1
|
Bower JK, Sokolov AY, Zhang S. Four‐Coordinate Copper Halonitrosyl {CuNO}
10
Complexes. Angew Chem Int Ed Engl 2019; 58:10225-10229. [DOI: 10.1002/anie.201904732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Jamey K. Bower
- Department of Chemistry and BiochemistryThe Ohio State University 100 W. 18th Ave Columbus OH USA
| | - Alexander Yu. Sokolov
- Department of Chemistry and BiochemistryThe Ohio State University 100 W. 18th Ave Columbus OH USA
| | - Shiyu Zhang
- Department of Chemistry and BiochemistryThe Ohio State University 100 W. 18th Ave Columbus OH USA
| |
Collapse
|
2
|
Bower JK, Sokolov AY, Zhang S. Four‐Coordinate Copper Halonitrosyl {CuNO}
10
Complexes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jamey K. Bower
- Department of Chemistry and BiochemistryThe Ohio State University 100 W. 18th Ave Columbus OH USA
| | - Alexander Yu. Sokolov
- Department of Chemistry and BiochemistryThe Ohio State University 100 W. 18th Ave Columbus OH USA
| | - Shiyu Zhang
- Department of Chemistry and BiochemistryThe Ohio State University 100 W. 18th Ave Columbus OH USA
| |
Collapse
|
3
|
Merkle AC, Lehnert N. Binding and activation of nitrite and nitric oxide by copper nitrite reductase and corresponding model complexes. Dalton Trans 2012; 41:3355-68. [DOI: 10.1039/c1dt11049g] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
De Marothy SA, Blomberg MRA, Siegbahn PEM. Elucidating the mechanism for the reduction of nitrite by copper nitrite reductase—A contribution from quantum chemical studies. J Comput Chem 2006; 28:528-39. [PMID: 17186474 DOI: 10.1002/jcc.20567] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Density functional methods have been applied to investigate the properties of the active site of copper-containing nitrite reductases and possible reaction mechanisms for the enzyme catalysis. The results for a model of the active site indicate that a hydroxyl intermediate is not formed during the catalytic cycle, but rather a state with a protonated nitrite bound to the reduced copper. Electron affinity calculations indicate that reduction of the T2 copper site does not occur immediately after nitrite binding. Proton affinity calculations are indicative of substantial pK(a) differences between different states of the T2 site. The calculations further suggest that the reaction does not proceed until uptake of a second proton from the bulk solution. They also indicate that Asp-92 may play both a key role as a proton donor to the substrate, and a structural role in promoting catalysis. In the D92N mutant another base, presumably a nearby histidine (His-249) may take the role as the proton donor. On the basis of these model calculations and available experimental evidence, an ordered reaction mechanism for the reduction of nitrite is suggested. An investigation of the binding modes of the nitric oxide product and the nitrite substrate to the model site has also been made, indicating that nitric oxide prefers to bind in an end-on fashion to the reduced T2 site.
Collapse
Affiliation(s)
- S A De Marothy
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
5
|
Suzuki S, Kataoka K, Yamaguchi K. Metal coordination and mechanism of multicopper nitrite reductase. Acc Chem Res 2000; 33:728-35. [PMID: 11041837 DOI: 10.1021/ar9900257] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cu-containing nitrite reductase is a homotrimer in which a ca. 36 kDa monomer contains each of type 1 Cu (two His, Cys, and Met ligands) and type 2 Cu (three His and solvent ligands). Type 1 Cu receives one electron from an electron donor and transfers it to the reaction center, type 2 Cu. The distance between the two Cu atoms bound by the Cys-His sequence segment is 12.6 A. The intramolecular electron transfer from type 1 Cu to type 2 Cu occurs probably through this segment. The noncoordinated Asp and His residues around type 2 Cu play important roles in both the electron-transfer and the catalytic processes.
