1
|
Kumari S, Sobhia ME. Targeting an Old Foe for Cancer: A Molecular Dynamics Perspective to Unravel the Specific Binding Nature of 2-Methoxy Estradiol to Human β-Tubulin Isotypes. J Chem Inf Model 2024; 64:4121-4133. [PMID: 38706255 DOI: 10.1021/acs.jcim.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Microtubules, composed of α- and β-tubulin subunits are crucial for cell division with their dynamic tissue-specificity which is dictated by expression of isotypes. These isotypes differ in carboxy-terminal tails (CTTs), rich in negatively charged acidic residues in addition to the differences in the composition of active site residues. 2-Methoxy estradiol (2-ME) is the first antimicrotubule agent that showed less affinity toward hemopoietic-specific β1 isotype consequently preventing myelosuppression toxicity. The present study focuses on the MD-directed conformational analysis of 2-ME and estimation of its binding affinity in the colchicine binding pocket of various β-tubulin isotypes combined with the α-tubulin isotype, α1B. AlphaFold 2.0 was used to predict the 3D structure of phylogenetically divergent human β-tubulin isotypes in dimer form with α1B. The dimeric complexes were subjected to induced-fit docking with 2-ME. The statistical analysis of docking showed differences in the binding characteristics of 2-ME with different isotypes. The replicas of atom-based molecular dynamic simulations of the best conformation of 2-ME provided insights into the molecular-level details of its binding pattern across the isotypes. Furthermore, the MM/GBSA analyses revealed the specific binding energy profile of 2-ME in β-tubulin isotypes. It also highlighed, 2-ME exhibits the lowest binding affinity toward the β1 isotype as supported by experimental study. The present study may offer useful information for designing next-generation antimicrotubule agents that are more specific and less toxic.
Collapse
Affiliation(s)
- Sonia Kumari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali) 166062, Punjab, India
| | - Masilamani Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali) 166062, Punjab, India
| |
Collapse
|
2
|
Mazumder K, Aktar A, Roy P, Biswas B, Hossain ME, Sarkar KK, Bachar SC, Ahmed F, Monjur-Al-Hossain ASM, Fukase K. A Review on Mechanistic Insight of Plant Derived Anticancer Bioactive Phytocompounds and Their Structure Activity Relationship. Molecules 2022; 27:3036. [PMID: 35566385 PMCID: PMC9102595 DOI: 10.3390/molecules27093036] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a disorder that rigorously affects the human population worldwide. There is a steady demand for new remedies to both treat and prevent this life-threatening sickness due to toxicities, drug resistance and therapeutic failures in current conventional therapies. Researchers around the world are drawing their attention towards compounds of natural origin. For decades, human beings have been using the flora of the world as a source of cancer chemotherapeutic agents. Currently, clinically approved anticancer compounds are vincristine, vinblastine, taxanes, and podophyllotoxin, all of which come from natural sources. With the triumph of these compounds that have been developed into staple drug products for most cancer therapies, new technologies are now appearing to search for novel biomolecules with anticancer activities. Ellipticine, camptothecin, combretastatin, curcumin, homoharringtonine and others are plant derived bioactive phytocompounds with potential anticancer properties. Researchers have improved the field further through the use of advanced analytical chemistry and computational tools of analysis. The investigation of new strategies for administration such as nanotechnology may enable the development of the phytocompounds as drug products. These technologies have enhanced the anticancer potential of plant-derived drugs with the aim of site-directed drug delivery, enhanced bioavailability, and reduced toxicity. This review discusses mechanistic insights into anticancer compounds of natural origins and their structural activity relationships that make them targets for anticancer treatments.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Asma Aktar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Priyanka Roy
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Biswajit Biswas
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Md. Emran Hossain
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Kishore Kumar Sarkar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Sitesh Chandra Bachar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh; (S.C.B.); (F.A.)
| | - Firoj Ahmed
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh; (S.C.B.); (F.A.)
| | - A. S. M. Monjur-Al-Hossain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh;
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
3
|
Cheng H, Xiong G, Li Y, Zhu J, Xiong X, Wang Q, Zhang L, Dong H, Zhu C, Liu G, Chen H. Increased yield of AP-3 by inactivation of asm25 in Actinosynnema pretiosum ssp. auranticum ATCC 31565. PLoS One 2022; 17:e0265517. [PMID: 35316825 PMCID: PMC8939807 DOI: 10.1371/journal.pone.0265517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
Asamitocins are maytansinoids produced by Actinosynnema pretiosum ssp. auranticum ATCC 31565 (A. pretiosum ATCC 31565), which have a structure similar to that of maytansine, therefore serving as a precursor of maytansine in the development of antibody-drug conjugates (ADCs). Currently, there are more than 20 known derivatives of ansamitocins, among which ansamitocin P-3 (AP-3) exhibits the highest antitumor activity. Despite its importance, the application of AP-3 is restricted by low yield, likely due to a substrate competition mechanism underlying the synthesis pathways of AP-3 and its byproducts. Given that N-demethylansamitocin P-3, the precursor of AP-3, is regulated by asm25 and asm10 to synthesize AGP-3 and AP-3, respectively, asm25 is predicted to be an inhibitory gene for AP-3 production. In this study, we inactivated asm25 in A. pretiosum ATCC 31565 by CRISPR-Cas9-guided gene editing. asm25 depletion resulted in a more than 2-fold increase in AP-3 yield. Surprisingly, the addition of isobutanol further improved AP-3 yield in the asm25 knockout strain by more than 6 times; in contrast, only a 1.53-fold increase was found in the WT strain under the parallel condition. Thus, we uncovered an unknown function of asm25 in AP-3 yield and identified asm25 as a promising target to enhance the large-scale industrial production of AP-3.
Collapse
Affiliation(s)
- Hong Cheng
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- Academy of Military Medical Sciences, Beijing, China
| | - Guoqing Xiong
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- Academy of Military Medical Sciences, Beijing, China
| | - Yi Li
- Academy of Military Medical Sciences, Beijing, China
| | - Jiaqi Zhu
- Academy of Military Medical Sciences, Beijing, China
- School of Life Science and Technology, Dalian University, Dalian, China
| | | | - Qingyang Wang
- Academy of Military Medical Sciences, Beijing, China
| | | | - Haolong Dong
- Academy of Military Medical Sciences, Beijing, China
| | - Chen Zhu
- Academy of Military Medical Sciences, Beijing, China
- * E-mail: (GL); (HC)
| | - Gang Liu
- Academy of Military Medical Sciences, Beijing, China
- * E-mail: (GL); (HC)
| | - Huipeng Chen
- Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
4
|
A triple enhanced permeable gold nanoraspberry designed for positive feedback interventional therapy. J Control Release 2022; 345:120-137. [PMID: 35276301 DOI: 10.1016/j.jconrel.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/24/2022]
Abstract
Due to the unique microenvironment, nanoparticles cannot easily penetrate deeply into tumours, which decreases their therapeutic efficacy. Thus, new strategies should be developed to solve this problem and increase the efficacy of nanomedicine. In this study, gold nanoraspberries (GNRs) were constructed using ultrasmall gold nanospheres (UGNPs) with a matrix metalloproteinase (MMP)-2/9-sensitive peptide as a cross-linking agent. These UGNPs were then modified with trastuzumab (TRA) and mertansine derivatives (DM1) via the AuS bond. TRA targets the human epidermal growth factor receptor-2 (Her-2) which is overexpressed on Her-2+ breast cancer cells. The AuS bond in GNRs-DM1 can be replaced by the free sulfhydryl group of GSH, which could achieve GSH dependent redox responsive release of the drug. In the mouse model of Her-2+ breast cancer, a "positive feedback" triple enhanced penetration platform was construct to treat tumours. Firstly, near-infrared light-triggered photothermal conversion increased vascular permeability, resulting in nanoparticle penetration. Secondly, GNRs disintegrated into UGNPs in response to stimulation with MMPs. GNRs with larger particle sizes reached the tumour site through EPR effect and active targeting. Meanwhile, UGNPs with smaller particle sizes penetrated deeply into the tumour through diffusion. Thirdly, the UGNPs transformed activated cancer-associated fibroblasts to a quiescent state, which reduced intercellular pressure and promoted the penetration of the UGNPs into the interior of the tumour. In turn, an increase in the number of nanoparticles penetrating into the tumour led to a "positive feedback" loop of triple enhanced photothermal effects and further self-amplify the permeability in vivo. Interventional photothermal therapy (IPTT) was used to improve the therapeutic efficacy by reducing the laser power attenuation caused by percutaneous irradiation. The GNRs also showed excellent multimode imaging (computed tomography, photoacoustic imaging and photothermal imaging) capabilities and high anti-tumour efficacy due to efficient tumour targeting and triple enhanced deep penetration into the tumour site. Thus, these MMP-2/redox dual-responsive GNRs are promising carriers of drugs targeting human epidermal growth factor receptor 2+ breast cancer.
