1
|
Salisbury LJ, Fletcher SJ, Stok JE, Churchman LR, Blanchfield JT, De Voss JJ. Characterization of the cholesterol biosynthetic pathway in Dioscorea transversa. J Biol Chem 2023:104768. [PMID: 37142228 DOI: 10.1016/j.jbc.2023.104768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
Cholesterol is the precursor of bioactive plant metabolites such as steroidal saponins. An Australian plant, Dioscorea transversa, produces only two steroidal saponins: 1β-hydroxyprotoneogracillin and protoneogracillin. Here, we used D. transversa as a model in which to elucidate the biosynthetic pathway to cholesterol, a precursor to these compounds. Preliminary transcriptomes of D. transversa rhizome and leaves were constructed, annotated, and analyzed. We identified a novel sterol side chain reductase (SSR) as a key initiator of cholesterol biosynthesis in this plant. By complementation in yeast, we determine that this SSR reduces Δ24,28 double bonds required for phytosterol biogenesis, as well as Δ24,25 double bonds. The latter function is believed to initiate cholesterogenesis by reducing cycloartenol to cycloartanol. Through heterologous expression, purification and enzymatic reconstitution we also demonstrate that the D. transversa sterol demethylase (CYP51) effectively demethylates obtusifoliol, an intermediate of phytosterol biosynthesis and 4-desmethyl-24,25-dihydrolanosterol, a postulated downstream intermediate of cholesterol biosynthesis. In summary, we investigated specific steps of the cholesterol biosynthetic pathway, providing further insight into the downstream production of bioactive steroidal saponin metabolites.
Collapse
|
2
|
Metabolism and Biological Activities of 4-Methyl-Sterols. Molecules 2019; 24:molecules24030451. [PMID: 30691248 PMCID: PMC6385002 DOI: 10.3390/molecules24030451] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
4,4-Dimethylsterols and 4-methylsterols are sterol biosynthetic intermediates (C4-SBIs) acting as precursors of cholesterol, ergosterol, and phytosterols. Their accumulation caused by genetic lesions or biochemical inhibition causes severe cellular and developmental phenotypes in all organisms. Functional evidence supports their role as meiosis activators or as signaling molecules in mammals or plants. Oxygenated C4-SBIs like 4-carboxysterols act in major biological processes like auxin signaling in plants and immune system development in mammals. It is the purpose of this article to point out important milestones and significant advances in the understanding of the biogenesis and biological activities of C4-SBIs.
Collapse
|
3
|
Hamberger B, Bak S. Plant P450s as versatile drivers for evolution of species-specific chemical diversity. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120426. [PMID: 23297350 DOI: 10.1098/rstb.2012.0426] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The irreversible nature of reactions catalysed by P450s makes these enzymes landmarks in the evolution of plant metabolic pathways. Founding members of P450 families are often associated with general (i.e. primary) metabolic pathways, restricted to single copy or very few representatives, indicative of purifying selection. Recruitment of those and subsequent blooms into multi-member gene families generates genetic raw material for functional diversification, which is an inherent characteristic of specialized (i.e. secondary) metabolism. However, a growing number of highly specialized P450s from not only the CYP71 clan indicate substantial contribution of convergent and divergent evolution to the observed general and specialized metabolite diversity. We will discuss examples of how the genetic and functional diversification of plant P450s drives chemical diversity in light of plant evolution. Even though it is difficult to predict the function or substrate of a P450 based on sequence similarity, grouping with a family or subfamily in phylogenetic trees can indicate association with metabolism of particular classes of compounds. Examples will be given that focus on multi-member gene families of P450s involved in the metabolic routes of four classes of specialized metabolites: cyanogenic glucosides, glucosinolates, mono- to triterpenoids and phenylpropanoids.
Collapse
Affiliation(s)
- Björn Hamberger
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871 Copenhagen, Denmark.