Collapse
Affiliation(s)
- S Suzuki
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | | | | |
Collapse
|
6
|
Inoue K, Akaike T, Miyamoto Y, Okamoto T, Sawa T, Otagiri M, Suzuki S, Yoshimura T, Maeda H. Nitrosothiol formation catalyzed by ceruloplasmin. Implication for cytoprotective mechanism in vivo. J Biol Chem 1999; 274:27069-75. [PMID: 10480920 DOI: 10.1074/jbc.274.38.27069] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ceruloplasmin (CP) is a major multicopper-containing plasma protein that is not only involved in iron metabolism through its ferroxidase activity but also functions as an antioxidant. However, physiological substrates for CP have not been fully identified nor has the role of CP been fully understood. The reaction of nitric oxide (NO) with CP was investigated in view of nitrosothiol (RS-NO) formation. First, formation of heavy metal- or CP-catalyzed RS-NO was examined with physiologically relevant concentrations of NO and various thiol compounds (RSH) such as glutathione (GSH). Among the various heavy metal ions and copper-containing enzymes and proteins examined, only copper ion (Cu(2+)) and CP showed potent RS-NO (S-nitrosoglutathione)-producing activity. Also, RS-NO-forming catalytic activity was evident for CP added exogenously to RAW264 cells expressing inducible NO synthase in culture, but this was not the case for copper ion. Similarly, CP produced endogenously by HepG2 cells showed potent RS-NO-forming activity in the cell culture. One-electron oxidation of NO appears to be operative for RS-NO production via electron transfer from type 1 copper to a cluster of types 2 and 3 copper in CP. Neurological disorders are associated with aceruloplasminemia; besides RS-NO, S-nitrosoglutathione particularly has been shown to have neuroprotective effect against oxidative stress induced by iron overload. Thus, we suggest that CP plays an important catalytic role in RS-NO formation, which may contribute to its potent antioxidant and cytoprotective activities in vivo in mammalian biological systems.
Collapse
Affiliation(s)
- K Inoue
- Department of Microbiology, Kumamoto University School of Medicine, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.
Collapse
Affiliation(s)
- W G Zumft
- Lehrstuhl für Mikrobiologie, Universität Fridericiana, Karlsruhe, Germany
| |
Collapse
|
8
|
Affiliation(s)
- Bruce A. Averill
- E. C. Slater Institute, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| |
Collapse
|
9
|
Ehrenstein D, Filiaci M, Scharf B, Engelhard M, Steinbach PJ, Nienhaus GU. Ligand binding and protein dynamics in cupredoxins. Biochemistry 1995; 34:12170-7. [PMID: 7547957 DOI: 10.1021/bi00038a010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Type 1 copper sites bind nitric oxide (NO) in a photolabile complex. We have studied the NO binding properties of the type 1 copper sites in two cupredoxins, azurin and halocyanin, by measuring the temperature dependence of the ligand binding equilibria and the kinetics of the association reaction after photodissociation over a wide range of temperature (80-280 K) and time (10(-6)-10(2) s). In both proteins, we find nonexponential kinetics below 200 K that do not depend on the NO concentration. Consequently, this process is interpreted as geminate recombination. In azurin, the rebinding can be modeled with the Arrhenius law using a single pre-exponential factor of 10(8.3) s-1 and a Gaussian distribution of enthalpy barriers centered at 22 kJ/mol with a width [full width at half-maximum (FWHM)] of 11 kJ/mol. In halocyanin, a more complex behavior is observed. About 97% of the rebinding population can also be characterized by a Gaussian distribution of enthalpy barriers at 12 kJ/mol with a width of 6.0 kJ/mol (FWHM). The pre-exponential of this population is 1.6 x 10(12) s-1 at 100 K. After the majority population has rebound, a power-law phase that can be modeled with a gamma-distribution of enthalpy barriers is observed. Between 120 and 180 K, an additional feature that can be interpreted as a relaxation of the barrier distribution toward higher barriers shows up in the kinetics. Above 200 K, a slower, exponential rebinding appears in both cupredoxins. Since the kinetics depend on the NO concentration, this process is identified as bimolecular rebinding.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Ehrenstein
- Department of Physics, University of Illinois at Urbana-Champaign 61801-3080, USA
| | | | | | | | | | | |
Collapse
|
10
|
Strange RW, Dodd FE, Abraham ZH, Grossmann JG, Brüser T, Eady RR, Smith BE, Hasnain SS. The substrate-binding site in Cu nitrite reductase and its similarity to Zn carbonic anhydrase. NATURE STRUCTURAL BIOLOGY 1995; 2:287-92. [PMID: 7796265 DOI: 10.1038/nsb0495-287] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Here we investigate the structure of the two types of copper site in nitrite reductase from Alcaligenes xylosoxidans, the molecular organisation of the enzyme when the type-2 copper is absent, and its mode of substrate binding. X-ray absorption studies provide evidence for a fourth ligand at the type-2 Cu, that substrate binds to this site and indicates that this binding does not change the type-1 Cu centre. The substrate replaces a putative water ligand and is accommodated by a lengthening of the Cu-histidine bond by approximately 0.08 A. Modelling suggests a similarity between this unusual type-2 Cu site and the Zn site in carbonic anhydrase and that nitrite is anchored by hydrogen bonds to an unligated histidine present in the type-2 Cu cavity.