Collapse
|
5
|
Jin Y, Schladetsch MA, Huang X, Balunas MJ, Wiemer AJ. Stepping forward in antibody-drug conjugate development. Pharmacol Ther 2022; 229:107917. [PMID: 34171334 PMCID: PMC8702582 DOI: 10.1016/j.pharmthera.2021.107917] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023]
Abstract
Antibody-drug conjugates (ADCs) are cancer therapeutic agents comprised of an antibody, a linker and a small-molecule payload. ADCs use the specificity of the antibody to target the toxic payload to tumor cells. After intravenous administration, ADCs enter circulation, distribute to tumor tissues and bind to the tumor surface antigen. The antigen then undergoes endocytosis to internalize the ADC into tumor cells, where it is transported to lysosomes to release the payload. The released toxic payloads can induce apoptosis through DNA damage or microtubule inhibition and can kill surrounding cancer cells through the bystander effect. The first ADC drug was approved by the United States Food and Drug Administration (FDA) in 2000, but the following decade saw no new approved ADC drugs. From 2011 to 2018, four ADC drugs were approved, while in 2019 and 2020 five more ADCs entered the market. This demonstrates an increasing trend for the clinical development of ADCs. This review summarizes the recent clinical research, with a specific focus on how the in vivo processing of ADCs influences their design. We aim to provide comprehensive information about current ADCs to facilitate future development.
Collapse
Affiliation(s)
- Yiming Jin
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Megan A Schladetsch
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Xueting Huang
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Marcy J Balunas
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Andrew J Wiemer
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
6
|
Newman DJ, Cragg GM. Plant Endophytes and Epiphytes: Burgeoning Sources of Known and "Unknown" Cytotoxic and Antibiotic Agents? PLANTA MEDICA 2020; 86:891-905. [PMID: 32023633 DOI: 10.1055/a-1095-1111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In the last 20 or so years, the influence of endophytes and, quite recently, epiphytes of plants upon the compounds found in those plants, which were usually assumed to be phytochemicals produced by the plant for a variety of reasons, often as a defense against predators, is becoming more evident, in particular in the case of antitumor agents originally isolated from plant sources, though antibiotic agents might also be found, particularly from epiphytes. In this review, we started with the first report in 1993 of a taxol-producing endophyte and then expanded the compounds discussed to include camptothecin, the vinca alkaloids, podophyllotoxin, and homoharringtonine from endophytic microbes and then the realization that maytansine is not a plant secondary metabolite at all, and that even such a well-studied plant such as Arabidopsis thaliana has a vast repertoire of potential bioactive agents in its leaf epiphytic bacteria. We have taken data from a variety of sources, including a reasonable history of these discoveries that were not given in recent papers by us, nor in other papers covering this topic. The sources included the Scopus database, but we also performed other searches using bibliographic tools, thus, the majority of the papers referenced are the originals, though we note some very recent papers that have built on previous results. We concluded with a discussion of the more modern techniques that can be utilized to "persuade" endophytes and epiphytes to switch on silent biosynthetic pathways and how current analytical techniques may aid in evaluating such programs. We also comment at times on some findings, particularly in the case of homoharringtonine, where there are repetitious data reports differing by a few years claiming the same endophyte as the producer.
Collapse
Affiliation(s)
- David J Newman
- NIH Special Volunteer, NCI Natural Products Branch, Wayne, PA, USA
| | - Gordon M Cragg
- NIH Special Volunteer, NCI Natural Products Branch, Gaithersburg, MD, USA
| |
Collapse
|
7
|
Mertansine Inhibits mRNA Expression and Enzyme Activities of Cytochrome P450s and Uridine 5′-Diphospho-Glucuronosyltransferases in Human Hepatocytes and Liver Microsomes. Pharmaceutics 2020; 12:pharmaceutics12030220. [PMID: 32131538 PMCID: PMC7150891 DOI: 10.3390/pharmaceutics12030220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 11/16/2022] Open
Abstract
Mertansine, a tubulin inhibitor, is used as the cytotoxic component of antibody–drug conjugates (ADCs) for cancer therapy. The effects of mertansine on uridine 5′-diphospho-glucuronosyltransferase (UGT) activities in human liver microsomes and its effects on the mRNA expression of cytochrome P450s (CYPs) and UGTs in human hepatocytes were evaluated to assess the potential for drug–drug interactions (DDIs). Mertansine potently inhibited UGT1A1-catalyzed SN-38 glucuronidation, UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-β-glucuronidation, and UGT1A4-catalyzed trifluoperazine N-β-d-glucuronidation, with Ki values of 13.5 µM, 4.3 µM, and 21.2 µM, respectively, but no inhibition of UGT1A6, UGT1A9, and UGT2B7 enzyme activities was observed in human liver microsomes. A 48 h treatment of mertansine (1.25–2500 nM) in human hepatocytes resulted in the dose-dependent suppression of mRNA levels of CYP1A2, CYP2B6, CYP3A4, CYP2C8, CYP2C9, CYP2C19, UGT1A1, and UGT1A9, with IC50 values of 93.7 ± 109.1, 36.8 ± 18.3, 160.6 ± 167.4, 32.1 ± 14.9, 578.4 ± 452.0, 539.5 ± 233.4, 856.7 ± 781.9, and 54.1 ± 29.1 nM, respectively, and decreased the activities of CYP1A2-mediated phenacetin O-deethylase, CYP2B6-mediated bupropion hydroxylase, and CYP3A4-mediated midazolam 1′-hydroxylase. These in vitro DDI potentials of mertansine with CYP1A2, CYP2B6, CYP2C8/9/19, CYP3A4, UGT1A1, and UGT1A9 substrates suggest that it is necessary to carefully characterize the DDI potentials of ADC candidates with mertansine as a payload in the clinic.
Collapse
|
8
|
Esophageal cancer cells resistant to T-DM1 display alterations in cell adhesion and the prostaglandin pathway. Oncotarget 2018; 9:21141-21155. [PMID: 29765526 PMCID: PMC5940380 DOI: 10.18632/oncotarget.24975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
Trastuzumab-emtansine (T-DM1) is an antibody-drug conjugate that specifically targets HER2 thanks to its antibody component trastuzumab. In spite of responses to this novel agent, acquired resistance to treatment remains a major obstacle. Prolonged in vitro exposure of the gastroesophageal junction cancer cell line OE-19 to T-DM1, in the absence or presence of ciclosporin A resulted in the selection of two resistant cell lines to T-DM1. T-DM1-resistant cells presented an increased expression of adhesion genes, altered spreading and higher sensitivity to anoikis than parental cells. A resistant cell line showed decreased adhesion strength, increased migration speed and increased sensitivity to RhoA inhibition. Genes involved in the prostaglandin pathway were deregulated in resistant models. Addition of prostaglandin E2 to T-DM1 partially restored its cytotoxic activity in resistant models. This work demonstrates that T-DM1-resistance may be associated with alterations of cell adhesion and the prostaglandin pathway, which might constitute novel therapeutic targets.
Collapse
|
9
|
Trans DJ, Bai R, Addison JB, Liu R, Hamel E, Coleman MA, Henderson PT. Synthesis of two fluorescent GTPγS molecules and their biological relevance. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 36:379-391. [PMID: 28282254 DOI: 10.1080/15257770.2016.1231320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fluorescent GTP analogues are utilized for an assortment of nucleic acid and protein characterization studies. Non-hydrolysable analogues such as GTPγS offer the advantage of keeping proteins in a GTP-bound conformation due to their resistance to hydrolysis into GDP. Two novel fluorescent GTPγS molecules were developed by linking fluorescein and tetramethylrhodamine to the γ-thiophosphate of GTPγS. Chemical and biological analysis of these two compounds revealed their successful synthesis and ability to bind to the nucleotide-binding site of tubulin. These two new fluorescent non-hydrolysable nucleotides offer new possibilities for biophysical and biochemical characterization of GTP-binding proteins.