| | | |
Collapse
|
4
|
Burden RS, Cooke DT, Hargreaves JA. Review-mechanism of action of herbicidal and fungicidal compounds on cell membranes. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780300202] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Burden RS, Carter GA, Clark T, Cooke DT, Croker SJ, Deas AHB, Hedden P, James CS, Lenton JR. Comparative activity of the enantiomers of triadimenol and paclobutrazol as inhibitors of fungal growth and plant sterol and gibberellin biosynthesis. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780210403] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Taton M, Benveniste P, Rahier A. Mechanism of inhibition of sterol biosynthesis enzymes byN-substituted morpholines. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780210404] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Vanden Bossche H, Marichal P, Gorrens J, Bellens D, Verhoeven H, Coene MC, Lauwers W, Janssen PAJ. Interaction of azole derivatives with cytochrome P-450 isozymes in yeast, fungi, plants and mammalian cells. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780210406] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Bargar TM, Secor J, Markley LD, Shaw BA, Erickson JA. A comparative molecular field analysis study of obtusifoliol 14α-methyl demethylase inhibitors. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1096-9063(199911)55:11<1059::aid-ps57>3.0.co;2-j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Rondet S, Taton M, Rahier A. Identification, characterization, and partial purification of 4 alpha-carboxysterol-C3-dehydrogenase/ C4-decarboxylase from Zea mays. Arch Biochem Biophys 1999; 366:249-60. [PMID: 10356290 DOI: 10.1006/abbi.1999.1218] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A microsomal preparation from seedlings of Zea mays catalyzed the NAD+-dependent oxidative decarboxylation of several substrates, including 4alpha-carboxy-cholest-7-en-3beta-ol, synthesized according to a new procedure, giving the first in vitro evidence for this enzymatic activity in a higher plant. A GC assay has been developed to detect the Delta7-cholestenone produced and the kinetic parameters of the microsomal system have been established. 4alpha-Carboxysterol decarboxylation shows an exclusive requirement for an oxidized pyridine nucleotide, with NAD+ being more efficient than NADP+. The decarboxylation reaction is independent of molecular oxygen. 4alpha-Carboxysterol-C3-dehydrogenase/C4-decarboxylase (4alpha-CD) is a microsome-bound protein which can be efficiently solubilized by detergents, including Brij W-1 and sodium cholate. The Brij W-1-solubilized enzyme was partially purified 290-fold by a combination of DEAE anion-exchange chromatography, Cibacron blue 3GA-agarose dye chromatography, and gel permeation. The apparent molecular mass of 4alpha-CD in sodium cholate was estimated to be 45 kDa. These results support the contention that demethylation at C4 of plant sterols is composed of two separate processes: an oxygen- and NAD(P)H-dependent oxidation of the 4alpha-methyl group to produce the 4alpha-carboxysterol metabolite (S. Pascal et al., J. Biol. Chem. 268, 11639, 1993) followed by oxygen-independent dehydrogenation/decarboxylation to produce an obligatory 3-ketosteroid.
Collapse
Affiliation(s)
- S Rondet
- Institut de Biologie Moléculaire des Plantes, CNRS UPR 406, 28 rue Goethe, Strasbourg Cedex, 67083, France
| | | | | |
Collapse
|
10
|
Bach TJ, Benveniste P. Cloning of cDNAs or genes encoding enzymes of sterol biosynthesis from plants and other eukaryotes: heterologous expression and complementation analysis of mutations for functional characterization. Prog Lipid Res 1997; 36:197-226. [PMID: 9624427 DOI: 10.1016/s0163-7827(97)00009-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- T J Bach
- Institut de Biologie Moléculaire des Plantes (C.N.R.S., UPR 0406), Université Louis Pasteur, Strasbourg, France
| | | |
Collapse
|
11
|
Rahier A, Smith M, Taton M. The role of cytochrome b5 in 4alpha-methyl-oxidation and C5(6) desaturation of plant sterol precursors. Biochem Biophys Res Commun 1997; 236:434-7. [PMID: 9240456 DOI: 10.1006/bbrc.1997.6974] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The electron donors for the membrane-bound sterol-4alpha-methyl-oxidases and sterol C5(6)-desaturase of plant sterol biosynthesis have not been previously identified. The requirement of cytochrome b5 to shuttle reducing equivalents from NAD(P)H to 4,4-dimethylsterol-4alpha-methyl oxidase (4,4-DMSO), 4alpha-methylsterol-4alpha-methyl oxidase (4alpha-MSO), and delta7-sterol-C5(6) desaturase (5-DES) was investigated using a purified preparation of IgG raised against plant cytochrome b5. The activities of 4,4-DMSO, 4alpha-MSO, and 5-DES, three oxidative reactions not mediated by cytochrome P-450, were strongly and completely inhibited by the antibody in a microsomal preparation from maize. In addition the IgG also inhibited NADH-dependent cytochrome c reduction in the same preparation. These results strongly suggest that membrane-bound cytochrome b5 of maize microsomes is an obligatory electron carrier from NAD(P)H to 4,4-DMSO, 4alpha-MSO, and 5-DES.
