1
|
Redondo RL, Morris RGM. Making memories last: the synaptic tagging and capture hypothesis. Nat Rev Neurosci 2011; 12:17-30. [PMID: 21170072 DOI: 10.1038/nrn2963] [Citation(s) in RCA: 510] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The synaptic tagging and capture hypothesis of protein synthesis-dependent long-term potentiation asserts that the induction of synaptic potentiation creates only the potential for a lasting change in synaptic efficacy, but not the commitment to such a change. Other neural activity, before or after induction, can also determine whether persistent change occurs. Recent findings, leading us to revise the original hypothesis, indicate that the induction of a local, synapse-specific 'tagged' state and the expression of long-term potentiation are dissociable. Additional observations suggest that there are major differences in the mechanisms of functional and structural plasticity. These advances call for a revised theory that incorporates the specific molecular and structural processes involved. Addressing the physiological relevance of previous in vitro findings, new behavioural studies have experimentally translated the hypothesis to learning and the consolidation of newly formed memories.
Collapse
Affiliation(s)
- Roger L Redondo
- Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
| | | |
Collapse
|
2
|
Yamauchi T. Molecular Mechanism of Learning and Memory Based on the Research for Ca 2+/Calmodulin-dependent Protein Kinase II. YAKUGAKU ZASSHI 2007; 127:1173-97. [PMID: 17666869 DOI: 10.1248/yakushi.127.1173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the central nervous system (CNS), the synapse is a specialized junctional complex by which axons and dendrites emerging from different neuron intercommunicates. Changes in the efficiency of synaptic transmission are important for a number of aspects of neural function. Much has been learned about the activity-dependent synaptic modifications that are thought to underlie memory storage, but the mechanism by which these modifications are stored remains unclear. Thus, it is important to find and characterize "memory molecules," and "memory apparatus or memory forming apparatus." A good candidate for the storage mechanism is Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). CaM kinase II is one of the most prominent protein kinases, present in essentially every tissue but most concentrated in the brain. Neuronal CaM kinase II regulates important neuronal functions, including neurotransmitter synthesis, neurotransmitter release, modulation of ion channel activity, cellular transport, cell morphology and neurite extension, synaptic plasticity, learning and memory, and gene expression. Studies concerning this kinase open a door of the molecular basis of nerve function, especially learning and memory, and indicate one direction for the studies in the field of neuroscience. This review presents molecular structure, properties and functions of CaM kinase II, as a major component of neuron, which are mainly developed in our laboratory.
Collapse
Affiliation(s)
- Takashi Yamauchi
- Institute of Health Biosciences, Graduate School of Pharmaceutical Sciences, The University of Tokushima, Japan.
| |
Collapse
|
3
|
Yamauchi T. Neuronal Ca2+/calmodulin-dependent protein kinase II--discovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol Pharm Bull 2005; 28:1342-54. [PMID: 16079472 DOI: 10.1248/bpb.28.1342] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Much has been learned about the activity-dependent synaptic modifications that are thought to underlie memory storage, but the mechanism by which these modifications are stored remains unclear. A good candidate for the storage mechanism is Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). CaM kinase II is one of the most prominent protein kinases, present in essentially every tissue but most concentrated in brain. Although it has been about a quarter of a century since the finding, CaM kinase II has been of the major interest in the region of brain science. It plays a multifunctional role in many intracellular events, and the expression of the enzyme is carefully regulated in brain regions and during brain development. Neuronal CaM kinase II regulates important neuronal functions, including neurotransmitter synthesis, neurotransmitter release, modulation of ion channel activity, cellular transport, cell morphology and neurite extension, synaptic plasticity, learning and memory, and gene expression. Studies concerning this kinase have provided insight into the molecular basis of nerve functions, especially learning and memory, and indicate one direction for studies in the field of neuroscience. This review presents the molecular structure, properties and functions of CaM kinase II, as a major component of neurons, based mainly developed on findings made in our laboratory.
Collapse
Affiliation(s)
- Takashi Yamauchi
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, University of Tokushima, Shomachi 1, Tokushima 770-8585, Japan.
| |
Collapse
|
4
|
Li XL, Aou S, Oomura Y, Hori N, Fukunaga K, Hori T. Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience 2002; 113:607-15. [PMID: 12150780 DOI: 10.1016/s0306-4522(02)00162-8] [Citation(s) in RCA: 331] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Leptin is well known to be involved in the control of feeding, reproduction and neuroendocrine functions through its action on the hypothalamus. However, leptin receptors are found in brain regions other than the hypothalamus (including the hippocampus and cerebral cortex) suggesting extrahypothalamic functions. We investigated hippocampal long-term potentiation (LTP) and long-term depression (LTD), and the spatial-memory function in two leptin receptor-deficient rodents (Zucker rats and db/db mice). In brain slices, the CA1 hippocampal region of both strains showed impairments of LTP and LTD; leptin (10(-12) M) did not improve these impairments in either strain. These strains also showed lower basal levels of Ca(2+)/calmodulin-dependent protein kinase II activity in the CA1 region than the respective controls, and the levels did not respond to tetanic stimulation. These strains also showed impaired spatial memory in the Morris water-maze test (i.e. longer swim-path lengths during training sessions and less frequent crossings of the platform's original location in the probe test. From these results we suggest that the leptin receptor-deficient animals show impaired LTP in CA1 and poor spatial memory due, at least in part, to a deficiency in leptin receptors in the hippocampus.