Collapse
Affiliation(s)
- Denise J Trans
- a Department of Internal Medicine and UC Davis Comprehensive Cancer Center , University of California , Davis , CA , USA
| | - Ruoli Bai
- b Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research , National Institutes of Health , Frederick , MD , USA
| | - J Bennet Addison
- c Nuclear Magnetic Resonance Facility , University of California , Davis , CA , USA
| | - Ruiwu Liu
- d Department of Biochemistry and Molecular Medicine , University of California , Davis , CA , USA
| | - Ernest Hamel
- b Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research , National Institutes of Health , Frederick , MD , USA
| | - Matthew A Coleman
- e Department of Radiation Oncology , University of California , Davis , CA , USA.,f Lawrence Livermore National Laboratory , Livermore , CA , USA
| | - Paul T Henderson
- a Department of Internal Medicine and UC Davis Comprehensive Cancer Center , University of California , Davis , CA , USA
| |
Collapse
|
10
|
Olziersky AM, Labidi-Galy SI. Clinical Development of Anti-mitotic Drugs in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:125-152. [PMID: 28600785 DOI: 10.1007/978-3-319-57127-0_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitosis is one of the most fundamental processes of life by which a mammalian cell divides into two daughter cells. Mitosis has been an attractive target for anticancer therapies since fast proliferation was identified as one of the hallmarks of cancer cells. Despite efforts into developing specific inhibitors for mitotic kinases and kinesins, very few drugs have shown the efficiency of microtubule targeting-agents in cancer cells with paclitaxel being the most successful. A deeper translational research accompanying clinical trials of anti-mitotic drugs will help in identifying potent biomarkers predictive for response. Here, we review the current knowledge of mitosis targeting agents that have been tested so far in the clinics.
Collapse
Affiliation(s)
- Anna-Maria Olziersky
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - S Intidhar Labidi-Galy
- Department of Oncology, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, Geneva, 1205, Switzerland.
| |
Collapse
|
11
|
Venghateri JB, Gupta TK, Verma PJ, Kunwar A, Panda D. Ansamitocin P3 depolymerizes microtubules and induces apoptosis by binding to tubulin at the vinblastine site. PLoS One 2013; 8:e75182. [PMID: 24124473 PMCID: PMC3790769 DOI: 10.1371/journal.pone.0075182] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/11/2013] [Indexed: 11/18/2022] Open
Abstract
Maytansinoid conjugates are currently under different phases of clinical trials and have been showing promising activity for various types of cancers. In this study, we have elucidated the mechanism of action of ansamitocin P3, a structural analogue of maytansine for its anticancer activity. Ansamitocin P3 potently inhibited the proliferation of MCF-7, HeLa, EMT-6/AR1 and MDA-MB-231 cells in culture with a half-maximal inhibitory concentration of 20±3, 50±0.5, 140±17, and 150±1.1 pM, respectively. Ansamitocin P3 strongly depolymerized both interphase and mitotic microtubules and perturbed chromosome segregation at its proliferation inhibitory concentration range. Treatment of ansamitocin P3 activated spindle checkpoint surveillance proteins, Mad2 and BubR1 and blocked the cells in mitotic phase of the cell cycle. Subsequently, cells underwent apoptosis via p53 mediated apoptotic pathway. Further, ansamitocin P3 was found to bind to purified tubulin in vitro with a dissociation constant (Kd) of 1.3±0.7 µM. The binding of ansamitocin P3 induced conformational changes in tubulin. A docking analysis suggested that ansamitocin P3 may bind partially to vinblastine binding site on tubulin in two different positions. The analysis indicated that the binding of ansamitocin P3 to tubulin is stabilized by hydrogen bonds. In addition, weak interactions such as halogen-oxygen interactions may also contribute to the binding of ansamitocin P3 to tubulin. The study provided a significant insight in understanding the antiproliferative mechanism of action of ansamitocin P3.
Collapse
Affiliation(s)
- Jubina B. Venghateri
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India
| | - Tilak Kumar Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Paul J. Verma
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
- * E-mail:
| |
Collapse
|
12
|
Wang L, Xi Y, Yang S, Zhu R, Liang Y, Chen J, Yang Z. Asymmetric Total Synthesis and Structural Elucidation of NFAT-68. Org Lett 2010; 13:74-7. [DOI: 10.1021/ol102574d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lin Wang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 10087, China, and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Yumeng Xi
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 10087, China, and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Shouliang Yang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 10087, China, and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Rong Zhu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 10087, China, and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Yufan Liang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 10087, China, and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Jiahua Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 10087, China, and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Zhen Yang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 10087, China, and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| |
Collapse
|
13
|
Oroudjev E, Lopus M, Wilson L, Audette C, Provenzano C, Erickson H, Kovtun Y, Chari R, Jordan MA. Maytansinoid-antibody conjugates induce mitotic arrest by suppressing microtubule dynamic instability. Mol Cancer Ther 2010; 9:2700-13. [PMID: 20937595 PMCID: PMC2976674 DOI: 10.1158/1535-7163.mct-10-0645] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Maytansine and its analogues (maytansinoids) are potent microtubule-targeted compounds that inhibit proliferation of cells at mitosis. Antibody-maytansinoid conjugates consisting of maytansinoids (DM1 and DM4) attached to tumor-specific antibodies have shown promising clinical results. To determine the mechanism by which the antibody-DM1 conjugates inhibit cell proliferation, we examined the effects of the cleavable anti-EpCAM-SPP-DM1 and uncleavable anti-EpCAM-SMCC-DM1 conjugates on MCF7 human breast tumor cells. We also examined the effects of the free maytansinoids, maytansine and S-methyl DM1 (a version of DM1 that is stable in cell culture medium), for comparison. Both the conjugates and free maytansinoids potently inhibited MCF7 cell proliferation at nanomolar and subnanomolar concentrations, respectively, by arresting the cells in mitotic prometaphase/metaphase. Arrest occurred in concert with the internalization and intracellular processing of both conjugates under conditions that induced abnormal spindle organization and suppressed microtubule dynamic instability. Microtubule depolymerization occurred only at significantly higher drug concentrations. The results indicate that free maytansinoids, antibody-maytansinoid conjugates, and their metabolites exert their potent antimitotic effects through a common mechanism involving suppression of microtubule dynamic instability.
Collapse
Affiliation(s)
- Emin Oroudjev
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara CA 93106
| | - Manu Lopus
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara CA 93106
| | - Leslie Wilson
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara CA 93106
| | | | | | - Hans Erickson
- ImmunoGen, Inc., 830 Winter Street, Waltham, MA 02451
| | - Yelena Kovtun
- ImmunoGen, Inc., 830 Winter Street, Waltham, MA 02451
| | - Ravi Chari
- ImmunoGen, Inc., 830 Winter Street, Waltham, MA 02451
| | - Mary Ann Jordan
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara CA 93106
| |
Collapse
|
14
|
Alday PH, Correia JJ. Macromolecular interaction of halichondrin B analogues eribulin (E7389) and ER-076349 with tubulin by analytical ultracentrifugation. Biochemistry 2009; 48:7927-38. [PMID: 19586046 DOI: 10.1021/bi900776u] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Halichondrin B is an antimitotic drug that inhibits microtubule assembly. To understand the molecular details of its interaction with tubulin, we investigated the binding of two halichondrin B analogues, eribulin (previously, ER-086526, E7389) and ER-076349, to tubulin by quantitative analytical ultracentrifugation. Eribulin is currently undergoing phase III clinical trials for cancer; ER-076349 is a closely related analogue with C.35 hydroxyl instead of C.35 primary amine [Towle, M. J., et al. (2001) Cancer Res. 61, 1013]. Below the critical concentration for microtubule assembly and in the presence of GDP, tubulin undergoes weak self-association into short curved oligomers. Eribulin inhibits this oligomer formation 4-6-fold, while ER-076349 slightly stimulates oligomer formation by 2-fold. This is in contrast to vinblastine which strongly stimulates large spiral polymers by 1000-fold under these same conditions. Vinblastine-induced spiral formation is strongly inhibited by both eribulin and ER-076349. Colchicine binding to the intradimer interface has no significant effect on small oligomer formation or the inhibitory activity of eribulin on this process. These results suggest that halichondrin B analogues bind to the interdimer interface or to the beta-subunit alone, disrupt polymer stability, and compete with vinblastine-induced spiral formation. Stathmin is known to form a tight 1:2 complex with tubulin. Eribulin strongly inhibits formation of the 1:2 stathmin-tubulin complex (>3.3 kcal/mol), while ER-076349 weakens formation of the 1:2 complex by approximately 1.9 kcal/mol. These results suggest that eribulin is a global inhibitor of tubulin polymer formation, disrupting tubulin-tubulin contacts at the interdimer interface. ER-076349 also perturbs tubulin-tubulin contacts, but in a more polymer specific manner, reflecting adaptability of the interdimer interface to drug and polymer polymorphism. These results suggest halichondrin B analogues exhibit unique tubulin-based activities that may underlie the clinical utility of these compounds.