Collapse
Affiliation(s)
- A Rahier
- Département d'Enzymologie Cellulaire et Moléculaire, Institut de Biologie Moléculaire des Plantes, CNRS UPR 406, Strasbourg, France.
| | | | | |
Collapse
|
12
|
Cabello-Hurtado F, Zimmerlin A, Rahier A, Taton M, DeRose R, Nedelkina S, Batard Y, Durst F, Pallett KE, Werck-Reichhart D. Cloning and functional expression in yeast of a cDNA coding for an obtusifoliol 14alpha-demethylase (CYP51) in wheat. Biochem Biophys Res Commun 1997; 230:381-5. [PMID: 9016788 DOI: 10.1006/bbrc.1996.5873] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Screening of a wheat cDNA library with an heterologous CYP81B1 probe from Helianthus tuberosus led to the isolation of a partial cDNA coding a protein with all the characteristics of a typical P450 with high homology (32-39% identity) to the fungal and mammalian CYP51s. Extensive screening of several wheat cDNA libraries isolated a longer cDNA (W516) coding a peptide of 453 amino acids. Alignment of W516 with other P450 sequences revealed that it was missing a segment corresponding to the N-terminal membrane anchor of the protein. The corresponding segment from the yeast lanosterol 14alpha-demethylase was linked to the partial wheat cDNA and the chimera expressed in Saccharomyces cerevisiae. Compared to microsomes from control yeasts, membranes of yeast expressing the chimera catalysed 14alpha-demethylation of obtusifoliol with an increased efficiency relative to lanosterol demethylase activity. W516 is thus a plant member of the most ancient and conserved P450 family, CYP51.
Collapse
Affiliation(s)
- F Cabello-Hurtado
- Department of Cellular and Molecular Enzymology, Institute of Plant Molecular Biology, CNRS UPR 406, Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schalk M, Pierrel MA, Zimmerlin A, Batard Y, Durst F, Werck-Reichhart D. Xenobiotics: Substrates and inhibitors of the plant cytochrome P450. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 1997; 4:229-34. [PMID: 19005807 DOI: 10.1007/bf02986353] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The ability of a plant cytochrome P450 to bind and metabolise plant endogenous molecules and xenobiotics was investigated. The work was performed on the yeast-expressed CYP73A1, a cinnamate 4-hydroxylase isolated from Helianthus tuberosus. CYP73 controls the general phenylpropanoid pathway and is likely to be one of the most abundant sources of P450 in the biosphere. The enzyme shows a high selectivity toward plant secondary metabolites. Nevertheless, it oxygenates several small and planar xenobiotics with low efficiency, including an herbicide (chlorotoluron). One xenobiotic molecule, 2-naphthoic acid, is hydroxylated with an efficiency comparable to that of the physiological substrate. This reaction was used to devise a fluorimetric test for the rapid measurement of enzyme activity. A series of herbicidal molecules (hydroxybenzonitriles) are shown to bind the active site without being metabolised. These molecules behave as strong competitive inhibitors of CYP73 with a K(i) in the same micromolar range as the K(m) for the physiological substrate. It is proposed that their inhibition of the phenylpropanoid pathway reinforces their other phytotoxic effects at the level of the chloroplasts. All our results indicate a strong reciprocal interaction between plant P450s and xenobiotics.
Collapse
Affiliation(s)
- M Schalk
- Département d'Enzymologie Cellulaire et Moléculaire, Institut de Biologie Moléculaire des Plantes, CNRS UPR 406, 28 rue Goethe, F-67000, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
14
|
Kahn RA, Bak S, Olsen CE, Svendsen I, Moller BL. Isolation and reconstitution of the heme-thiolate protein obtusifoliol 14alpha-demethylase from Sorghum bicolor (L.) Moench. J Biol Chem 1996; 271:32944-50. [PMID: 8955137 DOI: 10.1074/jbc.271.51.32944] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The heme-thiolate (cytochrome P450) enzyme which catalyzes the 14alpha-demethylation of obtusifoliol has been isolated from microsomes prepared from etiolated seedlings of Sorghum bicolor (L.) Moench. The obtusifoliol 14alpha-demethylase is a key enzyme in plant sterol biosynthesis and a target for the design of phyla-specific sterol 14alpha-demethylase inhibitors. Microsomal cytochrome P450s were solubilized by using the detergents Renex 690 and reduced Triton X-100, and the obtusifoliol 14alpha-demethylase was isolated by DEAE ion exchange and dye affinity column chromatography. The isolated enzyme has an absorption spectrum characteristic for low spin cytochrome P450s and produces a Type I binding spectrum with obtusifoliol as substrate. Binding spectra were not obtained with lanosterol, campesterol, sitosterol, or stigmasterol. Obtusifoliol 14alpha-demethylase has an apparent molecular mass of 53 kDa and is estimated to constitute approximately 20% of the total cytochrome P450 content of the microsomal membranes and about 0.2% of the total microsomal protein. Gas chromatography-mass spectrometry analysis of reconstitution experiments with dilauroylphosphatidylcholine micelles containing isolated obtusifoliol 14alpha-demethylase and sorghum NADPHcytochrome P450 oxidoreductase demonstrated the conversion of obtusifoliol (4alpha,14alpha-dimethyl-5alpha-ergosta-8, 24(28)-dien-3beta-ol) to 4alpha-methyl-5alpha-ergosta-8,14, 24(28)-trien3beta-ol, the 14alpha-demethylated product of obtusifoliol with a double bond introduced at the Delta14 position. The N-terminal amino acid sequence of the protein is MDLADIPQ/KQQRLMAGXALVV. Five internal sequences were obtained after endoproteinase Lys-C and Glu-C digestion. The fragment AAGAFSYISFGGGRH aligns with the unique heme binding domain of mammalian and yeast sterol 14alpha-demethylases which belong to the CYP51 family. Therefore it is conceivable that the obtusifoliol 14alpha-demethylase from plants also belongs to the CYP51 family, the only P450 family so far known to be conserved across the phyla.