Collapse
Affiliation(s)
- X-L Li
- Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University 60, 812-8582, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Iida Y, Sawabe K, Kojima M, Oguro K, Nakanishi N, Hasegawa H. Proteasome-driven turnover of tryptophan hydroxylase is triggered by phosphorylation in RBL2H3 cells, a serotonin producing mast cell line. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4780-8. [PMID: 12354109 DOI: 10.1046/j.1432-1033.2002.03188.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously demonstrated in mast cell lines RBL2H3 and FMA3 that tryptophan hydroxylase (TPH) undergoes very fast turnover driven by 26S-proteasomes [Kojima, M., Oguro, K., Sawabe, K., Iida, Y., Ikeda, R., Yamashita, A., Nakanishi, N. & Hasegawa, H. (2000) J. Biochem (Tokyo) 2000, 127, 121-127]. In the present study, we have examined an involvement of TPH phosphorylation in the rapid turnover, using non-neural TPH. The proteasome-driven degradation of TPH in living cells was accelerated by okadaic acid, a protein phosphatase inhibitor. Incorporation of 32P into a 53-kDa protein, which was judged to be TPH based on autoradiography and Western blot analysis using anti-TPH serum and purified TPH as the size marker, was observed in FMA3 cells only in the presence of both okadaic acid and MG132, inhibitors of protein phosphatase and proteasome, respectively. In a cell-free proteasome system constituted mainly of RBL2H3 cell extracts, degradation of exogenous TPH isolated from mastocytoma P-815 cells was inhibited by protein kinase inhibitors KN-62 and K252a but not by H89. Consistent with the inhibitor specificity, the same TPH was phosphorylated by exogenous Ca2+/calmodulin-dependent protein kinase II in the presence of Ca2+ and calmodulin but not by protein kinase A (catalytic subunit). TPH protein thus phosphorylated by Ca2+/calmodulin-dependent protein kinase II was digested more rapidly in the cell-free proteasome system than was the nonphosphorylated enzyme. These results indicated that the phosphorylation of TPH was a prerequisite for proteasome-driven TPH degradation.
Collapse
Affiliation(s)
- Yoshiko Iida
- Department of Bioscience, and Biotechnology Research Center, Teikyo University of Science and Technology, Yamanashi, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Sathyanarayanan PV, Poovaiah BW. Autophosphorylation-dependent inactivation of plant chimeric calcium/calmodulin-dependent protein kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2457-63. [PMID: 12027883 DOI: 10.1046/j.1432-1033.2002.02904.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chimeric calcium/calmodulin dependent protein kinase (CCaMK) is characterized by the presence of a visinin-like Ca(2+)-binding domain unlike other known calmodulin- dependent kinases. Ca(2+)-Binding to the visinin-like domain leads to autophosphorylation and changes in the affinity for calmodulin [Sathyanarayanan P.V., Cremo C.R. & Poovaiah B.W. (2000) J. Biol. Chem. 275, 30417-30422]. Here, we report that the Ca(2+)-stimulated autophosphorylation of CCaMK results in time-dependent loss of enzyme activity. This time-dependent loss of activity or self-inactivation due to autophosphorylation is also dependent on reaction pH and ATP concentration. Inactivation of the enzyme resulted in the formation of a sedimentable enzyme due to self-association. Specifically, autophosphorylation in the presence of 200 microm ATP at pH 7.5 resulted in the formation of a sedimentable enzyme with a 33% loss in enzyme activity. Under similar conditions at pH 6.5, the enzyme lost 67% of its activity and at pH 8.5, 84% enzyme activity was lost. Furthermore, autophosphorylation at either acidic or alkaline reaction pH lead to the formation of a sedimentable enzyme. Transmission electron microscopic studies on autophosphorylated kinase revealed particles that clustered into branched complexes. The autophosphorylation of wild-type kinase in the presence of AMP-PNP (an unhydrolyzable ATP analog) or the autophosphorylation-site mutant, T267A, did not show formation of branched complexes under the electron microscope. Autophosphorylation- dependent self-inactivation may be a mechanism of modulating the signal transduction pathway mediated by CCaMK.
Collapse
Affiliation(s)
- P V Sathyanarayanan
- Laboratory of Plant Molecular Biology and Physiology, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | | |
Collapse
|
7
|
Kakkar R, Raju RV, Sharma RK. Calmodulin-dependent protein kinase II from bovine cardiac muscle: purification and differential activation by calcium. Cell Calcium 1996; 20:347-53. [PMID: 8939354 DOI: 10.1016/s0143-4160(96)90040-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Calmodulin-dependent protein kinase II was purified to apparent homogeneity with a high yield from the total calmodulin-binding protein fraction of bovine cardiac muscle in a single step by gel filtration column chromatography. This procedure is simple and suitable for adaptation to large scale preparations. The purified calmodulin-dependent protein kinase has a specific enzymic activity of 2.4 mumol/min/mg when mixed histone was used as a substrate. The preparation of enzyme appears to be homogeneous when examined by SDS-PAGE. The molecular weight of the enzyme was determined to be 570 kDa by gel filtration. SDS-PAGE of the enzyme subunit showed a single protein band with an apparent molecular weight of 56 kDa. These results suggest that the calmodulin-dependent protein kinase II from bovine heart is composed of 10 identical subunits. Anti-peptide antibody raised against multifunctional calmodulin-dependent protein kinase II from rat brain showed a single immunoreactive band of 56 kDa on Western blot. These results suggested that bovine cardiac muscle calmodulin-dependent protein kinase could resemble the brain isozyme. Calmodulin-dependent protein kinase II undergoes autophosphorylation with a maximal incorporation of 1 mol of phosphate per mol of the subunit of the enzyme and the autophosphorylated enzyme remains active in the absence of Ca2+ and calmodulin. The concentration of Ca2+ required for the activation of calmodulin-dependent protein kinase II depends on the level of calmodulin in the reaction.
Collapse
Affiliation(s)
- R Kakkar
- Department of Pathology, Saskatoon Cancer Centre, College of Medicine, University of Saskatchewan, Canada
| | | | | |
Collapse
|
8
|
Hudmon A, Aronowski J, Kolb SJ, Waxham MN. Inactivation and self-association of Ca2+/calmodulin-dependent protein kinase II during autophosphorylation. J Biol Chem 1996; 271:8800-8. [PMID: 8621518 DOI: 10.1074/jbc.271.15.8800] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The time-dependent loss in enzyme activity associated with the autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaM-kinase) was altered by both pH and ATP concentration. These parameters also influenced the extent to which soluble CaM-kinase undergoes self-association to form large aggregates of sedimentable enzyme. Specifically, autophosphorylation of CaM-kinase in 0.01 mM ATP at pH 6.5 resulted in the formation of sedimentable enzyme and a 70% loss of enzyme activity. Under similar conditions at pH 7.5, the enzyme lost only 30% of its activity, and no sedimentable enzyme was detected. In contrast to 0.01 mM ATP, autophosphorylation of CaM-kinase at pH 6.5 in 1 mM ATP did not result in a loss of activity or the production of sedimentable enzyme, even though the stoichiometry of autophosphorylation was comparable. Electron microscopy studies of CaM-kinase autophosphorylated at pH 6.5 in 0.01 mM ATP revealed particles 100-300 nm in diameter that clustered into branched complexes. Inactivation and self-association of CaM-kinase were influenced by the conditions of autophosphorylation in vitro, suggesting that both the catalytic and physical properties of the enzyme may be sensitive to fluctuations in ATP concentration and pH in vivo.
