1
|
Ouyang Y, Wu Q, Li J, Sun S, Sun S. S-adenosylmethionine: A metabolite critical to the regulation of autophagy. Cell Prolif 2020; 53:e12891. [PMID: 33030764 PMCID: PMC7653241 DOI: 10.1111/cpr.12891] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a mechanism that enables cells to maintain cellular homeostasis by removing damaged materials and mobilizing energy reserves in conditions of starvation. Although nutrient availability strongly impacts the process of autophagy, the specific metabolites that regulate autophagic responses have not yet been determined. Recent results indicate that S-adenosylmethionine (SAM) represents a critical inhibitor of methionine starvation-induced autophagy. SAM is primarily involved in four key metabolic pathways: transmethylation, transsulphuration, polyamine synthesis and 5'-deoxyadenosyl 5'-radical-mediated biochemical transformations. SAM is the sole methyl group donor involved in the methylation of DNA, RNA and histones, modulating the autophagic process by mediating epigenetic effects. Moreover, the metabolites of SAM, such as homocysteine, glutathione, decarboxylated SAM and spermidine, also exert important influences on the regulation of autophagy. From our perspective, nuclear-cytosolic SAM is a conserved metabolic inhibitor that connects cellular metabolic status and the regulation of autophagy. In the future, SAM might be a new target of autophagy regulators and be widely used in the treatment of various diseases.
Collapse
Affiliation(s)
- Yang Ouyang
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qi Wu
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Juanjuan Li
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Si Sun
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Shengrong Sun
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
2
|
Yamasaki K, Tani O, Tateishi Y, Tanabe E, Namatame I, Niimi T, Furukawa K, Sakashita H. An NMR Biochemical Assay for Fragment-Based Drug Discovery: Evaluation of an Inhibitor Activity on Spermidine Synthase of Trypanosoma cruzi. J Med Chem 2016; 59:2261-6. [DOI: 10.1021/acs.jmedchem.5b01769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuhiko Yamasaki
- Biomedical Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
| | - Osamu Tani
- Biomedical Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
| | - Yukihiro Tateishi
- Drug
Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, 305-8585, Japan
| | - Eiki Tanabe
- Drug
Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, 305-8585, Japan
| | - Ichiji Namatame
- Drug
Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, 305-8585, Japan
| | - Tatsuya Niimi
- Drug
Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, 305-8585, Japan
| | - Koji Furukawa
- Biomedical Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
| | - Hitoshi Sakashita
- Biomedical Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
| |
Collapse
|
3
|
Spermine synthase activity affects the content of decarboxylated S-adenosylmethionine. Biochem J 2010; 433:139-44. [DOI: 10.1042/bj20101228] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
dcAdoMet (decarboxylated S-adenosylmethionine) is an essential intermediate in the synthesis of polyamines. Its content is normally very low, amounting to less than 5% of that of S-adenosylmethionine itself. It was found that in mice lacking spermine synthase there was a large increase in dcAdoMet and that overexpression of spermine synthase reduced the amount of this nucleoside. There was also an increase in dcAdoMet in cells derived from patients with Snyder–Robinson syndrome, a rare X-linked recessive human disease caused by SMS gene mutations that greatly reduce the content of spermine synthase. These results suggest that there is an inverse relationship between the amount of spermine synthase protein and the content of dcAdoMet and raise the possibility that some of the abnormalities seen in mammals deficient in spermine synthase might be due to changes in dcAdoMet pools.
Collapse
|
4
|
Abstract
S-Adenosylmethionine decarboxylase is a key enzyme for the synthesis of polyamines in mammals, plants and many other species that use aminopropyltransferases for this pathway. It catalyses the formation of S-adenosyl-1-(methylthio)-3-propylamine (decarboxylated S-adenosylmethionine), which is used as the aminopropyl donor. This is the sole function of decarboxylated S-adenosylmethionine. Its content is therefore kept very low and is regulated by variation in the activity of S-adenosylmethionine decarboxylase according to the need for polyamine synthesis. All S-adenosylmethionine decarboxylases have a covalently bound pyruvate prosthetic group, which is essential for the decarboxylation reaction, and have similar structures, although they differ with respect to activation by cations, primary sequence and subunit composition. The present chapter describes these features, the mechanisms for autocatalytic generation of the pyruvate from a proenzyme precursor and for the decarboxylation reaction, and the available inhibitors of this enzyme, which have uses as anticancer and anti-trypanosomal agents. The intricate mechanisms for regulation of mammalian S-adenosylmethionine decarboxylase activity and content are also described.