Collapse
Affiliation(s)
- R A Kahn
- Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
15
|
Imaishi H, Yamada T, Ohkawa H. Purification and immunochemical characteristics of NADPH-cytochrome P-450 oxidoreductase from tobacco cultured cells. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1246:53-60. [PMID: 7811731 DOI: 10.1016/0167-4838(94)00183-h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
NADPH-cytochrome P-450 oxidoreductase (EC 1.6.2.4) was purified from the microsomal fraction of tobacco (Nicotiana tabacum) BY2 cells by chromatography on two anion-exchange columns and 2',5' ADP-Sepharose 4B column. The purified enzyme showed a single protein band with a molecular weight of 79 kDa on SDS-PAGE and exhibited a typical flavoprotein redox spectrum, indicating the presence of an equimolar quantity of FAD and FMN. This enzyme followed Michaelis-Menten Kinetics with Km values of 24 microM for NADPH and 16 microM for cytochrome c. An in vitro reconstituted system of the purified reductase with a partially purified tobacco cytochrome P-450 preparation showed the cinnamic acid 4-hydroxylase activity at the rate of 14 pmol min-1 nmol-1 P-450 protein and with a purified rabbit P-4502C14 catalyzed N-demethylation of aminopyrine at the rate of 6 pmol min-1 nmol-1 P-450 protein. Polyclonal antibodies raised against the purified reductase reacted with tobacco reductase but not with yeast reductase on Western blot analysis. Anti-yeast reductase antibodies did not react with the tobacco reductase. This result indicate that the tobacco reductase was immunochemically different from the yeast reductase. The anti-tobacco reductase antibodies totally inhibited the tobacco reductase activity, but not the yeast reductase. Also, Western blot analyses using the anti-tobacco reductase antibodies revealed that leaves, roots and shoots of Nicotiana tabacum plants contained an equal amount of the reductase protein. From these results, it was suggested that there are different antibody binding sites, which certainly participate in enzyme activity, between tobacco and yeast reductase.
Collapse
Affiliation(s)
- H Imaishi
- Department of Biological and Environmental Science, Faculty of Agriculture, Kobe University, Japan
| | | | | |
Collapse
|
16
|
Abstract
Cytochromes P450 from higher plants share many general characteristics with those from animals and microorganisms. There are now 20 known P450 gene families in plants, with the number rapidly increasing. Many of these enzymes catalyze reactions in the secondary metabolic pathways of higher plants. The sheer number of plant species and the variety of these many pathways together result in the diverse enzyme chemistry available from P450s in the plant kingdom. Highlights of recent findings and of the contents of this journal issue are summarized.
Collapse
Affiliation(s)
- F Durst
- IBMP-CNRS Cellular and Molecular Enzymology, Strasbourg, France
| | | |
Collapse
|
17
|
Abstract
The present status of plant cytochrome P450 research is reviewed. A comparison of the properties of this group of cytochrome proteins with those of other microsomal b-type haem proteins is made. The range of reactions catalysed by P450s is discussed as well as recent progress in improving purification and reconstitution. Molecular cloning approaches that have overcome the earlier block to accessing this gene superfamily are discussed and future prospects highlighted. Expression of the gene family is discussed in relation to regulation in response to environmental and developmental cues and tissue and subcellular localization. The biotechnological importance of this gene family is stressed.