Collapse
Affiliation(s)
- A Hudmon
- Department of Neurobiology, University of Texas Health Science Center, Houston, 77225, USA
| | | | | | | |
Collapse
|
9
|
Miyamoto E, Fukunaga K. A role of Ca2+/calmodulin-dependent protein kinase II in the induction of long-term potentiation in hippocampal CA1 area. Neurosci Res 1996; 24:117-22. [PMID: 8929917 DOI: 10.1016/0168-0102(95)00991-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Long-term potentiation (LTP) in the CA1 area of the hippocampus is considered to be a synaptic model for learning and memory. The induction of LTP is initiated by activation of the NMDA glutamate receptor in the postsynaptic membrane and a subsequent increase in Ca2+ -influx into the neurons following glutamate release. The action of Ca2+ has been proposed to be mediated by Ca2+ -dependent protein kinases. Recent studies indicate that, among the protein kinases, Ca2+/calmodulin-dependent protein kinase II is implicated in the induction of LTP in the hippocampus.
Collapse
Affiliation(s)
- E Miyamoto
- Department of Pharmacology, Kumamoto University School of Medicine, Japan.
| | | |
Collapse
|
10
|
Ishida A, Fujisawa H. Stabilization of calmodulin-dependent protein kinase II through the autoinhibitory domain. J Biol Chem 1995; 270:2163-70. [PMID: 7836445 DOI: 10.1074/jbc.270.5.2163] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The active 30-kDa chymotryptic fragment of calmodulin-dependent protein kinase II (CaM kinase II), devoid of the autoinhibitory domain, and the enzyme, autothiophosphorylated at Thr286/Thr287, were much more labile than was the original native enzyme. They were markedly stabilized by synthetic peptides, designed after the sequence around the autophosphorylation site in the autoinhibitory domain, such as autocamtide-2 and CaMK-(281-309), but such marked stabilizations were not observed with the ordinary exogenous substrates, such as syntide-2. These results suggest that the autoinhibitory domain of CaM kinase II plays a crucial role in stabilizing the enzyme. A nonphosphorylatable analog of autocamtide-2, AIP, strongly inhibited the activity of the 30-kDa fragment. Kinetic analysis revealed that the inhibition by AIP was competitive with respect to autocamtide-2 and CaMK-(281-289) and noncompetitive with respect to syntide-2 and ATP/Mg2+, suggesting that CaM kinase II possesses at least two distinct substrate-binding sites; one for ordinary exogenous substrates such as syntide-2 and the other for an endogenous substrate, the autophosphorylation site (Thr286/Thr287) in the autoinhibitory domain. Fluorescence analysis of the binding of 7-nitrobenz-2-oxa-1,3-diazole-4-yl labeled AIP to the 30-kDa fragment also supported this contention. Thus, the autoinhibitory domain appears to play a crucial role in keeping the enzyme stable by binding to the substrate-binding site for the autophosphorylation site.
Collapse
Affiliation(s)
- A Ishida
- Department of Biochemistry, Asahikawa Medical College, Japan
| | | |
Collapse
|
11
|
Sugiura H, Yamauchi T. Effect of ATP on binding of Ca2+/calmodulin-dependent protein kinase II with calmodulin. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1177:270-4. [PMID: 8391850 DOI: 10.1016/0167-4889(93)90122-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Binding of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) with calmodulin was directly determined by the poly(ethylene glycol) precipitation method. Calmodulin bound to CaM kinase II alpha and beta polypeptides in a molar ratio of about 1:1 in the presence of ATP, but the binding was reduced in the absence of ATP. Affinity of CaM kinase II for calmodulin increased in the presence of ATP and the autophosphorylation was observed under the conditions. ADP and adenosine beta, gamma-imidoadenosine 5'-triphosphate, hydrolysis resistant analogues, also increased the binding of CaM kinase II with calmodulin. CaM kinase II substrate syntide 2 did not increase the binding of the kinase with calmodulin. These findings indicate that the affinity of CaM kinase II for calmodulin and the amount of calmodulin bound to the kinase increase by the binding of ATP.
Collapse
Affiliation(s)
- H Sugiura
- Department of Cell Biology, Tokyo Metropolitan Institute for Neuroscience, Japan
| | | |
Collapse
|
12
|
Zhang GY, Wang JH, Sharma RK. Purification and characterization of bovine brain calmodulin-dependent protein kinase. II. The significance of autophosphorylation in the regulation of 63 kDa calmodulin-dependent cyclic nucleotide phosphodiesterase isozyme. Mol Cell Biochem 1993; 122:159-69. [PMID: 8232247 DOI: 10.1007/bf01076100] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bovine brain contains two calmodulin-dependent phosphodiesterase kinases which are separated on Sephacryl S-300 column. One of these kinases has been purified to homogeneity and shown to belong to the calmodulin-dependent protein kinase II family. Phosphorylation of the 63 kDa phosphodiesterase by this purified protein kinase results in the incorporation of 1.0 mol phosphate per mol subunit and an accompanying increase in Ca2+ concentrations required for the phosphodiesterase activation by calmodulin. The protein kinase undergoes autophosphorylation to incorporate 1.0 mol phosphate per mol of subunit of the enzyme and the autophosphorylated enzyme is active, independent of the presence of Ca2+. The autophosphorylation reaction as well as the protein kinase reaction are rendered Ca2+ independent in less than 15 seconds when approximately one mol phosphate per mol protein kinase is incorporated. The result suggests that activation of phosphodiesterase phosphorylation reaction may occur prior to the activation of phosphodiesterase and phosphatase during a cell Ca2+ flux via the protein kinase autophosphorylation mechanism.