Collapse
|
5
|
Abstract
This review describes my work in the field of polyamine research for the last 35 years. My research started with developing the improved synthesis of decarboxylated S-adenosylmethionine and then moved to the purification of spermidine synthase from rat prostate. I also took considerable efforts to find the synthetic procedure for various polyamines with high yield in order to prepare (15)N-labeled polyamines. On the basis of these methodological work, I searched for the inhibitor of spermidine synthase and found trans-4-methylcyclohexylamine (MCHA), the most effective one at the present time. I also developed a new analytical method for polyamines using stable isotope and ionspray ionization mass spectrometry (IS-MS). Based on these studies I examined the role of polyamines in liver regeneration and found that oral administration of MCHA effectively changed the concentration of polyamines and inhibited the hepatic growth. I also found the close relationship between the concentration ratio of spermidine to spermine and the extent of liver regeneration. These results may shed new light on the control of cell growth by polyamine in vivo.
Collapse
Affiliation(s)
- Keijiro Samejima
- Faculty of Pharmaceutical Sciences, Josai University, Sakado City, Japan.
| |
Collapse
|
6
|
Dejima H, Kobayashi M, Takasaki H, Takeda N, Shirahata A, Samejima K. Synthetic decarboxylated S-adenosyl-L-methionine as a substrate for aminopropyl transferases. Biol Pharm Bull 2003; 26:1005-8. [PMID: 12843627 DOI: 10.1248/bpb.26.1005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synthetic decarboxylated S-adenosyl-L-methionine (dcAdoMet), a mixture of the absolute configuration of S and R at the sulfonium center, was evaluated as a substrate for the measurement of spermidine synthase activity. The diastereomers were separated by HPLC with an isocratic elution, and the constant for racemization at the sulfur was determined to be 2.4x10(-6) s(-1) at 37 degrees C and pH 1.5 for the first-eluted biologically active isomer (S-dcAdoMet) and 2.0x10(-6) s(-1) for the second-eluted biologically inactive isomer (R-dcAdoMet). The peak area ratio of S-dcAdoMet to R-dcAdoMet of 48 to 52 in HPLC supported the different racemization constants. Similar substrate activity of dcAdoMet to that of S-dcAdoMet was demonstrated by enzymatic spermidine synthesis. It was shown from the result that the racemized [methyl-(14)C]dcAdoMet prepared in this report was useful for measuring spermidine synthase activity.
Collapse
Affiliation(s)
- Hideki Dejima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Valenzuela FA, Green TK, Dahl DB. Enantiomeric Separation of Sulfonium Ions by Capillary Electrophoresis Using Neutral and Charged Cyclodextrins. Anal Chem 1998; 70:3612-8. [DOI: 10.1021/ac971379j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Thomas K. Green
- Department of Chemistry, Western Kentucky University, Bowling Green, Kentucky 42101
| | - Darwin B. Dahl
- Department of Chemistry, Western Kentucky University, Bowling Green, Kentucky 42101
| |
Collapse
|
8
|
Zingg JM, Shen JC, Jones PA. Enzyme-mediated cytosine deamination by the bacterial methyltransferase M.MspI. Biochem J 1998; 332 ( Pt 1):223-30. [PMID: 9576871 PMCID: PMC1219471 DOI: 10.1042/bj3320223] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most prokaryotic (cytosine-5)-DNA methyltransferases increase the frequency of deamination at the cytosine targeted for methylation in vitro in the absence of the cofactor S-adenosylmethionine (AdoMet) or the reaction product S-adenosylhomocysteine (AdoHcy). We show here that, under the same in vitro conditions, the prokaryotic methyltransferase, M.MspI (from Moraxella sp.), causes very few cytosine deaminations, suggesting a mechanism in which M.MspI may avoid enzyme-mediated cytosine deamination. Two analogues of AdoMet, sinefungin and 5'-amino-5'-deoxyadenosine, greatly increased the frequency of cytosine deamination mediated by M.MspI presumably by introducing a proton-donating amino group into the catalytic centre, thus facilitating the formation of an unstable enzyme-dihydrocytosine intermediate and hydrolytic deamination. Interestingly, two naturally occurring analogues, adenosine and 5'-methylthio-5'-deoxyadenosine, which do not contain a proton-donating amino group, also weakly increased the deamination frequency by M.MspI, even in the presence of AdoMet or AdoHcy. These analogues may trigger a conformational change in the enzyme without completely inhibiting the access of solvent water to the catalytic centre, thus allowing hydrolytic deamination of the enzyme-dihydrocytosine intermediate. Under normal physiological conditions the enzymes M.HpaII (from Haemophilus parainfluenzae), M. HhaI (from Haemophilus hemolytica) and M.MspI all increased the in vivo deamination frequency at the target cytosines with comparable efficiency.