Collapse
Affiliation(s)
- G P Bolwell
- Department of Biochemistry, Royal Holloway and Bedford New College, University of London, Egham, Surrey, U.K
| | | | | |
Collapse
|
18
|
Pierrel MA, Batard Y, Kazmaier M, Mignotte-Vieux C, Durst F, Werck-Reichhart D. Catalytic properties of the plant cytochrome P450 CYP73 expressed in yeast. Substrate specificity of a cinnamate hydroxylase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 224:835-44. [PMID: 7925408 DOI: 10.1111/j.1432-1033.1994.00835.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The catalytic properties of CYP73, a cinnamate 4-hydroxylase isolated from Helianthus tuberosus tuber [Teutsch, H. G., Hasenfratz, M. P., Lesot, A., Stoltz, C., Garnier, J. M., Jeltsch, J. M., Durst, F. & Werck-Reichhart, D. (1993) Proc. Natl Acad. Sci. USA 90, 4102-4106] and expressed in an optimised yeast system [Urban, P., Werck-Reichart, D., Teutsch, G. H., Durst, F., Regnier, S., Kazmaier, M. & Pompon, D. (1994) Eur. J. Biochem. 222, 843-850] have been investigated. Microsomes from transformed yeast catalysed trans-cinnamate hydroxylation with high efficiency. CYP73 was highly specific for its natural substrate, and did not catalyse oxygenation of p-coumarate, benzoate, ferulate, naringenin or furanocoumarins. No metabolism of terpenoids or fatty acids, known substrates of plant P450s, was observed. CYP73 however demethylated the natural coumarin herniarin into umbelliferone. In addition, it was shown to oxygenate five xenobiotics and mechanism-based inactivators, including the herbicide chlorotoluron. All substrates of CYP73 were small planar aromatic molecules. Comparison of the kinetic parameters of CYP73 for its various substrates showed that, as expected, cinnamate was by far the best substrate of this P450. The physiological and toxicological significance of these observations are discussed.
Collapse
Affiliation(s)
- M A Pierrel
- Department of Cellular and Molecular Enzymology, CNRS UPR 406, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
19
|
Shet MS, Sathasivan K, Arlotto MA, Mehdy MC, Estabrook RW. Purification, characterization, and cDNA cloning of an NADPH-cytochrome P450 reductase from mung bean. Proc Natl Acad Sci U S A 1993; 90:2890-4. [PMID: 8464904 PMCID: PMC46202 DOI: 10.1073/pnas.90.7.2890] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We report here the isolation and deduced amino acid sequence of the flavoprotein, NADPH-cytochrome P450 (cytochrome c) reductase (EC 1.6.2.4), associated with the microsomal fraction of etiolated mung bean seedlings (Vigna radiata var. Berken). An 1150-fold purification of the plant reductase was achieved, and SDS/PAGE showed a predominant protein band with an apparent molecular mass of approximately 82 kDa. The purified plant NADPH-P450 reductase gave a positive reaction as a glycoprotein, exhibited a typical flavoprotein visible absorbance spectrum, and contained almost equimolar quantities of FAD and FMN per mole of enzyme. Specific antibodies revealed the presence of unique epitopes distinguishing the plant and mammalian flavoproteins as demonstrated by Western blot analyses and inhibition studies. Peptide fragments from the purified plant NADPH-P450 reductase were sequenced, and degenerate primers were used in PCR amplification reactions. Overlapping cDNA clones were sequenced, and the deduced amino acid sequence of the mung bean NADPH-P450 reductase was compared with equivalent enzymes from mammalian species. Although common flavin and NADPH-binding sites are recognizable, there is only approximately 38% amino acid sequence identity. Surprisingly, the purified mung bean NADPH-P450 reductase can substitute for purified rat NADPH-P450 reductase in the reconstitution of the mammalian P450-catalyzed 17 alpha-hydroxylation of pregnenolone or progesterone.
Collapse
Affiliation(s)
- M S Shet
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | | | | | |
Collapse
|
20
|
Salmon F, Taton M, Benveniste P, Rahier A. Plant sterol biosynthesis: novel potent and selective inhibitors of cytochrome P450-dependent obtusifoliol 14 alpha-methyl demethylase. Arch Biochem Biophys 1992; 297:123-31. [PMID: 1637175 DOI: 10.1016/0003-9861(92)90649-h] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The R-(-) isomer of methyl 1-(2,2-dimethylindan-1-yl)imidazole-5-carboxylate (CGA 214372; 2) strongly inhibited P450-dependent obtusifoliol 14 alpha-demethylase (P450OBT.14DM) (I50 = 8 x 10(-9) M, I50/Km = 5 x 10(-5) in a maize (Zea mays) microsomal preparation. Kinetic studies indicated uncompetitive inhibition with respect to obtusifoliol. The corresponding S-(+) isomer was a 20-fold weaker inhibitor for P450OBT.14DM. The molecular features of a variety of analogues of 2 were related to their potency as inhibitors of P450OBT.14DM in vitro, allowing delineation of the key structural requirements governing inhibition of the demethylase. CGA 214372 proved to have a high degree of selectivity for P450OBT.14DM. This allowed easy distinction of this activity from other P450-dependent activities present in the maize microsomal preparation and gave strong evidence that P450OBT.14DM is a herbicidal target. Microsomal maize P450OBT.14DM and yeast P450LAN.14DM, the only known examples of P450-dependent enzymes carrying out an identical metabolic function in different eukaryotes, showed distinct inhibition patterns with CGA 214372 and ketoconazole, a substituted imidazole anti-mycotic.