Collapse
Affiliation(s)
- G Y Zhang
- Department of Medical Biochemistry, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
13
|
Tsumoto T. Long-term depression in cerebral cortex: a possible substrate of "forgetting" that should not be forgotten. Neurosci Res 1993; 16:263-70. [PMID: 8394553 DOI: 10.1016/0168-0102(93)90036-p] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- T Tsumoto
- Department of Neurophysiology, Osaka University Medical School, Suita, Japan
| |
Collapse
|
14
|
Ochiishi T, Sugiura H, Yamauchi T. Characterization and autophosphorylation of Ca2+/calmodulin-dependent protein kinase in the postsynaptic density of the rat forebrain. Brain Res 1993; 610:97-107. [PMID: 8390910 DOI: 10.1016/0006-8993(93)91222-e] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The enzymatic and regulatory properties of Ca2+/calmodulin-dependent protein kinase in the postsynaptic density (mPSDp CaM kinase) of the rat forebrain was compared with those of soluble Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). mPSDp CaM kinase was different from soluble CaM kinase II in terms of substrate specificity, regulatory consequences and sites of autophosphorylation. Both soluble and PSD kinases generated Ca(2+)-independent activity by autophosphorylation and Ca(2+)-independent activity almost reached the maximum during the first minute of autophosphorylation. Ca(2+)-independent activity of mPSDp CaM kinase was more stable than that of the soluble kinase under autophosphorylating conditions. Autophosphorylation of the kinases decreased the mobility of the kinases on SDS-polyacrylamide gels. The mobility shift and determination of 32P phosphate incorporation into the kinases demonstrated that there were three species in mPSDp CaM kinase alpha isoform: two active forms with and without the mobility shift (about 22 and 19%, respectively), and an inactive form (about 59%). However, there was only one species in the soluble kinase alpha isoform, which was active. The maximum incorporation of 32P phosphate into mPSDp CaM kinase alpha isoform was less than that of the soluble kinase. Tryptic peptide analysis indicated that the phosphorylation sites of mPSDp CaM kinase alpha isoform differed from those of the soluble kinase.
Collapse
Affiliation(s)
- T Ochiishi
- Department of Cell Biology, Tokyo Metropolitan Institute for Neuroscience, Japan
| | | | | |
Collapse
|
15
|
Lapadula ES, Lapadula DM, Abou-Donia MB. Persistent alterations of calmodulin kinase II activity in chickens after an oral dose of tri-o-cresyl phosphate. Biochem Pharmacol 1991; 42:171-80. [PMID: 1648921 DOI: 10.1016/0006-2952(91)90696-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Calmodulin kinase II has been found to be involved in the increased phosphorylation of brain microtubule and spinal cord neurofilament triplet proteins following treatment of animals with organophosphorus compounds that are capable of producing organophosphorus compound-induced delayed neurotoxicity (OPIDN). In this report, chickens were given a single oral neurotoxic dose of 750 mg/kg tri-o-cresyl phosphate (TOCP), and killed after 1 or 21 days of treatment. Crude calmodulin kinase II from brain cytosol as well as phosphocellulose-purified microtubules were prepared from control and treated animals. Phosphorylation reactions were started by adding protein into the phosphorylation buffer in the presence of Mg2+, Ca2+, calmodulin or trifluoperazine, and [gamma-32P]ATP. Proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subjected to autoradiography. The extent of the calmodulin kinase II autophosphorylation as well as the Ca2+/calmodulin-dependent phosphorylation of the purified microtubules was investigated. The enzyme activities isolated from control and treated animals were compared. Autophosphorylation of calmodulin kinase II was found to be higher in both 1-day and 21-day TOCP-treated animals than in control animals. The activity of the kinase to phosphorylate exogenous substrates such as tubulin and microtubule-associated protein-2 (MAP-2) was also higher in the treated hens than in the controls. The increased activity of the kinase was noted at day 1 following treatment when no clinical signs were observed and persisted until day 21 when the animals were paralyzed completely. This finding supports the significance of altered calmodulin kinase II in the pathogenesis of OPIDN.
Collapse
Affiliation(s)
- E S Lapadula
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|
16
|
Dunkley PR. Autophosphorylation of neuronal calcium/calmodulin-stimulated protein kinase II. Mol Neurobiol 1991; 5:179-202. [PMID: 1668385 DOI: 10.1007/bf02935545] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A unique feature of neuronal calcium/calmodulin-stimulated protein kinase II (CaM-PK II) is its autophosphorylation. A number of sites are involved and, depending on the in vitro conditions used, three serine and six threonine residues have been tentatively identified as autophosphorylation sites in the alpha subunit. These sites fall into three categories. Primary sites are phosphorylated in the presence of calcium and calmodulin, but under limiting conditions of temperature, ATP, Mg2+, or time. Secondary sites are phosphorylated in the presence of calcium and calmodulin under nonlimiting conditions. Autonomous sites are phosphorylated in the absence of calcium and calmodulin after initial phosphorylation of Thr-286. Mechanisms that lead to a decrease in CaM-PK II autophosphorylation include the thermolability of the enzyme and the activity of protein phosphatases. A range of in vitro inhibitors of CaM-PK II autophosphorylation have recently been identified. Autophosphorylation of CaM-PK II leads to a number of consequences in vitro, including generation of autonomous activity and subcellular redistribution, as well as alterations in conformation, activity, calmodulin binding, substrate specificity, and susceptibility to proteolysis. It is established that CaM-PK II is autophos-phorylated in neuronal cells under basal conditions. Depolarization and/or activation of receptors that lead to an increase in intracellular calcium induces a marked rise in the autophosphorylation of CaM-PK II in situ. The incorporation of phosphate is mainly found on Thr-286, but other sites are also phosphorylated at a slower rate. One consequence of the increase in CaM-PK II autophosphorylation in situ is an increase in the level of autonomous kinase activity. It is proposed that the formation of an autonomous enzyme is only one of the consequences of CaM-PK II autophosphorylation in situ and that some of the other consequences observed in vitro will also be seen. CaM-PK II is involved in the control of neuronal plasticity, including neurotransmitter release and long-term modulation of postreceptor events. In order to understand the function of CaM-PK II, it will be essential to ascertain more fully the mechanisms of its autophosphorylation in situ, including especially the sites involved, the consequences of this autophosphorylation for the kinase activity, and the relationships between the state of CaM-PK II autophosphorylation and the physiological events within neurons.