Collapse
Affiliation(s)
- R W Strange
- Molecular Biophysics Group, Daresbury Laboratory, Warrington, Cheshire, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Komeda N, Nagao H, Kushi Y, Adachi GY, Suzuki M, Uehara A, Tanaka K. Molecular Structure of Nitro- and Nitrito-Copper Complexes as Reaction Intermediates in Electrochemical Reduction of Nitrite to Dinitrogen Oxide. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1995. [DOI: 10.1246/bcsj.68.581] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Ye RW, Averill BA, Tiedje JM. Denitrification: production and consumption of nitric oxide. Appl Environ Microbiol 1994; 60:1053-8. [PMID: 8017903 PMCID: PMC201439 DOI: 10.1128/aem.60.4.1053-1058.1994] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- R W Ye
- Department of Microbiology, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
13
|
Kohzuma T, Shidara S, Suzuki S. Direct Electrochemistry of Nitrite Reductase fromAchromobacter cycloclastesIAM 1013. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1994. [DOI: 10.1246/bcsj.67.138] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Silvestrini MC, Falcinelli S, Ciabatti I, Cutruzzolà F, Brunori M. Pseudomonas aeruginosa nitrite reductase (or cytochrome oxidase): an overview. Biochimie 1994; 76:641-54. [PMID: 7893816 DOI: 10.1016/0300-9084(94)90141-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The biochemistry and molecular biology of nitrite reductase, a key enzyme in the dissimilatory denitrification pathway of Ps aeruginosa which reduces nitrite to NO, is reviewed in this paper. The enzyme is a non-covalent homodimer, each subunit containing one heme c and one heme d1. The reaction mechanisms of nitrite and oxygen reduction are discussed in detail, as well as the interaction of the enzyme with its macromolecular substrates, azurin and cytochrome c551. Special attention is paid to new structural information, such as the chemistry of the d1 prosthetic group and the primary sequence of the gene and the protein. Finally, results on the expression both in Ps aeruginosa and in heterologous systems are presented.