Collapse
Affiliation(s)
- F Salmon
- Département d'Enzymologie Cellulaire et Moléculaire, CNRS-UPR 406, Strasbourg, France
| | | | | | | |
Collapse
|
21
|
Rahier A, Taton M. Plant sterol biosynthesis: 7-oxo-obtusifoliol analogues as potential selective inhibitors of cytochrome P-450 dependent obtusifoliol 14 alpha-demethylase. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1125:215-22. [PMID: 1571366 DOI: 10.1016/0005-2760(92)90048-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A series of 7-oxo-obtusifoliol analogues have been synthetized and investigated as potential inhibitors of cytochrome P-450 dependent obtusifoliol 14 alpha-demethylase (P-450OBT.14DM) from higher plant microsomes. 7-Oxo-24 xi(24')-dihydro-obtusifoliol and 7-oxo-24(25)-dihydro-29-nor-lanosterol were potent competitive inhibitors for P-450OBT.14DM, binding 125-200 times more tightly than the substrates obtusifoliol and 24(25)-dihydro-29-nor-lanosterol. Inhibition of P-450OBT.14DM by these analogues showed strict structural requirements including the 8-en-7-one system which was compulsory for binding. 7-Oxo-24(25)-dihydro-lanosterol possessing an additional 4 beta-methyl substituent, did not have such inhibitory effects. Treatment of cultures of suspended bramble cells with 7-oxo-24(25)-dihydro-29-nor-lanosterol resulted in a strong decrease of [14C]acetate incorporation into the demethylsterols fraction and in an accumulation of [14C]obtusifoliol. This confirms that P-450OBT.14DM is the main in vivo target of 7-oxo-24(25)-dihydro-29-nor-lanosterol in the sterol-biosynthetic pathway.
Collapse
Affiliation(s)
- A Rahier
- Institut de Biologie Moléculaire des Plantes, Département d'Enzymologie Cellulaire et Moléculaire, Strasbourg, France
| | | |
Collapse
|
22
|
Taton M, Rahier A. Properties and structural requirements for substrate specificity of cytochrome P-450-dependent obtusifoliol 14 alpha-demethylase from maize (Zea mays) seedlings. Biochem J 1991; 277 ( Pt 2):483-92. [PMID: 1859375 PMCID: PMC1151260 DOI: 10.1042/bj2770483] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The biochemical properties of cytochrome P-450-dependent obtusifoliol 14 alpha-demthylase (P-450OBT.14DM) from maize (Zea mays) seedlings were defined. In particular, the enzyme was shown by differential centrifugation to be localized in the endoplasmic reticulum. P-450OBT.14DM had an apparent Km of 160 +/- 5 microM and an apparent Vmax of 65 +/- 5 pmol/min per mg of protein for its best substrate, obtusifoliol. The substrate specificity of P-450OBT.14DM was thoroughly investigated by comparing the demethylation of obtusifoliol with that of a series of 15 natural or novel synthetic analogues of obtusifoliol. The results obtained clearly indicate that three distinct domains of the sterol substrate are governing obtusifoliol demethylation by P-450OBT.14DM. They revealed that (i) P-450OBT.14DM has probably a specific apolar binding site for the side chain, (ii) the delta 8-double bond is an absolute requirement for substrate demethylation and (iii) the 3-hydroxy group plays a critical role in the enzyme-substrate interaction. Interestingly the binding site, beyond the C-3 position, contains a cleft which cannot accommodate a 4 beta-methyl substituent present in lanosterol or eburicol, the precursors of 14-desmethylsterols respectively in mammals and yeast. This result indicates that P-450OBT.14DM is a novel constitutive cytochrome P-450 with a high degree of substrate and product specificity.
Collapse
Affiliation(s)
- M Taton
- Département d'Enzymologie Cellulaire et Moléculaire, Institut de Botanique, Strasbourg, France
| | | |
Collapse
|
23
|
Pascal S, Taton M, Rahier A. Oxidative C4-demethylation of 24-methylene cycloartanol by a cyanide-sensitive enzymatic system from higher plant microsomes. Biochem Biophys Res Commun 1990; 172:98-106. [PMID: 2222486 DOI: 10.1016/s0006-291x(05)80178-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microsomes isolated from corn embryos (Zea mays) were shown to catalyse the C-4 monodemethylation of 28-[3H],24-methylene cycloartanol 1, leading to the corresponding 4 alpha-methyl sterol, cycloeucalenol 5. An enzymatic assay has been developed for the 4,4-dimethyl sterol 4-demethylase in higher plants. The demethylation process was shown to involve a 4-methyl, 4-hydroxymethyl derivative 2 which can be considered as the immediate metabolite of 1 by the 4-methyl oxidase. Compound 2 is further metabolized into 5 through a 4-methyl-4-carboxylic acid 3 and a 3-keto-4 alpha-methyl intermediate 4 which were identified. The conversion of 1 into 5 requires NADPH and molecular oxygen. The initial oxidative step was strictly dependent upon molecular oxygen, NADPH or NADH, and strongly inhibited by cyanide, whereas the overall process was completely insensitive to CO and to specific inhibitors of cytochrome P-450. It is concluded that in Zea mays microsomes, the C-4 demethylation of 1 results from a multistep process involving a terminal oxygenation system sensitive to cyanide which is distinct from cytochrome P-450 and in particular from that involved in the 14 alpha-demethylation of obtusifoliol.