Collapse
Affiliation(s)
- P Holland Alday
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | |
Collapse
|
15
|
Wang L, Gong J, Deng L, Xiang Z, Chen Z, Wang Y, Chen J, Yang Z. Formal Total Synthesis of N-Methylmaysenine. Org Lett 2009; 11:1809-12. [DOI: 10.1021/ol900384u] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Wang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, and Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Beijing 100871, China
| | - Jianxian Gong
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, and Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Beijing 100871, China
| | - Lujiang Deng
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, and Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Beijing 100871, China
| | - Zheng Xiang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, and Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Beijing 100871, China
| | - Zhixing Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, and Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Beijing 100871, China
| | - Yuefan Wang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, and Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Beijing 100871, China
| | - Jiahua Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, and Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Beijing 100871, China
| | - Zhen Yang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, and Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Widdison WC, Wilhelm SD, Cavanagh EE, Whiteman KR, Leece BA, Kovtun Y, Goldmacher VS, Xie H, Steeves RM, Lutz RJ, Zhao R, Wang L, Blättler WA, Chari RVJ. Semisynthetic Maytansine Analogues for the Targeted Treatment of Cancer. J Med Chem 2006; 49:4392-408. [PMID: 16821799 DOI: 10.1021/jm060319f] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maytansine, a highly cytotoxic natural product, failed as an anticancer agent in human clinical trials because of unacceptable systemic toxicity. The potent cell killing ability of maytansine can be used in a targeted delivery approach for the selective destruction of cancer cells. A series of new maytansinoids, bearing a disulfide or thiol substituent were synthesized. The chain length of the ester side chain and the degree of steric hindrance on the carbon atom bearing the thiol substituent were varied. Several of these maytansinoids were found to be even more potent in vitro than maytansine. The targeted delivery of these maytansinoids, using monoclonal antibodies, resulted in a high, specific killing of the targeted cells in vitro and remarkable antitumor activity in vivo.
Collapse
Affiliation(s)
- Wayne C Widdison
- ImmunoGen, Inc., 128 Sidney Street, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ludueña RF, Roach MC, Prasad V, Pettit GR, Cichacz ZA, Herald CL. Interaction of three sponge-derived macrocyclic lactone polyethers (spongistatin 3, halistatins 1 and 2) with tubulin. Drug Dev Res 2004. [DOI: 10.1002/ddr.430350107] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Bai R, Covell DG, Taylor GF, Kepler JA, Copeland TD, Nguyen NY, Pettit GR, Hamel E. Direct photoaffinity labeling by dolastatin 10 of the amino-terminal peptide of beta-tubulin containing cysteine 12. J Biol Chem 2004; 279:30731-40. [PMID: 15123603 DOI: 10.1074/jbc.m402110200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tubulin with bound [5-3H]dolastatin 10 was exposed to ultraviolet light, and 8-10% of the bound drug cross-linked to the protein, most of it specifically. The primary cross-link was to the peptide spanning amino acid residues 2-31 of beta-tubulin, but the specific amino acid could not be identified. Indirect studies indicated that cross-link formation occurred between cysteine 12 and the thiazole moiety of dolastatin 10. An equipotent analog of dolastatin 10, lacking the thiazole ring, did not form an ultraviolet light-induced cross-link to beta-tubulin. Preillumination of tubulin with ultraviolet light, known to induce cross-link formation between cysteine 12 and exchangeable site nucleotide, inhibited the binding of [5-3H]dolastatin 10 and cross-link formation more potently than it inhibited the binding of colchicine or vinblastine to tubulin. Conversely, binding of dolastatin 10 to tubulin inhibited formation of the cross-link between cysteine 12 and the exchangeable site nucleotide. Dithiothreitol inhibited formation of the beta-tubulin/dolastatin 10 cross-link but not the beta-tubulin/exchangeable site nucleotide cross-link. Modeling studies revealed a highly favored binding site for dolastatin 10 at the + end of beta-tubulin in proximity to the exchangeable site GDP. Computational docking of an energy-minimized dolastatin 10 conformation at this site placed the thiazole ring of dolastatin 10 8-9 A from the sulfur atom of cysteine 12. Dolastatin 15 and cryptophycin 1 could also be docked into positions that overlapped more extensively with the docked dolastatin 10 than with each other. This result was consistent with the observed binding properties of these peptides.
Collapse
Affiliation(s)
- Ruoli Bai
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Cruz-Monserrate Z, Vervoort HC, Bai R, Newman DJ, Howell SB, Los G, Mullaney JT, Williams MD, Pettit GR, Fenical W, Hamel E. Diazonamide A and a synthetic structural analog: disruptive effects on mitosis and cellular microtubules and analysis of their interactions with tubulin. Mol Pharmacol 2003; 63:1273-80. [PMID: 12761336 DOI: 10.1124/mol.63.6.1273] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The marine ascidian Diazona angulata was the source organism for the complex cytotoxic peptide diazonamide A. The molecular structure of this peptide was recently revised after synthesis of a biologically active analog of diazonamide A in which a single nitrogen atom was replaced by an oxygen atom. Diazonamide A causes cells to arrest in mitosis, and, after exposure to the drug, treated cells lose both interphase and spindle microtubules. Both diazonamide A and the oxygen analog are potent inhibitors of microtubule assembly, equivalent in activity to dolastatin 10 and therefore far more potent than dolastatin 15. This inhibition of microtubule assembly is accompanied by potent inhibition of tubulin-dependent GTP hydrolysis, also comparable with the effects observed with dolastatin 10. However, the remaining biochemical properties of diazonamide A and its analog differ markedly from those of dolastatin 10 and closely resemble the properties of dolastatin 15. Neither diazonamide A nor the analog inhibited the binding of [3H]vinblastine, [3H]dolastatin 10, or [8-14C]GTP to tubulin. Nor were they able to stabilize the colchicine binding activity of tubulin. These observations indicate either that diazonamide A and the analog have a unique binding site on tubulin differing from the vinca alkaloid and dolastatin 10 binding sites, or that diazonamide A and the analog bind weakly to unpolymerized tubulin but strongly to microtubule ends. If the latter is correct, diazonamide A and its oxygen analog should have uniquely potent inhibitory effects on the dynamic properties of microtubules.
Collapse
|
20
|
Abstract
Tubulin is the target for an ever increasing number of structurally unusual peptides and depsipeptides isolated from a wide range of organisms. Since tubulin is the subunit protein of microtubules, the compounds are usually potently toxic to mammalian cells. Without exception, these (depsi)peptides disrupt cellular microtubules and prevent spindle formation. This causes cells to accumulate at the G2/M phase of the cell cycle through inhibition of mitosis. In biochemical assays, the compounds inhibit microtubule assembly from tubulin and suppress microtubule dynamics at low concentrations. Most of the (depsi)peptides inhibit the binding of Catharanthus alkaloids to tubulin in a noncompetitive manner, GTP hydrolysis by tubulin, and nucleotide turnover at the exchangeable GTP site on beta-tubulin. In general, the (depsi)peptides induce the formation of tubulin oligomers of aberrant morphology. In all cases tubulin rings appear to be formed, but these rings differ in diameter, depending on the (depsi)peptide present during their formation.
Collapse
Affiliation(s)
- Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, National Institutes of Health, MD 21702, USA.