Collapse
Affiliation(s)
- P R Dunkley
- Neuroscience Group, Faculty of Medicine, University of Newcastle, NSW, Australia
| |
Collapse
|
17
|
Ikeda A, Okuno S, Fujisawa H. Studies on the generation of Ca2+/calmodulin-independent activity of calmodulin-dependent protein kinase II by autophosphorylation. Autothiophosphorylation of the enzyme. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98996-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Yamauchi T, Sekihara S, Ohsako S. Characterization of calcium/calmodulin-dependent protein kinase II isoforms from forebrain and cerebellum. Brain Res 1991; 541:198-205. [PMID: 1647249 DOI: 10.1016/0006-8993(91)91019-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaM kinase II) is composed of two distinct but related subunits, alpha and beta, in various ratios. To investigate the physiological significance of this variation, we have studied the effect of autophosphorylation of CaM kinase II isoforms purified from forebrain and cerebellum on the activity, and analyzed their endogenous protein substrates. Autophosphorylation of two kinases resulted in the appearance of Ca2(+)-independent activity and the substrate specificity of the Ca2(+)-independent form differed from that of the Ca2(+)-dependent, non-phosphorylated form of the enzyme. Increased phosphorylation of two kinases resulted in a decrease in the enzyme activity. The decrease in the enzyme activity of forebrain CaM kinase II was larger than that of cerebellar kinase. Phosphorylated forms of two kinases were less stable than the non-phosphorylated forms, and the phosphorylated form of forebrain kinase was less stable than that of cerebellar kinase. Many endogenous protein substrates of respective CaM kinase II were found in both soluble and particulate fractions of forebrain and cerebellum using gel electrophoresis. Although the major protein substrates of CaM kinase II were almost the same in forebrain and cerebellum, some of the endogenous protein substrates of respective CaM kinase II were found to be different in both soluble and particulate fractions of forebrain and cerebellum.
Collapse
Affiliation(s)
- T Yamauchi
- Department of Neurochemistry, Tokyo Metropolitan Institute for Neuroscience, Japan
| | | | | |
Collapse
|
19
|
Katoh T, Fujisawa H. Autoactivation of calmodulin-dependent protein kinase II by autophosphorylation. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)49951-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Katoh T, Fujisawa H. Calmodulin-dependent protein kinase II. Kinetic studies on the interaction with substrates and calmodulin. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1091:205-12. [PMID: 1847304 DOI: 10.1016/0167-4889(91)90063-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The kinetic reaction mechanism of calmodulin (CaM)-dependent protein kinase II (CaM-kinase II), including the regulatory mechanism by CaM, was studied by using microtubule-associated protein 2 (MAP2) as substrate under steady-state conditions. The detailed kinetic analyses of the phosphorylation of MAP2 and its inhibitions by the reaction products and by an ATP analogue, 5'-adenylylimidodiphosphate, revealed the rapid-equilibrium random mechanism. In the absence of Ca2+, CaM-kinase II was inactivated by incubation with ATP. The inactivation rate was dependent on the concentrations of ATP and MAP2, suggesting that these substrates can bind to the enzyme even in the absence of Ca2+/CaM. The activation of the enzyme by CaM reached the maximum when about 10 mol of CaM bound to 1 mol of CaM-kinase II, indicating the stoichiometry of the binding of one CaM to one subunit of the enzyme. The enzyme activity as a function of the concentration of CaM showed a sigmoidal curve. The concentration of CaM required for the half-maximal activation was dependent on the concentration of ATP at a fixed concentration of MAP2, although the Hill coefficient was unaffected by the concentration of ATP. A possible reaction mechanism of CaM-kinase II, including the phosphorylation of MAP2 by the enzyme and the binding of CaM to the enzyme, is discussed.
Collapse
Affiliation(s)
- T Katoh
- Department of Biochemistry, Asahikawa Medical College, Japan
| | | |
Collapse
|
21
|
Rich DP, Schworer CM, Colbran RJ, Soderling TR. Proteolytic activation of calcium/calmodulin-dependent protein kinase II: Putative function in synaptic plasticity. Mol Cell Neurosci 1990; 1:107-16. [DOI: 10.1016/1044-7431(90)90013-t] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/1990] [Indexed: 01/05/2023] Open
|
22
|
Fong YL, Soderling TR. Studies on the regulatory domain of Ca2+/calmodulin-dependent protein kinase II. Functional analyses of arginine 283 using synthetic inhibitory peptides and site-directed mutagenesis of the alpha subunit. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38561-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Colbran RJ, Soderling TR. Calcium/calmodulin-dependent protein kinase II. CURRENT TOPICS IN CELLULAR REGULATION 1990; 31:181-221. [PMID: 2173993 DOI: 10.1016/b978-0-12-152831-7.50007-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is a great deal known about the in vitro properties of CaM kinase II, both in terms of its substrate specificity and its regulation by calmodulin and autophosphorylation. Much of this characterization is based on experiments performed with the rat brain isozyme of CaM kinase II, although in the aspects examined to date isozymes of the kinase from other tissues appear to behave in a broadly similar manner in vitro. However, relatively little is known about the functions of the kinase in vivo. The proteins phosphorylated by the kinase (with the probable exception of synapsin I and tyrosine hydroxylase) and the role of kinase autophosphorylation in vivo remain largely unknown. Investigation of the physiological role of the kinase in brain and other tissues will be a particularly exciting area for future work. The current knowledge of the in vitro properties and the availability of cDNA clones will hopefully expedite this research.