Collapse
Affiliation(s)
- S Pascal
- Département d'Enzymologie Moléculaire et Cellulaire de l'IBMP, - CNRS UPR 406, Institut de Botanique, Strasbourg, France
| | | | | |
Collapse
|
24
|
Cottrell S, Hartman GC, Lewis DF, Parke DV. Studies on the cytochrome P-450 of avocado (Persea [corrected] americana) mesocarp microsomal fraction. Xenobiotica 1990; 20:711-26. [PMID: 2238705 DOI: 10.3109/00498259009046887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. Because of the low concentration of cytochrome P-450 in avocado fruit, microsomal fractions were prepared using polyethylene glycol aggregation and low-speed centrifugation, thus avoiding the need for high-speed centrifugation of large volumes of post-mitochondrial supernatant. Recoveries of cytochrome P-450 by this means (0.29 nmol/g tissue) were similar to those after the usual high-speed centrifugation preparation (0.26 nmol/g). The cytochrome P-450 content of tulip bulb (0.30 nmol/g) was similar to that of avocado, but both plant tissues had much lower P-450 contents than did rat liver (13.0 nmol/g). 2. Spectral studies indicate that cytochrome P-450 of avocado mesocarp microsomal fraction binds fewer substrates than does the rat liver enzyme system. Type I binding spectra are given by fatty acids (C7-C14), aryl hydrocarbons (C7-C12), p-chloro-N-methylaniline and N,N-dimethylaniline. Type II binding is seen with inhibitors of mammalian cytochrome P-450 such as metyrapone, and with the imidazole antifungal agents such as clotrimazole. 3. These binding spectra provide a rapid method for identifying possible substrates and inhibitors of avocado cytochrome P-450, and also provide information concerning the nature of the active site of avocado cytochrome P-450. 4. Avocado cytochrome P-450 catalysed the N-demethylation of N,N-dimethylaniline (17.1 nmol/min per nmol P-450) and p-chloro-N-methylaniline (13.1 nmol/min per nmol P-450), and the hydroxylation of lauric (dodecanoic) acid (1.1 nmol/min per nmol P-450).
Collapse
Affiliation(s)
- S Cottrell
- Department of Biochemistry, University of Surrey, Guildford, UK
| | | | | | | |
Collapse
|
25
|
Maillot-Vernier P, Schaller H, Benveniste P, Belliard G. Biochemical characterization of a sterol mutant plant regenerated from a tobacco callus resistant to a triazole cytochrome-P-450-obtusifoliol-14-demethylase inhibitor. Biochem Biophys Res Commun 1989; 165:125-30. [PMID: 2590214 DOI: 10.1016/0006-291x(89)91043-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report here, for the first time, the biochemical characterization of a plant mutant impaired in sterol biosynthesis. A fertile plant was regenerated from a tobacco callus resistant to LAB170250F, a potent inhibitor of the cytochrome-P450-obtusifoliol-14-demthylase. The resistant callus and the leaves from the regenerated plant are characterized by profound qualitative and quantitative changes in their sterol content. Self-fertilization of this plant yielded seeds with the same biochemical features, indicating that the new phenotype is of mutational origin.