| |
Collapse
|
21
|
Natsume T, Watanabe J, Tamaoki S, Fujio N, Miyasaka K, Kobayashi M. Characterization of the interaction of TZT-1027, a potent antitumor agent, with tubulin. Jpn J Cancer Res 2000; 91:737-47. [PMID: 10920282 PMCID: PMC5926414 DOI: 10.1111/j.1349-7006.2000.tb01007.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
TZT-1027, a derivative of dolastatin 10 isolated from the Indian Ocean sea hare Dolabella auricularia in 1987 by Pettit et al., is a potent antimicrotubule agent. We have compared the activity of TZT-1027 with that of dolastatin 10 as well as the vinca alkaloids vinblastine (VLB), vincristine (VCR) and vindesine (VDS). TZT-1027 and dolastatin 10 inhibited microtubule polymerization concentration-dependently at 1 - 100 microM with IC50 values of 2.2 +/- 0.6 and 2.3 +/- 0.7 microM, respectively. VLB, VCR and VDS inhibited microtubule polymerization at 1 - 3 microM with IC50 values of 2.7 +/- 0.6, 1.6 +/- 0.4 and 1.6 +/- 0.2 microM, respectively, but showed a slight decrease in inhibitory effect at concentrations of 10 microM or more. TZT-1027 also inhibited monosodium glutamate-induced tubulin polymerization concentration-dependently at 0.3 - 10 microM, with an IC50 of 1.2 microM, whereas VLB was only effective at 0.3 - 3 microM, with an IC50 of 0.6 microM, and caused so-called "aggregation" of tubulin at 10 microM. Scatchard analysis of the binding data for [(3)H]VLB suggested one binding site (Kd 0.2 +/- 0.04 microM and Bmax 6.0 +/- 0.26 nM / mg protein), while that for [(3)H]TZT-1027 suggested two binding sites, one of high affinity (Kd 0.2 +/- 0.01 microM and Bmax 1.7 +/- 0.012 nM / mg protein) and the other of low affinity (Kd 10. 3 +/- 1.46 microM and Bmax 11.6 +/- 0.83 nM / mg protein). [(3)H]TZT-1027 was completely displaced by dolastatin 10 but only incompletely by VLB. [(3)H]VLB was completely displaced by dolastatin 10 and TZT-1027. Furthermore, TZT-1027 prevented [(3)H]VLB from binding to tubulin in a non-competitive manner according to Lineweaver-Burk analysis. TZT-1027 concentration-dependently inhibited both [(3)H]guanosine 5'-triphosphate (GTP) binding to and GTP hydrolysis on tubulin. VLB inhibited the hydrolysis of GTP on tubulin concentration-dependently to a lesser extent than TZT-1027, but no inhibitory effect of VLB on [(3)H]GTP binding to tubulin was evident even at 100 microM. Thus, TZT-1027 affected the binding of VLB to tubulin, but its binding site was not completely identical to that of VLB. TZT-1027 had a potent inhibitory effect on tubulin polymerization and differed from vinca alkaloids in its mode of action against tubulin polymerization.
Collapse
Affiliation(s)
- T Natsume
- Teikoku Hormone Mfg. Co., Ltd., Takatsu-ku, Kawasaki, Kanagawa 213-8522, Japan
| | | | | | | | | | | |
Collapse
|
22
|
García-Rocha M, García-Gravalos MD, Avila J. Characterisation of antimitotic products from marine organisms that disorganise the microtubule network: ecteinascidin 743, isohomohalichondrin-B and LL-15. Br J Cancer 1996; 73:875-83. [PMID: 8611420 PMCID: PMC2075815 DOI: 10.1038/bjc.1996.176] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The effect of selected marine compounds with anti-tumoral activity on the cell microtubule network was tested by immunofluorescence analyses, or by other in vitro analyses involving competition with colchicine or with GTP for tubulin binding and tubulin polymerisation, studies that were carried out in parallel with other microtubule poisons used as controls. Three compounds were found to disorganise the microtubule network: isohomohalichondrin B, LL-15 and ecsteinascidin 743. The first two compounds prevent microtubule assembly and GTP binding to tubulin. Ecteinascidin 743 disorganises the microtubule network but it does not seem to interact directly with tubulin.
Collapse
Affiliation(s)
- M García-Rocha
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
23
|
Bai R, Taylor GF, Cichacz ZA, Herald CL, Kepler JA, Pettit GR, Hamel E. The spongistatins, potently cytotoxic inhibitors of tubulin polymerization, bind in a distinct region of the vinca domain. Biochemistry 1995; 34:9714-21. [PMID: 7626642 DOI: 10.1021/bi00030a009] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The highly cytotoxic, sponge-derived, antimitotic macrolide polyether spongistatin 1 has been previously shown to inhibit microtubule assembly, the binding of vinblastine and GTP to tubulin, and displacement of GDP bound in the exchangeable site of tubulin. We have now examined in detail inhibition by spongistatin 1 of both [3H]vinblastine and [3H]dolastatin 10 binding to tubulin. We found spongistatin 1 to be a noncompetitive inhibitor of the binding of both radiolabeled drugs to tubulin, in contrast to competitive patterns obtained with vincristine versus [3H]vinblastine and with a chiral isomer of dolastatin 10 versus [3H]dolastatin 10. Since dolastatin 10 is itself a noncompetitive inhibitor of vinca alkaloid binding to tubulin, this implies at least three distinct binding sites for the structurally complex and diverse natural products that interfere with each others binding to tubulin and with nucleotide exchange. Spongistatin 1, in contrast to both vinca alkaloids and peptide antimitotic agents like dolastatin 10, does not induce formation of a GTP-independent, morphologically distinctive polymer ("aggregate"). We also examined eight compounds closely related structurally to spongistatin 1 (spongistatins 2-9). The most distinctive in their properties were spongistatins 6 and 8. These two compounds, despite activity comparable to spongistatin 1 as inhibitors of tubulin polymerization and [3H]vinblastine binding, had much reduced activity as inhibitors of nucleotide exchange and [3H]dolastatin 10 binding. Spongistatins 1 and 6 were compared for effects on dolastatin 10-induced aggregate formation in conjunction with effects on [3H]dolastatin 10 binding. Spongistatin 6 was about 4-fold less active than spongistatin 1 as an inhibitor of aggregation and over 20-fold less active as an inhibitor of dolastatin 10 binding.
Collapse
Affiliation(s)
- R Bai
- Division of Cancer Treatment, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Grover S, Hamel E. The magnesium-GTP interaction in microtubule assembly. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:163-72. [PMID: 8200341 DOI: 10.1111/j.1432-1033.1994.tb18854.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Microtubule-associated-protein-dependent assembly of tubulin with GDP in the exchangeable site (tubulin-GDP) can occur with minimal free Mg2+ (< 3 microM). This reaction is totally inhibited by EDTA and by GTP concentrations over 2 mM and stimulated by MgCl2. Quantitative aspects of this stimulation are affected by both the Mg2+ and GTP concentrations but no relationship exists between reaction rates and relative amounts of different magnesium and GTP species. GTP binding to tubulin-GDP, while maximally stimulated 2-3-fold by exogenous MgCl2, was inhibited less than 50% by EDTA, and the amount of GTP bound increased as its concentration rose to levels that inhibited polymerization. Studies on the binding of Mg2+ to tubulin-GDP in the presence and absence of GTP showed that the increase in the amount of tubulin-associated Mg2+ was substoichiometric to the amount of GTP bound (maximum stoichiometry of additional Mg2+ to GTP bound, 0.7). Upon polymerization the increased Mg2+ content of tubulin was reduced, indicating its loss during GTP hydrolysis. Mg2+ thus plays a critical role in assembly distinct from its enhancement of GTP binding to the exchangeable site. If magnesium is present in trace amounts, this role must either be catalytic during polymerization or limited to nucleation.
Collapse
Affiliation(s)
- S Grover
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
25
|
Ludueńa RF, Roach MC, Prasad V, Banerjee M, Koiso Y, Li Y, Iwasaki S. Interaction of ustiloxin A with bovine brain tubulin. Biochem Pharmacol 1994; 47:1593-9. [PMID: 8185673 DOI: 10.1016/0006-2952(94)90537-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ustiloxin A is a modified peptide derived from false smut balls on rice panicles, caused by the fungus Ustilaginoidea virens; structurally, it resembles phomopsin A. Ustiloxin A is cytotoxic and is an inhibitor of microtubule assembly in vitro. Because of its resemblance to phomopsin A, we examined its interaction with tubulin and compared the results with those obtained with phomopsin A and dolastatin 10, both of which were found previously to have very similar effects. We determined that ustiloxin A inhibited the formation of a particular intra-chain cross-link in beta-tubulin, as do vinblastine, maytansine, rhizoxin, phomopsin A, dolastatin 10, halichondrin B and homohalichondrin B; this is in contrast to colchicine and podophyllotoxin which do not inhibit formation of this cross-link. Ustiloxin A also inhibited the alkylation of tubulin by iodo[14C]acetamide, as do phomopsin A and dolastatin 10; vinblastine was almost as potent as inhibitor of alkylation as ustiloxin A, whereas maytansine, halichondrin B and homohalichondrin B have little or no effect. In addition, ustiloxin A inhibited exposure of hydrophobic areas on the surface of the tubulin molecule. In this respect, ustiloxin A was indistinguishable from phomopsin A but slightly more effective than dolastatin 10 and considerably more effective than vinblastine; this provides a strong contrast to maytansine, rhizoxin, and homohalichondrin B which have no effect on exposure of hydrophobic areas and to halichondrin B which enhances exposure. Lastly, ustiloxin A strongly stabilized the binding of [3H]colchicine to tubulin. The combination of ustiloxin A with cholchicine stabilized tubulin with a half-life of over 8 days, comparable with results obtained with phomopsin A and colchicine. A comparison of the structures of ustiloxin A, phomopsin A and dolastatin 10 raised the possibility that the strong stabilization of the tubulin structure may require a short segment of hydrophobic amino acids such as the modified valine-isoleucine sequence present in all three compounds. The rest of the structure, specifically the large ring of ustiloxin A and phomopsin A, may serve to place this sequence in an appropriate conformation to interact with tubulin.