Collapse
Affiliation(s)
- R J Colbran
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | |
Collapse
|
24
|
Rostas JAP, Brent VA, Seccombe M, Weinberger RP, Dunkley PR. Purification and characterization of calmodulin-stimulated protein kinase II from two-day and adult chicken forebrain. J Mol Neurosci 1989. [DOI: 10.1007/bf02918895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Rostas JA, Brent VA, Seccombe M, Weinberger RP, Dunkley PR. Purification and characterization of calmodulin-stimulated protein kinase II from two-day and adult chicken forebrain. J Mol Neurosci 1989; 1:93-104. [PMID: 2561876 DOI: 10.1007/bf02896893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Soluble calmodulin-stimulated protein kinase II has been purified from 2-day and adult chicken forebrain. At both ages the holoenzyme eluted from a Superose-6B column with an apparent molecular weight of approximately 700,000 daltons and contained three subunits. The subunits were found to be the counterparts of the alpha, beta, and beta' subunits of the enzyme purified from adult rat brain in that they had one-dimensional phosphopeptide maps that were indistinguishable from those of the corresponding subunit in the rat enzyme and they migrated in SDS-polyacrylamide gels with the same apparent molecular weights. However, the doublet formed by the beta subunit was much more clearly resolved in the chicken enzyme and the beta' subunit, which was much more abundant in the adult chicken than in the adult rat, was also found to be a doublet. The ratio of the concentrations of the alpha and beta subunits changed during development. By autoradiography following autophosphorylation, the alpha:beta ratios of the 2-day and adult enzymes were 0.89 +/- 0.07 and 1.92 +/- 0.26, respectively; by silver staining the alpha:beta ratios were 0.95 +/- 0.11 and 1.85 +/- 0.17, respectively. The concentration of the beta' subunit was equal to that of the beta subunit at both ages. Autophosphorylation produced a decrease in the electrophoretic mobility of the alpha and beta subunits in SDS-polyacrylamide gels and a marked decrease in the calcium dependence of the substrate phosphorylation activity of the enzyme at both ages. The purified enzyme from chicken brain appeared to be more stable under standard in vitro assay conditions than the rat enzyme, and this was particularly so for the enzyme from 2-day forebrain.
Collapse
Affiliation(s)
- J A Rostas
- Neuroscience Group, Faculty of Medicine, University of Newcastle, N.S.W., Australia
| | | | | | | | | |
Collapse
|
26
|
Colbran RJ, Schworer CM, Hashimoto Y, Fong YL, Rich DP, Smith MK, Soderling TR. Calcium/calmodulin-dependent protein kinase II. Biochem J 1989; 258:313-25. [PMID: 2539803 PMCID: PMC1138364 DOI: 10.1042/bj2580313] [Citation(s) in RCA: 231] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- R J Colbran
- Howard Hughes Medical Institute, Nashville, TN
| | | | | | | | | | | | | |
Collapse
|
27
|
Sharma RK, Zhang GY, Mooibroek MJ, Wang JH. Regulation of the 63-kDa subunit-containing calmodulin-dependent cyclic nucleotide phosphodiesterase isozyme. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1989; 255:397-408. [PMID: 2559602 DOI: 10.1007/978-1-4684-5679-0_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- R K Sharma
- Department of Medical Biochemistry, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
28
|
Tobimatsu T, Kameshita I, Fujisawa H. Molecular cloning of the cDNA encoding the third polypeptide (gamma) of brain calmodulin-dependent protein kinase II. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37561-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
29
|
The role of autophosphorylation in activation of the type II calmodulin-dependent protein kinase. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68667-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Bronstein JM, Wasterlain CG, Farber DB. A retinal calmodulin-dependent kinase: calcium/calmodulin-stimulated and -inhibited states. J Neurochem 1988; 50:1438-46. [PMID: 3361303 DOI: 10.1111/j.1471-4159.1988.tb03028.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A calcium/calmodulin-dependent protein kinase was isolated from retina. The retinal enzyme is composed exclusively of 50-kilodalton (kD) subunits and has a molecular mass of approximately 275 kD, in contrast to forebrain calmodulin kinase II, which is composed of 50-kD and 60-kD subunits in a 3:1 ratio and has a molecular mass of approximately 520 kD. Similar substrate specificities, kinetic properties, capacity to bind calmodulin, and immunoreactivity suggest that the retinal kinase is an isoenzyme of forebrain calmodulin kinase II. Both kinases autophosphorylate in an intramolecular manner; however, autophosphorylation has different effects on the activities of the two enzymes. Autophosphorylation of retinal calmodulin kinase converts the enzyme from a calcium/calmodulin-dependent to a calcium/calmodulin-inhibited kinase, with high activity in the absence of calcium, whereas autophosphorylation of the forebrain kinase results in a less active, calcium/calmodulin-independent enzyme. These properties of calmodulin kinase may play an important role in retinal function.
Collapse
Affiliation(s)
- J M Bronstein
- Department of Neuroscience, UCLA School of Medicine 90024
| | | | | |
Collapse
|
31
|
Rostas JA, Seccombe M, Weinberger RP. Two developmentally regulated isoenzymes of calmodulin-stimulated protein kinase II in rat forebrain. J Neurochem 1988; 50:945-53. [PMID: 2828551 DOI: 10.1111/j.1471-4159.1988.tb03003.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Soluble calmodulin-stimulated protein kinase II has been purified from adult and 10-day-old rat forebrain. By autoradiography, the alpha/beta subunit ratios of the 10-day and adult enzymes were 0.67 +/- 0.03 and 2.20 +/- 0.15, respectively. By silver staining, the alpha/beta subunit ratios were 1.02 +/- 0.06 and 2.36 +/- 0.10, respectively. The apparent holoenzyme molecular masses of the purified 10-day and adult enzymes were 500,000 daltons and 700,000 daltons. However, varying the purification conditions revealed higher and lower molecular mass forms at both ages and suggested that the form of the kinase that is usually purified is merely that which has the highest affinity for calmodulin-Sepharose and may not be the form of the kinase that exists in vivo. The subunits of the adult and 10-day enzymes were indistinguishable by one- and two-dimensional electrophoresis and one-dimensional proteolytic peptide maps. These results are consistent with the suggestion that at least two developmentally regulated isoenzymes of this kinase exist in rat forebrain.