Collapse
Affiliation(s)
- J M Zingg
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, University of Southern California, School of Medicine, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
9
|
Hyvönen T, Alakuijala L, Andersson L, Khomutov AR, Khomutov RM, Eloranta TO. 1-Aminooxy-3-aminopropane reversibly prevents the proliferation of cultured baby hamster kidney cells by interfering with polyamine synthesis. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37933-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Pegg AE, Stanley B, Pajunen A, Crozat A, Jänne OA. Properties of human and rodent S-adenosylmethionine decarboxylase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 250:101-9. [PMID: 3076317 DOI: 10.1007/978-1-4684-5637-0_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- A E Pegg
- Department of Physiology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033
| | | | | | | | | |
Collapse
|
11
|
Papazafiri P, Osborne HB. Effect of alpha-difluoromethylornithine on DNA methylation in murine erythroleukaemic cells. Relationship to stimulation of induced differentiation. Biochem J 1987; 242:479-83. [PMID: 3109392 PMCID: PMC1147730 DOI: 10.1042/bj2420479] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Murine erythroleukaemic (MEL) cells cultured with alpha-difluoromethylornithine (DFMO) accumulated decarboxylated S-adenosylmethionine(decarboxylated AdoMet). In the absence of the inducer hexamethylenebisacetamide (HMBA), this accumulation of decarboxylated AdoMet was associated with a concomitant and proportional increase in DNA hypomethylation. In the presence of HMBA, DFMO, which stimulates the erythrodifferentiation of MEL cells, enhanced the differentiation-associated DNA hypomethylation. However, this differentiation-associated DNA hypomethylation was neither temporally nor quantitatively correlated with the accumulation of decarboxylated AdoMet in these cells. Therefore DFMO probably stimulates the HMBA-induced differentiation of MEL cells and the associated DNA hypomethylation via the effect of this drug on polyamine biosynthesis.
Collapse
|
12
|
Wagner J, Hirth Y, Claverie N, Danzin C. A sensitive high-performance liquid chromatographic procedure with fluorometric detection for the analysis of decarboxylated S-adenosylmethionine and analogs in urine samples. Anal Biochem 1986; 154:604-17. [PMID: 3728970 DOI: 10.1016/0003-2697(86)90036-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A highly sensitive HPLC method for the determination of decarboxylated S-adenosylmethionine (dc-SAM) by fluorometric detection was developed. The reaction of dc-SAM and its analogs with chloroacetaldehyde leads to the corresponding 1,N6-etheno derivatives. These highly fluorescent derivatives were fully characterized through their proton nuclear magnetic resonance spectra and/or mass spectra. This derivatization procedure has been applied to the analysis of dc-SAM in rat and human urine. After a simple cation exchange column prepurification, the urine extracts were derivatized with chloroacetaldehyde and analyzed by reversed-phase HPLC with fluorometric detection. The method allowed the determination of subpicomole amounts of dc-SAM and was shown to be highly reproducible with the use of decarboxylated S-adenosylethionine as internal standard. The application of the method to the analysis of urine of rats treated with MDL 72175, a potent ornithine decarboxylase inhibitor, showed that the dc-SAM levels increased in a dose-related fashion.
Collapse
|