Collapse
Affiliation(s)
- R F Ludueńa
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 77284-7760
| | | | | | | | | | | | | |
Collapse
|
26
|
Sinha S, Jain S. Natural products as anticancer agents. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1994; 42:53-132. [PMID: 7916160 DOI: 10.1007/978-3-0348-7153-2_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S Sinha
- Medical Chemistry Division, Central Drug Research Institute, Lucknow, India
| | | |
Collapse
|
27
|
Sackett DL. Podophyllotoxin, steganacin and combretastatin: natural products that bind at the colchicine site of tubulin. Pharmacol Ther 1993; 59:163-228. [PMID: 8278462 DOI: 10.1016/0163-7258(93)90044-e] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A large number of antimicrotubule agents are known that bind to tubulin in vitro and disrupt microtubule assembly in vitro and in vivo. Many of these agents bind to the same site on the tubulin molecule, as does colchicine. Of these, the natural products podophyllotoxin, steganacin and combretastatin are the subjects of this review. For each of these, the chemistry and biochemistry are described. Particular attention is given to stereochemical considerations. Biosynthetic pathways for podophyllotoxin and congeners are surveyed. The binding to tubulin and the effects on microtubule assembly and disassembly are described and compared. In addition, structural features important to binding are examined using available analogs. Several features significant for tubulin interaction are common to these compounds and to colchicine. These are described and the implications for tubulin structure are discussed. The manifold results of applying these agents to biological systems are reviewed. These actions include effects that are clearly microtubule mediated and others in which the microtubule role is less obvious. Activity of some of these compounds due to inhibition of DNA topoisomerase is discussed. The range of species in which these compounds occur is examined and in the case of podophyllotoxin is found to be quite broad. In addition, the range of species that are sensitive to the effects of these compounds is discussed.
Collapse
Affiliation(s)
- D L Sackett
- Laboratory of Biochemical Pharmacology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
28
|
Bai R, Roach MC, Jayaram SK, Barkoczy J, Pettit GR, Ludueña RF, Hamel E. Differential effects of active isomers, segments, and analogs of dolastatin 10 on ligand interactions with tubulin. Correlation with cytotoxicity. Biochem Pharmacol 1993; 45:1503-15. [PMID: 8471072 DOI: 10.1016/0006-2952(93)90051-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dolastatin 10 is a potent antimitotic peptide isolated from the marine mollusk Dolabella auricularia. Four of its five residues are modified amino acids (in sequence, dolavaline, valine, dolaisoleuine, dolaproine, dolaphenine). Besides inhibiting tubulin polymerization, dolastatin 10 non-competitively inhibits vinca alkaloid binding to tubulin, inhibits nucleotide exchange and formation of the beta s cross-link, and stabilizes the colchicine binding activity of tubulin. To examine the mechanism of action of dolastatin 10 we prepared six chiral isomers, one tri- and one tetrapeptide segment, and one pentapeptide analog of dolastatin 10, all of which differ little from dolastatin 10 as inhibitors of tubulin polymerization. However, only two of the chiral isomers were similar to dolastatin 10 in their cytotoxicity for L1210 murine leukemia cells and in their effects on vinblastine binding, nucleotide exchange, beta s cross-link formation, and colchicine binding. These were isomer 2, with reversal of configuration at position C(19a) in the dolaisoleuine moiety, and isomer 19, with reversal of configuration at position C(6) in the dolaphenine moiety. The pentapeptides with reduced cytotoxicity and reduced effects on tubulin interactions with other ligands were all modified in the dolaproine moiety at positions C(9) and/or C(10). The tripeptide and tetrapeptide segments which inhibited polymerization but not ligand interactions were the amino terminal tripeptide (lacking dolaproine and dolaphenine) and the carboxyl terminal tetrapeptide (lacking dolavaline). We speculate that strong inhibition of other ligand interactions with tubulin requires stable peptide binding to tubulin (i.e. slow dissociation), but that inhibition of polymerization requires only rapid binding to tubulin.
Collapse
Affiliation(s)
- R Bai
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Tubulin binds guanine nucleotides with high affinity and specificity. GTP, an allosteric effector of microtubule assembly, requires Mg2+ for its interaction with beta-tubulin and binds as the MgGTP complex. In contrast, GDP binding does not require Mg2+. The structural basis for this difference is not understood but may be of fundamental importance for microtubule assembly. We investigated the interaction of beta-tubulin with guanine nucleotides using site-directed mutagenesis. Acidic amino acid residues have been shown to interact with nucleotide in numerous nucleotide-binding proteins. In this study, we mutated seven highly conserved aspartic acid residues and one highly conserved glutamic acid residue in the putative GTP-binding domain of beta-tubulin (N-terminal 300 amino acids) to asparagine and glutamine, respectively. The mutants were synthesized in vitro using rabbit reticulocyte lysates, and their affinities for nucleotide determined by an h.p.l.c.-based assay. Our results indicate that the mutations can be placed in six separate categories on the basis of their effects on nucleotide binding. These categories range from having no effect on nucleotide binding to a mutation that apparently abolishes nucleotide binding. One mutation at Asp224 reduced the affinity of beta-tubulin for GTP in the presence but not in the absence of Mg2+. The specific effect of this mutation on nucleotide binding is consistent with an interaction of this amino acid with the Mg2+ moiety of MgGTP. This residue is in a region sharing sequence homology with the putative Mg2+ site in myosin and other ATP-binding proteins. As a result, tubulin belongs to a distinct class of GTP-binding proteins which may be evolutionarily related to the ATP-binding proteins.
Collapse
Affiliation(s)
- G W Farr
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | | |
Collapse
|
30
|
Hamel E, Lin CM, Kenney S, Skehan P, Vaughns J. Modulation of tubulin-nucleotide interactions by metal ions: comparison of beryllium with magnesium and initial studies with other cations. Arch Biochem Biophys 1992; 295:327-39. [PMID: 1586162 DOI: 10.1016/0003-9861(92)90525-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
With microtubule-associated proteins (MAPs) BeSO4 and MgSO4 stimulated tubulin polymerization as compared to a reaction mixture without exogenously added metal ion, while beryllium fluoride had no effect (E. Hamel et al., 1991, Arch. Biochem. Biophys. 286, 57-69). Effects of both cations were most dramatic at GTP concentrations in the same molar range as the tubulin concentration. We have now compared effects of beryllium and magnesium on tubulin-nucleotide interactions in both unpolymerized tubulin and in polymer. Polymer formed with magnesium had properties similar to those of polymer formed without exogenous cation, except for a 20% lower stoichiometry of exogenous GTP incorporated into the latter. In both polymers the incorporated GTP was hydrolyzed to GDP. Stoichiometry of GTP incorporation into polymers formed with beryllium or magnesium was identical, but much of the GTP in the beryllium polymer was not hydrolyzed. The beryllium polymer was more stable than the magnesium polymer. Beryllium also differed from magnesium in only weakly enhancing the binding of GTP in the exchangeable site of unpolymerized tubulin, while neither cation affected GDP exchange at the site. If both cations were present in a reaction mixture, polymer stability was little changed from that of the beryllium polymer, but most of the GTP incorporated into polymer was hydrolyzed. Six additional metal salts (AlCl3, CdCl2, CoCl2, MnCl2, SnCl2, and ZnCl2) also stimulated MAP-dependent tubulin polymerization, but enhanced polymer stability did not correlate with polymer GTP content. We postulate that enhanced polymer stability is a consequence of cation binding directly to tubulin and/or polymer while deficient GTP hydrolysis in the presence of beryllium, as well as aluminum and tin, is a consequence of tight binding of cation to GTP in the exchangeable site.
Collapse
Affiliation(s)
- E Hamel
- Division of Cancer Treatment, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
31
|
Hamel E. Natural products which interact with tubulin in the vinca domain: maytansine, rhizoxin, phomopsin A, dolastatins 10 and 15 and halichondrin B. Pharmacol Ther 1992; 55:31-51. [PMID: 1287674 DOI: 10.1016/0163-7258(92)90028-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This paper summarizes published data on the interactions of tubulin with antimitotic compounds that inhibit the binding of vinca alkaloids to the protein. These are all relatively complex natural products isolated from higher plants, fungi and marine invertebrate animals. These agents are maytansine, rhizoxin, phomopsin A, dolastatins 10 and 15 and halichondrin B and their congeners. Effects on tubulin polymerization, ligand binding interactions and structure-activity relationships are emphasized.