Collapse
Affiliation(s)
- J A Rostas
- Neuroscience Group, Faculty of Medicine, University of Newcastle, New South Wales, Australia
| | | | | |
Collapse
|
32
|
TASUGAWA SETSUKO, FUKUNAGA KOHJI, YAMAMOTO HIDEYUKI, MIYAKAWA TAIHEI, MIYAMOTO EISHICHI. ACTIVATION OF Ca2+/CALMODULIN-DEPENDENT PROTEIN KINASE II BY AUTOPHORYLATION: SPECIFIED SUBSTRATES ENHANCE THE KINASE ACTIVITY. Biomed Res 1988. [DOI: 10.2220/biomedres.9.497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- SETSUKO TASUGAWA
- Department of Neuropsychiatry, Kumamoto University Medical School
| | - KOHJI FUKUNAGA
- Department of Pharmacology, Kumamoto University Medical School
| | | | - TAIHEI MIYAKAWA
- Department of Neuropsychiatry, Kumamoto University Medical School
| | | |
Collapse
|
33
|
Kelly PT, Shields S, Conway K, Yip R, Burgin K. Developmental changes in calmodulin-kinase II activity at brain synaptic junctions: alterations in holoenzyme composition. J Neurochem 1987; 49:1927-40. [PMID: 2824699 DOI: 10.1111/j.1471-4159.1987.tb02456.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synaptic junctions (SJs) from rat forebrain were isolated at increasing postnatal ages and examined for endogenous protein kinase activities. Our studies focused on the postnatal maturation of the multifunctional protein kinase designated Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II). This kinase is comprised of a major 50-kilodalton (kDa) and a minor 60-kDa subunit. Experiments examined the developmental properties of CaM-kinase II associated with synaptic plasma membranes (SPMs) and synaptic junctions (SJs), as well as the holoenzyme purified from cytosolic extracts. Large developmental increases in CaM-kinase II activity of SJ fractions were observed between postnatal days 6 and 20; developmental changes were examined for a number of properties including (a) autophosphorylation, (b) endogenous substrate phosphorylation, (c) exogenous substrate phosphorylation, and (d) immunoreactivity. Results demonstrated that forebrain CaM-kinase II undergoes a striking age-dependent change in subunit composition. In early postnatal forebrain the 60-kDa subunit constitutes the major catalytic and immunoreactive subunit of the holoenzyme. The major peak of CaM-kinase II activity in SJ fractions occurred at approximately postnatal day 20, a time near the end of the most active period of in vivo synapse formation. Following this developmental age, CaM-kinase II continued to accumulate at SJs; however, its activity was not as highly activated by Ca2+ plus calmodulin.
Collapse
Affiliation(s)
- P T Kelly
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston 77225
| | | | | | | | | |
Collapse
|
34
|
Saitoh Y, Yamamoto H, Fukunaga K, Matsukado Y, Miyamoto E. Inactivation and reactivation of the multifunctional calmodulin-dependent protein kinase from brain by autophosphorylation and dephosphorylation: involvement of protein phosphatases from brain. J Neurochem 1987; 49:1286-92. [PMID: 3040911 DOI: 10.1111/j.1471-4159.1987.tb10022.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The multifunctional calmodulin-dependent protein kinase (calmodulin-kinase) from rat brain was autophosphorylated in a Ca2+- and calmodulin-dependent manner. The activity of the autophosphorylated enzyme was independent of Ca2+ and calmodulin. Calmodulin-kinase was dephosphorylated by protein phosphatase C from bovine brain, which is the catalytic subunits of protein phosphatases 1 and 2A. The holoenzyme of protein phosphatase 2A was also involved in the dephosphorylation of the enzyme. The autophosphorylated sites of calmodulin-kinase were universally dephosphorylated by protein phosphatase C. Calmodulin-kinase was inactivated and reactivated by autophosphorylation and dephosphorylation, respectively. Furthermore, the regulation of calmodulin-kinase by autophosphorylation and dephosphorylation was observed using calmodulin-kinase from canine heart. These results suggest that the activity of calmodulin-kinase is regulated by autophosphorylation and dephosphorylation, and that the regulation is the universal phenomenon for many other calmodulin-kinases in various tissues.
Collapse
|
35
|
Hashimoto Y, Schworer CM, Colbran RJ, Soderling TR. Autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. Effects on total and Ca2+-independent activities and kinetic parameters. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47525-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Kelly PT, Shenolikar S. Role of autophosphorylation in regulating calmodulin-dependent protein kinases. Methods Enzymol 1987; 139:690-714. [PMID: 3587043 DOI: 10.1016/0076-6879(87)39121-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Lou LL, Lloyd SJ, Schulman H. Activation of the multifunctional Ca2+/calmodulin-dependent protein kinase by autophosphorylation: ATP modulates production of an autonomous enzyme. Proc Natl Acad Sci U S A 1986; 83:9497-501. [PMID: 3467320 PMCID: PMC387167 DOI: 10.1073/pnas.83.24.9497] [Citation(s) in RCA: 160] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The multifunctional Ca2+/calmodulin-dependent protein kinase purified from rat brain cytosol undergoes an intramolecular self-phosphorylation or autophosphorylation. Autophosphorylation produces two strikingly different effects on kinase activity that are dependent on the level of ATP used in the reaction. At low but saturating levels of ATP (5 microM), autophosphorylation causes a 75% reduction in kinase activity, with the residual activity still retaining a dependence on Ca2+ and calmodulin. By contrast, at high but physiological levels of ATP (500 microM), the kinase is converted by autophosphorylation to a form that is autonomous of Ca2+ and calmodulin, with no accompanying reduction in activity. The extent of phosphate incorporation does not determine whether the kinase becomes inhibited or autonomous. Autophosphorylated kinase shows the functional change characteristic of the ATP concentration used during the reaction--inhibited at low ATP and autonomous at high ATP--even when compared at the same level of incorporated phosphate. ATP appears to regulate the site(s) phosphorylated during activation of the kinase and thereby modulates the dual effects of autophosphorylation. Events triggered by transient elevations of cellular Ca2+ may be potentiated and retained by generation of the Ca2+/calmodulin-independent protein kinase activity.