Collapse
Affiliation(s)
- M C Silvestrini
- Dipartimento di Scienze Biochimiche, Università di Roma La Sapienza, Italy
| | | | | | | | | |
Collapse
|
15
|
Yoshimura T, Shidara S, Ozaki T, Kamada H. Five coordinated nitrosylhemoprotein in the whole cells of denitrifying bacterium, Achromobacter xylosoxidans NCIB 11015. Arch Microbiol 1993. [DOI: 10.1007/bf00245312] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Komeda N, Nagao H, Adachi GY, Suzuki M, Uehara A, Tanaka K. Molecular Structure of Copper Nitrito Complex as the Reaction Intermediate of Dissimilatory Reduction of NO2−. CHEM LETT 1993. [DOI: 10.1246/cl.1993.1521] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Glockner AB, Jüngst A, Zumft WG. Copper-containing nitrite reductase from Pseudomonas aureofaciens is functional in a mutationally cytochrome cd1-free background (NirS-) of Pseudomonas stutzeri. Arch Microbiol 1993; 160:18-26. [PMID: 8352648 DOI: 10.1007/bf00258141] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The structural gene, nirK, for the respiratory Cu-containing nitrite reductase from denitrifying Pseudomonas aureofaciens was isolated and sequenced. It encodes a polypeptide of 363 amino acids including a signal peptide of 24 amino acids for protein export. The sequence showed 63.8% positional identity with the amino acid sequence of "Achromobacter cycloclastes" nitrite reductase. Ligands for the blue, type I Cu-binding site and for a putative type-II site were identified. The nirK gene was transferred to the mutant MK202 of P. stutzeri which lacks cytochrome cd1 nitrite reductase due to a transposon Tn5 insertion in its structural gene, nirS. The heterologous enzyme was active in vitro and in vivo in this background and restored the mutationally interrupted denitrification pathway. Transfer of nirK to Escherichia coli resulted in an active nitrite reductase in vitro. Expression of the nirS gene from P. stutzeri in P. aureofaciens and E. coli led to nonfunctional gene products. Nitrite reductase activity of cell extract from either bacterium could be reconstituted by addition of heme d1, indicating that both heterologous hosts synthesized a cytochrome cd1 without the d1-group.
Collapse
Affiliation(s)
- A B Glockner
- Lehrstuhl für Mikrobiologie, Universität Karlsruhe, Germany
| | | | | |
Collapse
|
18
|
Libby E, Averill BA. Evidence that the type 2 copper centers are the site of nitrite reduction by Achromobacter cycloclastes nitrite reductase. Biochem Biophys Res Commun 1992; 187:1529-35. [PMID: 1329738 DOI: 10.1016/0006-291x(92)90476-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Methods have been developed for selective depletion and reconstitution of the Type 2 Cu (non-blue) sites in the nitrite reductase from A. cycloclastes, resulting in preparations ranging from 0.5 to 2.6 Type Cu per trimer; the Type 1 Cu content is invariant at 3.0 per trimer. The activity of the enzyme is directly proportional to the Type 2 content as measured by direct metal determination or by analysis of the EPR spectra. These results indicate that an earlier report that the A. cycloclastes enzyme contains only Type 1 Cu sites is incorrect, and that the Type 2 Cu centers constitute the site at which NO2- is reduced. Furthermore, they suggest that other Cu nitrite reductases that are reported to contain only Type 1 Cu sites and exhibit relatively low activity may actually be largely Type 2 Cu-depleted forms of the enzymes.
Collapse
Affiliation(s)
- E Libby
- Department of Chemistry, University of Virginia, Charlottesville 22901
| | | |
Collapse
|
19
|
Jackson MA, Tiedje JM, Averill BA. Evidence for a NO-rebound mechanism for production of N2O from nitrite by the copper-containing nitrite reductase from Achromobacter cycloclastes. FEBS Lett 1991; 291:41-4. [PMID: 1936249 DOI: 10.1016/0014-5793(91)81099-t] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reduction of NO2- by the Cu-containing nitrite reductase from Achromobacter cycloclastes produces NO as the primary product initially, but as NO accumulates, NO production levels-off and N2O production becomes significant. Reaction of the enzyme with NO2- in the presence of NO increases the amount of N2O product significantly, while trapping the NO product as nitrosylhemoglobin or rapid removal of NO by sparging results in no detectable N2O production. Reaction of the enzyme with 15NO2- in the presence of 14NO results in rapid formation of the mixed isotope product (14N, 15N)O in ca. 45% yield. In contrast, the presence or absence of NO has no effect on N2O production by a prototypical heme cd1-containing nitrite reductase. These results are consistent with formation of a labile Cu(+)-NO+ species in the copper enzyme, which normally decomposes to NO. Production of N2O requires that the released NO must rebind to the enzyme to combine with a second NO2- or a species derived therefrom.