Collapse
Affiliation(s)
- E Hamel
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
32
|
Abstract
The interaction of antimitotic drugs with guanine nucleotides in the tubulin-microtubule system is reviewed. Antimitotic agent-tubulin interactions can be covalent, entropic, allosteric or coupled to other equilibria (such as divalent cation binding, alternate polymer formation, or the stabilization of native tubulin structure). Antimitotics bind to tubulin at a few common sites and alter the ability of tubulin to form microtubules. Colchicine and podophyllotoxin compete for a common overlapping binding site but only colchicine induces GTPase activity and large conformational changes in the tubulin heterodimer. The vinca alkaloids, vinblastine and vincristine, the macrocyclic ansa macrolides, maytansine and ansamitocin P-3, and the fungal antimitotic, rhizoxin, share and compete for a different binding site near the exchangeable nucleotide binding site. The macrocyclic heptapeptide, phomopsin A, and the depsipeptide, dolastatin 10, bind to a site adjacent to the vinca alkaloid and nucleotide sites. Colchicine, vinca alkaloids, dolastatin 10 and phomopsin A induce alternate polymer formation (sheets for colchicine, spirals for vinblastine and vincristine and rings for dolastatin 10 and phomopsin A). Maytansine, ansamitocin P-3 and rhizoxin inhibit vinblastine-induced spiral formation. Taxol stoichiometrically induces microtubule formation and, in the presence of GTP, assembly-associated GTP hydrolysis. Analogs of guanine nucleotides also alter polymer morphology. Thus, sites on tubulin for drugs and nucleotides communicate allosterically with the interfaces that form longitudinal and lateral contacts within a microtubule. Microtubule associated proteins (MAPs), divalent cations, and buffer components can alter the surface interactions of tubulin and thus modulate the interactions between antimitotic drugs and guanine nucleotides.
Collapse
Affiliation(s)
- J J Correia
- Department of Biochemistry, University of Mississippi Medical Center, Jackson 39216
| |
Collapse
|
33
|
Rowinsky EK, Donehower RC. The clinical pharmacology and use of antimicrotubule agents in cancer chemotherapeutics. Pharmacol Ther 1991; 52:35-84. [PMID: 1687171 DOI: 10.1016/0163-7258(91)90086-2] [Citation(s) in RCA: 220] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although there has been a rapid expansion of the number of classes of compounds with antineoplastic activity, few have played a more vital role in the curative and palliative treatment of cancers than the antimicrotubule agents. Although the vinca alkaloids have been the only subclass of antimicrotubule agents that have had broad experimental and clinical applications in oncologic therapeutics over the last several decades, the taxanes, led by the prototypic agent taxol, are emerging as another very active class of antimicrotubule agents. After briefly reviewing the mechanisms of antineoplastic action and resistance, this article comprehensively reviews the clinical pharmacology, therapeutic applications, and clinical toxicities of selected antimicrotubule agents.
Collapse
Affiliation(s)
- E K Rowinsky
- Division of Pharmacology and Experimental Therapeutics, Johns Hopkins Oncology Center, Baltimore, Maryland 21205
| | | |
Collapse
|
34
|
Bai R, Paull K, Herald C, Malspeis L, Pettit G, Hamel E. Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98491-7] [Citation(s) in RCA: 271] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
35
|
Burns RG. Alpha-, beta-, and gamma-tubulins: sequence comparisons and structural constraints. CELL MOTILITY AND THE CYTOSKELETON 1991; 20:181-9. [PMID: 1773446 DOI: 10.1002/cm.970200302] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Comparison of congruent to 160 alpha-, beta-, and gamma-tubulins, and excluding the highly divergent C-terminal peptide, indicates that the three subclasses have similar tertiary structures. Conserved sequences within or between the subclasses have been identified, together with the locations of known epitopes, chemical modifications, and mutations. Evidence is also reviewed concerning the identity of the GTP-binding sites, about which residues are exposed in the assembled microtubule and at subunit:subunit interfaces. These characteristics constrain the possible tertiary structure of the tubulin subunit.
Collapse
Affiliation(s)
- R G Burns
- Biophysics Section, Blackett Laboratory, Imperial College of Science, Technology and Medicine, London, United Kingdom
| |
Collapse
|
36
|
Luduena RF, Roach MC. Tubulin sulfhydryl groups as probes and targets for antimitotic and antimicrotubule agents. Pharmacol Ther 1991; 49:133-52. [PMID: 1852786 DOI: 10.1016/0163-7258(91)90027-j] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The sulfhydryl groups of tubulin are highly reactive entities. The reactivity of the sulfhydryl groups is sensitive to the presence of tubulin ligands, making these groups excellent probes for the interaction of tubulin with ligands. When tubulin is reacted with N,N'-ethylenebis-(iodoacetamide), two intrachain cross-links form in the beta subunit. Formation of one of these cross-links is completely blocked by colchicine, podophyllotoxin, and nocodazole; formation of the other is blocked completely by maytansine, phomopsin A and GTP and partly by Vinca alkaloids. Different ligands also differ in their effect on the rate of alkylation of tubulin with iodo[14C]acetamide, with vinblastine and phomopsin A being strong inhibitors and maytansine having very little effect. Oxidation of certain key sulfhydryl groups can inhibit microtubule assembly. One of these sulfhydryl groups appears to be cys239, but there are others not yet identified. Sulfhydryl-oxidizing agents also interfere with microtubule-mediated processes in vivo, raising the question of the existence of a physiological regulator of microtubule assembly. Potential physiological regulators have been examined to see if they can control microtubule assembly in vitro at their physiological concentrations. Of the ones that have been examined, thioredoxin and thioredoxin reductase are much better candidates for being physiological regulators than are either cystamine or glutathione.
Collapse
Affiliation(s)
- R F Luduena
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760
| | | |
Collapse
|
37
|
Bai RL, Pettit GR, Hamel E. Binding of dolastatin 10 to tubulin at a distinct site for peptide antimitotic agents near the exchangeable nucleotide and vinca alkaloid sites. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)44880-0] [Citation(s) in RCA: 208] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
38
|
Bowman LC, Houghton JA, Houghton PJ. Influence of guanine nucleotides on vincristine binding in tumor cytosols and purified tubulin: evidence for an inhibitor of vincristine binding. J Cell Physiol 1990; 144:376-82. [PMID: 2391373 DOI: 10.1002/jcp.1041440303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In cytosols from human rhabdomyosarcoma xenografts, the formation of vincristine (VCR)-tubulin complex and its stability were increased by GTP (Bowman et al.: Biochem. Biophys. Res. Commun., 135:695-700, 1986). We have further examined this modulation to determine whether a) GTP was protecting the VCR binding site from denaturation, b) the enhancement of complex formation was guanosine specific, and c) whether this influence was a direct interaction between GTP, VCR, and tubulin, or was mediated through another factor. In GTP-depleted cytosols from tumor xenografts HxRH18 and HxRh12, VCR binding activity was stable for at least 2 hours at 37 degrees C, indicating that the enhancement of complex formation and stability was not due to protection of tubulin integrity as measured by VCR binding; 10 nM GTP increased complex formation slightly, with complex formation increasing as GTP concentrations were increased to 5 microM, where maximum effect was observed. GTP and GDP (0.1 mM) both increased complex formation three-fold, while GMP, GMP-PNP, and ITP increased formation 1.5-fold. IMP, CTP, and ATP had no significant effect. Therefore, the modulation of VCR binding was relatively specific for the guanine nucleotides GDP and GTP. Microtubule protein, purified from Rh18 and Rh12 tumors by cycles of polymerization-depolymerization, bound VCR rapidly and binding was not influenced by GTP. This suggested that GTP modulation of VCR binding in cytosols was through a soluble factor lost in tubulin purification. In experiments with cytosol fractionated by molecular weight, there was inhibition of VCR binding activity by fractions with an mw range 20-50 kD. This inhibition was decreased by 25% by the addition of GTP. These data suggest that in tumor cytosols there may be competition between VCR and a natural ligand that is modulated by GTP. Two potential models for VCR binding are proposed.