Collapse
|
38
|
Hatada Y, Munemura M, Furuki Y, Sakoda Y, Maeyama M, Miyamoto E. The effects of A23187 and phorbol ester on the phosphorylation of proteins in rat anterior pituitary cells. Neurosci Res 1986; 4:25-36. [PMID: 3101009 DOI: 10.1016/0168-0102(86)90014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effects of A23187 and 12-O-tetradecanoyl-phorbol-13-acetate (TPA) on the phosphorylation of proteins in normal rat anterior pituitary cells were compared. A23187 rapidly activated the phosphorylation of at least 5 proteins (45, 47, 53, 54 and 58 kDa), which reached the maximal level in 2-10 min, and decreased gradually thereafter. In contrast, TPA activated the phosphorylation of at least 6 proteins (45, 62, 64, 72, 76 and 82 kDa), which were mostly distinguished from those activated by A23187. TPA-induced response was elicited more slowly, reached a plateau after about 10 min, and was sustained thereafter. These results suggest that the protein phosphorylation stimulated by A23187 and TPA is conducted by different mechanisms.
Collapse
|
39
|
Suzuki T, Tanaka R. Characterization of Ca2+/calmodulin-dependent protein kinase associated with rat cerebral synaptic junction: substrate specificity and effect of autophosphorylation. J Neurochem 1986; 47:642-51. [PMID: 3734797 DOI: 10.1111/j.1471-4159.1986.tb04548.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Ca2+/calmodulin (CaM)-dependent protein kinase associated with rat cerebral synaptic junction (SJ) was characterized, using the SJ fraction as the enzyme preparation, to clarify the functional significance of the enzyme in situ. The protein kinase was greatly activated in the presence of micromolar concentrations of both Ca2+ and calmodulin (EC50 for Ca2+, 1.0 microM; that for CaM, 100 nM). The Km for ATP was 150 microM. SJ proteins were phosphorylated without a lag time, and the phosphorylation reached its maximum within 2-10 min at 25 degrees C. The endogenous substrates consisted of four major (160K, 120K, 60K, and 51K Mr) and 10 minor proteins. Compared with the endogenous substrate phosphorylation, the phosphorylation of exogenously added proteins (myosin light chains from chicken muscle, casein, arginine-rich histone, microtubule-associated protein-2, tau-protein, and tubulin) was weak, although they are expected to be good substrates for the soluble form of the Ca2+/CaM-dependent protein kinase. Autophosphorylation of the enzyme in SJ inhibited its activity and did not alter the subcellular distribution of the enzyme.
Collapse
|
40
|
Reversible generation of a Ca2+-independent form of Ca2+(calmodulin)-dependent protein kinase II by an autophosphorylation mechanism. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)84416-2] [Citation(s) in RCA: 206] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
41
|
Lai Y, Nairn AC, Greengard P. Autophosphorylation reversibly regulates the Ca2+/calmodulin-dependence of Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci U S A 1986; 83:4253-7. [PMID: 3012560 PMCID: PMC323710 DOI: 10.1073/pnas.83.12.4253] [Citation(s) in RCA: 214] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II contains two subunits, alpha (Mr 50,000) and beta (Mr 60,000/58,000), both of which undergo Ca2+/calmodulin-dependent autophosphorylation. In the present study, we have studied the mechanism of this autophosphorylation reaction and its effect on the activity of the enzyme. Both subunits are autophosphorylated through an intramolecular mechanism. Using synapsin I as substrate, Ca2+/calmodulin-dependent protein kinase II, in its unphosphorylated form, was totally dependent on Ca2+ and calmodulin for its activity. Preincubation of the enzyme with Ca2+, calmodulin, and ATP, under conditions where autophosphorylation of both subunits occurred, converted the enzyme to one that was only partially dependent on Ca2+ and calmodulin for its activity. No change in the total activity, measured in the presence of Ca2+ and calmodulin, was observed. The nonhydrolyzable ATP analog adenosine 5'-[beta, gamma-imido] triphosphate did not substitute for ATP in the preincubation. Moreover, dephosphorylation of autophosphorylated Ca2+/calmodulin-dependent protein kinase II with protein phosphatase 2A resulted in an enzyme that was again totally dependent on Ca2+ and calmodulin for its activity. We propose that autophosphorylation and dephosphorylation reversibly regulate the Ca2+ and calmodulin requirement of Ca2+/calmodulin-dependent protein kinase II.
Collapse
|
42
|
Yamauchi T, Fujisawa H. Further comparison of calmodulin-dependent protein kinase II from brain and calmodulin-dependent glycogen synthase kinase from skeletal muscle. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 886:57-63. [PMID: 3006790 DOI: 10.1016/0167-4889(86)90211-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Calmodulin-dependent protein kinase II was purified from rabbit brain and its properties were compared with those of calmodulin-dependent protein kinase II from rat brain and calmodulin-dependent glycogen synthase kinase from rabbit skeletal muscle. Rabbit brain calmodulin-dependent protein kinase II was clearly distinguished from rabbit skeletal muscle glycogen synthase kinase with respect to size, behavior on autophosphorylation, immunological cross-reactivity and peptide mapping, but was indistinguishable from rat brain calmodulin-dependent protein kinase II in all respects examined. Thus, differences between calmodulin-dependent protein kinase II and glycogen synthase kinase appear not to reflect a species difference but to reflect a tissue difference.
Collapse
|
43
|
Abstract
Autophosphorylation of purified calmodulin kinase II dramatically inhibited protein kinase activity and enhanced substrate selectivity. Inhibition was observed over a wide range of calmodulin concentrations but calmodulin binding was unaffected. Autophosphorylation of calmodulin kinase II may be a mechanism for limiting phosphorylation to physiological substrates and terminating some of calcium's actions in synaptic events.
Collapse
|
44
|
Schrama LH, De Graan PN, Wadman WJ, Lopes da Silva FH, Gispen WH. Long-term potentiation and 4-aminopyridine-induced changes in protein and lipid phosphorylation in the hippocampal slice. PROGRESS IN BRAIN RESEARCH 1986; 69:245-57. [PMID: 2833801 DOI: 10.1016/s0079-6123(08)61063-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|