Collapse
Affiliation(s)
- P Maillot-Vernier
- UA 1182, Laboratoire de Biologie et Biochimie du Développement des Plantes, Institut de Botanique, Strasbourg Cedex, France
| | | | | | | |
Collapse
|
26
|
Taton M, Benveniste P, Rahier A. Microsomal delta 8,14-sterol delta 14-reductase in higher plants. Characterization and inhibition by analogues of a presumptive carbocationic intermediate of the reduction reaction. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 185:605-14. [PMID: 2591378 DOI: 10.1111/j.1432-1033.1989.tb15156.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An enzymatic assay for delta 8,14-sterol delta 14-reductase, an enzyme involved in sterol biosynthesis, has been developed for the first time in higher plants. The properties of the microsomal enzyme have been established with respect to cofactor requirements, kinetics and substrate specificity. This enzymatic double-bound reduction is thought to proceed through an electrophilic addition mechanism, involving a C14 putative carbonium ion high-energy intermediate. Using this in vitro assay, ammonium and iminium analogues of this cationic intermediate were shown to be potent inhibitors of the reduction reaction. Thus, compounds of the N-alkyl-8-aza-4 alpha,10-dimethyl-trans-decal-3 beta-ol series strongly inhibited sterol reductase (I50 = 0.07 - 4 microM) (I50/Km = 10(-4) - 10(-3), as did the antimycotic agent 15-azasterol (I50 = 0.03 microM); all of these compounds act as reaction-intermediate analogues of the proposed C14 carbonium ion intermediate. Moreover, the in vitro inhibition of the plant sterol reductase by a series of ammonium-ion-containing fungicides was demonstrated. The relative specificity of these different series of inhibitors toward cycloeucalenol-obtusifoliol isomerase, delta 8----delta 7-sterol isomerase and delta 8,14-sterol delta 14-reductase, was directly studied.
Collapse
Affiliation(s)
- M Taton
- Institut de Botanique, Unité Associée 1182 du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | |
Collapse
|
27
|
Hitchcock CA, Brown SB, Evans EG, Adams DJ. Cytochrome P-450-dependent 14 alpha-demethylation of lanosterol in Candida albicans. Biochem J 1989; 260:549-56. [PMID: 2669735 PMCID: PMC1138703 DOI: 10.1042/bj2600549] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel assay for cytochrome P-450-dependent 14 alpha-sterol demethylase of the important opportunistic fungal pathogen, Candida albicans, is described. The enzyme was assayed in microsomal preparations (microsomes) by measuring the incorporation of [14C]lanosterol into (4,14)-desmethylated sterols. The efficacy of different cell-breakage methods was compared; desmethylated-sterol biosynthesis was maximal when cells were broken with a Braun disintegrator. The solubilization of [14C]lanosterol with detergent in the assay system was essential for enzyme activity, which was enhanced considerably when microsomes were gassed with O2. Under these conditions, there was a reciprocal relationship between the amount of radioactivity incorporated into desmethylated sterols and that lost from lanosterol. The major radiolabelled desmethylated sterol was ergosterol. The enzyme had an apparent Km of 52.73 +/- 2.80 microM and an apparent Vmax of 0.84 +/- 0.14 nmol/min per mg of protein (n = 3). Enzyme activity was decreased greatly when microsomes were treated with CO or the triazole antifungal ICI 153066.
Collapse
Affiliation(s)
- C A Hitchcock
- Department of Microbiology, University of Leeds, U.K
| | | | | | | |
Collapse
|
28
|
Benveniste I, Lesot A, Hasenfratz MP, Durst F. Immunochemical characterization of NADPH-cytochrome P-450 reductase from Jerusalem artichoke and other higher plants. Biochem J 1989; 259:847-53. [PMID: 2499315 PMCID: PMC1138594 DOI: 10.1042/bj2590847] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polyclonal antibodies were prepared against NADPH-cytochrome P-450 reductase purified from Jerusalem artichoke. These antibodies inhibited efficiently the NADPH-cytochrome c reductase activity of the purified enzyme, as well as of Jerusalem artichoke microsomes. Likewise, microsomal NADPH-dependent cytochrome P-450 mono-oxygenases (cinnamate and laurate hydroxylases) were efficiently inhibited. The antibodies were only slightly inhibitory toward microsomal NADH-cytochrome c reductase activity, but lowered NADH-dependent cytochrome P-450 mono-oxygenase activities. The Jerusalem artichoke NADPH-cytochrome P-450 reductase is characterized by its high Mr (82,000) as compared with the enzyme from animals (76,000-78,000). Western blot analysis revealed cross-reactivity of the Jerusalem artichoke reductase antibodies with microsomes from plants belonging to different families (monocotyledons and dicotyledons). All of the proteins recognized by the antibodies had an Mr of approx. 82,000. No cross-reaction was observed with microsomes from rat liver or Locusta migratoria midgut. The cross-reactivity generally paralleled well the inhibition of reductase activity: the enzyme from most higher plants tested was inhibited by the antibodies; whereas Gingko biloba, Euglena gracilis, yeast, rat liver and insect midgut activities were insensitive to the antibodies. These results point to structural differences, particularly at the active site, between the reductases from higher plants and the enzymes from phylogenetically distant plants and from animals.
Collapse
Affiliation(s)
- I Benveniste
- Laboratoire d'Enzymologie Cellulaire et Moléculaire, CNRS UA 1182, Université Louis-Pasteur, Strasbourg, France
| | | | | | | |
Collapse
|