Collapse
Affiliation(s)
- M A Jackson
- Department of Chemistry, University of Virginia, Charlottesville 22901
| | | | | |
Collapse
|
20
|
Godden JW, Turley S, Teller DC, Adman ET, Liu MY, Payne WJ, LeGall J. The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science 1991; 253:438-42. [PMID: 1862344 DOI: 10.1126/science.1862344] [Citation(s) in RCA: 293] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The three-dimensional crystal structure of the copper-containing nitrite reductase (NIR) from Achromobacter cycloclastes has been determined to 2.3 angstrom (A) resolution by isomorphous replacement. The monomer has two Greek key beta-barrel domains similar to that of plastocyanin and contains two copper sites. The enzyme is a trimer both in the crystal and in solution. The two copper atoms in the monomer comprise one type I copper site (Cu-I; two His, one Cys, and one Met ligands) and one putative type II copper site (Cu-II; three His and one solvent ligands). Although ligated by adjacent amino acids Cu-I and Cu-II are approximately 12.5 A apart. Cu-II is bound with nearly perfect tetrahedral geometry by residues not within a single monomer, but from each of two monomers of the trimer. The Cu-II site is at the bottom of a 12 A deep solvent channel and is the site to which the substrate (NO2-) binds, as evidenced by difference density maps of substrate-soaked and native crystals.
Collapse
Affiliation(s)
- J W Godden
- Department of Biochemistry, University of Washington, Seattle 98195
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Cytochrome c oxidase of Paracoccus denitrificans is spectroscopically and functionally very similar to the mammalian enzyme. However, it has a very much simpler quaternary structure, consisting of only three subunits instead of the 13 of the bovine enzyme. The known primary structure of the Paracoccus denitrificans subunits, the knowledge of a large number of sequences from other species, and data on the controlled proteolytic digestion of the enzyme allow structural restrictions to be placed on the models describing the binding of the active metal centers to the polypeptide structure.
Collapse
Affiliation(s)
- M Müller
- Institut für Biochemie und Molekularbiologie der Universität Bern, Switzerland
| | | |
Collapse
|
22
|
Abstract
The structural comparison of copper-containing proteins has provided a new dimension to the relationships suggested by sequence similarities. Ryden (1988) summarized the putative relationships, suggesting that a primordial single-domain cupredoxin evolved into the multidomain copper oxidases. The structures have revealed the fact that the differences reside primarily in insertions and deletions at junctions between secondary-structure elements. The mechanism of evolution (e.g., integration of new sequences into regions not essential to the Greek key fold) remains unknown. Which of the properties of a cupredoxin fold are necessary for function is the subject of site-directed mutagenesis studies. Can two of the ligands be interchanged (e.g., the upstream histidine and partially answered by the multidomain copper oxidase structure. The Tyr-Cys-Thr sequence in plastocyanin (in which threonine is a member of the hydrogen-bonding pair) is homologous with the His-Cys-His sequence in ascorbate oxidase. In the latter electron transfer is believed to flow from the type I copper (bound by the cysteine) to the trinuclear cluster, probably via these histidine residues. Hence, one might infer that the tyrosine and threonine have some role in electron transfer. Tyr-83 has been previously implicated in NMR studies as a primary site of electron transfer. The multi-copper protein structures have revealed interesting new features. The extra coppers are bound at domain interfaces, and can be single metals or the novel trinuclear cluster, depending on the availability of liganding histidines. A structural model of ceruloplasmin suggests that it will have at least two type I sites and, possibly, a third type I site such as stellacyanin (no methionine ligand), as well as a binding site for a trinuclear cluster. The similarity of the sequences of N2O reductases and a domain of cytochrome oxidase to the sequences of proteins with known structures suggests that these, too, will have Greek key domains. Galactose oxidase and hemocyanin do not have Greek key folds in their functional domains, although each does have a Greek key domain. The need for a Greek key fold remains obscure. The apoproteins are clearly stable without metals; there are examples other than immunoglobulins of Greek key folds. So far copper seems to be found in a very limited subset of structures; other chapters in this volume show that zinc, for example, has a much wider variety of environments in proteins, as does iron. It may be that the copper-containing Greek key proteins represent a very small evolutionary niche.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E T Adman
- Department of Biological Structure, University of Washington, Seattle 98115
| |
Collapse
|