-65. [DOI: 10.1002/cphc.200800474] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Kim W, Conticello VP. Protein Engineering Methods for Investigation of Structure-Function Relationships in Protein-Based Elastomeric Materials. POLYM REV 2007. [DOI: 10.1080/15583720601109586] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Kim W, Hardcastle KI, Conticello VP. Fluoroproline Flip-Flop: Regiochemical Reversal of a Stereoelectronic Effect on Peptide and Protein Structures. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200603227] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Kim W, Hardcastle KI, Conticello VP. Fluoroproline Flip-Flop: Regiochemical Reversal of a Stereoelectronic Effect on Peptide and Protein Structures. Angew Chem Int Ed Engl 2006; 45:8141-5. [PMID: 17109457 DOI: 10.1002/anie.200603227] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wookhyun Kim
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
48
|
Baba AR, Gowda DC, Sankar KU. Elastic Protein-Based Polymers a Step Towards Plasticity: Thermal Stability of Glu-Containing Co-Polypeptides as Analyzed by Differential Scanning Calorimetry. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-6789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Nicolini C, Ravindra R, Ludolph B, Winter R. Characterization of the temperature- and pressure-induced inverse and reentrant transition of the minimum elastin-like polypeptide GVG(VPGVG) by DSC, PPC, CD, and FT-IR spectroscopy. Biophys J 2004; 86:1385-92. [PMID: 14990468 PMCID: PMC1303976 DOI: 10.1016/s0006-3495(04)74209-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We investigated the temperature- and pressure-dependent structure and phase behavior of a solvated oligopeptide, GVG(VPGVG), which serves as a minimalistic elastin-like model system, over a large region of the thermodynamic phase field, ranging from 2 to 120 degrees C and from ambient pressure up to approximately 10 kbar, applying various spectroscopic (CD, FT-IR) and thermodynamic (DSC, PPC) measurements. We find that this octapeptide behaves as a two-state system which undergoes the well-known inverse-temperature folding transition occurring at T approximately 36 degrees C, and, in addition, a slow trend reversal at higher temperatures, finally leading to a reentrant unfolding close to the boiling point of water. Furthermore, the pressure-dependence of the folding/unfolding transition was studied to yield a more complete picture of the p, T-stability diagram of the system. A molecular-level picture of these processes, in particular on the role of water for the folding and unfolding events of the peptide, presented with the help of molecular-dynamics simulations, is presented in a companion article in this issue.
Collapse
Affiliation(s)
- C Nicolini
- Department of Chemistry, University of Dortmund, Dortmund, Germany
| | | | | | | |
Collapse
|
50
|
Schreiner E, Nicolini C, Ludolph B, Ravindra R, Otte N, Kohlmeyer A, Rousseau R, Winter R, Marx D. Folding and unfolding of an elastinlike oligopeptide: "inverse temperature transition," reentrance, and hydrogen-bond dynamics. PHYSICAL REVIEW LETTERS 2004; 92:148101. [PMID: 15089575 DOI: 10.1103/physrevlett.92.148101] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2003] [Indexed: 05/24/2023]
Abstract
The temperature-dependent behavior of a solvated oligopeptide, GVG(VPGVG), is investigated. Spectroscopic measurements, thermodynamic measurements, and molecular dynamics simulations find that this elastinlike octapeptide behaves as a two-state system that undergoes an "inverse temperature" folding transition and reentrant unfolding close to the boiling point of water. A molecular picture of these processes is presented, emphasizing changes in the dynamics of hydrogen bonding at the protein/water interface and peptide backbone librational entropy.
Collapse
Affiliation(s)
- Eduard Schreiner
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|