Collapse
Affiliation(s)
- L C Bowman
- Department of Hematology-Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101
| | | | | |
Collapse
|
39
|
Abstract
Phomopsin A, a macrocyclic heptapeptide isolated from the fungus Phomopsis leptostromiformis, is a potent inhibitor of microtubule assembly and of vinblastine binding to tubulin. Like vinblastine, phomopsin A stabilizes colchicine binding to tubulin. Because phomopsin A is structurally very different from either vinblastine or maytansine, it was of interest to compare its effects on tubulin sulfhydryls to those of the other two drugs. Our results indicate that the effects of phomopsin A combine those of maytansine and vinblastine. Like maytansine, phomopsin A completely inhibited formation of a covalent cross-link between cysteines 12 and 201 or 211, induced by N,N'-ethylenebis(iodoacetamide); like vinblastine, phomopsin A strongly inhibited alkylation of tubulin by iodo[14C]acetamide. Our results are consistent with the hypothesis that phomopsin A binds to regions on tubulin overlapping those to which vinblastine and maytansine bind. We have shown previously that phomopsin A is a potent stabilizer of the tubulin molecule. We now find that when both phomopsin A and colchicine are bound to tubulin, the rate of decay of colchicine binding becomes insignificant.
Collapse
Affiliation(s)
- R F Ludueña
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284
| | | | | | | |
Collapse
|
40
|
Hamel E, Lin CM. Reexamination of the role of nonhydrolyzable guanosine 5'-triphosphate analogues in tubulin polymerization: reaction conditions are a critical factor for effective interactions at the exchangeable nucleotide site. Biochemistry 1990; 29:2720-9. [PMID: 2346744 DOI: 10.1021/bi00463a015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently it was proposed [O'Brien, E. T., & Erickson, H. P. (1989) Biochemistry 28, 1413-1422] that tubulin polymerization supported by guanosine 5'-(beta,gamma-imidotriphosphate) [p(NH)ppG], guanosine 5'-(beta,gamma-methylenetriphosphate) [p(CH2)ppG], and ATP might be due to residual GTP in reaction mixtures and that these nucleotides would probably support only one cycle of assembly. Since we had observed polymerization with these three compounds, we decided to study these reactions in greater detail in two systems. The first contained purified tubulin and a high concentration of glycerol, the second tubulin and microtubule-associated proteins (MAPs). In both systems, reactions supported by nucleotides other than GTP were most vigorous at lower pH values. In the glycerol system, repeated cycles of polymerization were observed with ATP and p(CH2)ppG, but not with p(NH)ppG. With p(NH)ppG, a single cycle of polymerization was observed, and this was caused by contaminating GTP. In the MAPs system, repeated cycles of polymerization were observed with both nonhydrolyzable GTP analogues, even without contaminating GTP, but ATP was not active at all in this system. Binding to tubulin of p(NH)ppG, p(CH2)ppG, and, to a lesser extent, ATP was demonstrated indirectly, since high concentrations of the three nucleotides displaced radiolabeled GDP originally bound in the exchangeable site, with p(NH)ppG the most active of the three compounds in this displacement assay. The failure of GTP-free p(NH)ppG to support tubulin polymerization in our glycerol system even though it displaced GDP from the exchangeable site was further investigated by examining the effects of p(NH)ppG on polymerization and polymer-bound nucleotide with low concentrations of GTP. The two nucleotides appeared to act synergistically in supporting polymerization, so that a reaction occurred with a subthreshold GTP concentration if p(NH)ppG was also in the reaction mixture. Analysis of radiolabeled exchangeable-site nucleotide in polymers formed in reaction mixtures containing both GTP and p(NH)ppG demonstrated that p(NH)ppG which entered polymer did so primarily at the expense of GDP originally bound in the exchangeable site rather than at the expense of GTP. It appears that in the glycerol reaction condition, tubulin-p(NH)ppG cannot initiate tubulin polymerization but that it can participate in polymer elongation. ATP and p(CH2)ppG also entered the exchangeable site during polymerization without GTP in glycerol, as demonstrated by displacement of radiolabeled GDP from polymer when these alternate nucleotides were used.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E Hamel
- Laboratory of Biochemical Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
41
|
Lacey E. The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles. Int J Parasitol 1988; 18:885-936. [PMID: 3066771 DOI: 10.1016/0020-7519(88)90175-0] [Citation(s) in RCA: 393] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
42
|
Bowman LC, Houghton JA, Houghton PJ. Formation and stability of vincristine-tubulin complex in kidney cytosols. Role of GTP and GTP hydrolysis. Biochem Pharmacol 1988; 37:1251-7. [PMID: 3355599 DOI: 10.1016/0006-2952(88)90778-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vincristine-tubulin complex formed in the 100,000 g fraction of mouse kidney dissociated rapidly at 37 degrees in the absence of guanosine-5'-triphosphate (GTP). In the presence of 2 mM GTP, there was a substantial (2.8-fold) increase in complex stability; NaF (100 mM) but not beta-glycerophosphate (1 mM) also reduced the rate of dissociation. Further, complex was stabilized by other ribonucleoside-5'-triphosphates (but not their respective 5'-monophosphates), and a nonhydrolyzable analogue of GTP. Stability of the VCR-tubulin complex formed in cytosol from kidney and separated from unbound VCR and GTP by gel filtration was influenced by the concentration of GTP. These results appear not to be a consequence of denaturation of tubulin during incubation, as VCR binding activity remained constant under experimental conditions both in the presence and after the removal of GTP. Further, the rate of formation of the VCR-tubulin complex in kidney was also influenced by the concentration of GTP and was increased by the addition of NaF. In the absence of added GTP, virtually no complex was isolated. ATP, CTP, or ITP has little effect on complex formation, suggesting that the effect may be GTP specific. These data suggest that the destabilizing activity in cytosols prepared from mouse kidney, and the failure to form a stable VCR-tubulin complex in kidney, are in part the consequence of rapid hydrolysis of GTP by a pyrophosphohydrolase. Direct measurement of the hydrolysis of GTP showed that the activity in kidney (9.26 nmol/min/mg protein) was 9.3-fold greater than in tumor extracts.
Collapse
Affiliation(s)
- L C Bowman
- Division of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, TN 38101
| | | | | |
Collapse
|
43
|
Hamel E, Batra JK, Lin CM. Direct incorporation of guanosine 5'-diphosphate into microtubules without guanosine 5'-triphosphate hydrolysis. Biochemistry 1986; 25:7054-62. [PMID: 3026443 DOI: 10.1021/bi00370a045] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Using highly purified calf brain tubulin bearing [8-14C]guanosine 5'-diphosphate (GDP) in the exchangeable nucleotide site and heat-treated microtubule-associated proteins (both components containing negligible amounts of nucleoside diphosphate kinase and nonspecific phosphatase activities), we have found that a significant proportion of exchangeable-site GDP in microtubules can be incorporated directly during guanosine 5'-triphosphate (GTP) dependent polymerization of tubulin, without an initial exchange of GDP for GTP and subsequent GTP hydrolysis during assembly. The precise amount of GDP incorporated directly into microtubules is highly dependent on specific reaction conditions, being favored by high tubulin concentrations, low GTP and Mg2+ concentrations, and exogenous GDP in the reaction mixture. Minimum effects were observed with changes in reaction pH or temperature, changes in concentration of microtubule-associated proteins, alteration of the sulfonate buffer, or the presence of a calcium chelator in the reaction mixture. Under conditions most favorable for direct GDP incorporation, about one-third of the GDP in microtubules is incorporated directly (without GTP hydrolysis) and two-thirds is incorporated hydrolytically (as a consequence of GTP hydrolysis). Direct incorporation of GDP occurs in a constant proportion throughout elongation, and the amount of direct incorporation probably reflects the rapid equilibration of GDP and GTP at the exchangeable site that occurs before the onset of assembly.
Collapse
|
44
|
Bowman LC, Houghton JA, Houghton PJ. GTP influences the binding of vincristine in human tumor cytosols. Biochem Biophys Res Commun 1986; 135:695-700. [PMID: 3964272 DOI: 10.1016/0006-291x(86)90984-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The influence of GTP on the formation and stability of [3H] vincristine (VCR)-tubulin complexes in cytosols from two human rhabdomyosarcoma xenografts which have different sensitivities to VCR has been evaluated. After removal of endogenous GTP the initial rate of [3H]VCR binding and the maximal level of bound drug were 2- to 3-fold higher in the presence of 0.1 mM GTP than in its absence. Similarly, the stability of complexes was GTP-dependent. Complex formed from Rh18 tumors, only moderately sensitive to VCR, dissociated at 37 degrees in the absence of GTP with a half-time of 67 min; complex from Rh12 tumors (exquisitely sensitive to VCR) was more stable. Neither complex dissociated in the presence of 0.1 mM GTP over 2 hr examined.
Collapse
|