1
|
Kehrberg RJ, Bhyravbhatla N, Batra SK, Kumar S. Epigenetic regulation of cancer-associated fibroblast heterogeneity. Biochim Biophys Acta Rev Cancer 2023; 1878:188901. [PMID: 37120098 PMCID: PMC10375465 DOI: 10.1016/j.bbcan.2023.188901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
Cancer-associated fibroblasts (CAFs), a significant component of the tumor microenvironment (TME), contribute to cancer progression through the secretion of extracellular matrix (ECM), growth factors, and metabolites. It is now well recognized that CAFs are a heterogenous population with ablation experiments leading to reduced tumor growth and single-cell RNA sequencing demonstrating CAF subgroups. CAFs lack genetic mutations yet substantially differ from their normal stromal precursors. Here, we review epigenetic changes in CAF maturation, focusing on DNA methylation and histone modifications. DNA methylation changes in CAFs have been demonstrated globally, while roles of methylation at specific genes affect tumor growth. Further, loss of CAF histone methylation and gain of histone acetylation has been shown to promote CAF activation and tumor promotion. Many CAF activating factors, such as transforming growth factor β (TGFβ), lead to these epigenetic changes. MicroRNAs (miRNAs) serve as targets and orchestrators of epigenetic modifications that influence gene expression. Bromodomain and extra-terminal domain (BET), an epigenetic reader, recognizes histone acetylation and activates the transcription of genes leading to the pro-tumor phenotype of CAFs.
Collapse
Affiliation(s)
- Rachel J Kehrberg
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Namita Bhyravbhatla
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Lamprecht S, Sigal-Batikoff I, Shany S, Abu-Freha N, Ling E, Delinasios GJ, Moyal-Atias K, Delinasios JG, Fich A. Teaming Up for Trouble: Cancer Cells, Transforming Growth Factor-β1 Signaling and the Epigenetic Corruption of Stromal Naïve Fibroblasts. Cancers (Basel) 2018; 10:cancers10030061. [PMID: 29495500 PMCID: PMC5876636 DOI: 10.3390/cancers10030061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/28/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
It is well recognized that cancer cells subvert the phenotype of stromal naïve fibroblasts and instruct the neighboring cells to sustain their growth agenda. The mechanisms underpinning the switch of fibroblasts to cancer-associated fibroblasts (CAFs) are the focus of intense investigation. One of the most significant hallmarks of the biological identity of CAFs is that their tumor-promoting phenotype is stably maintained during in vitro and ex vivo propagation without the continual interaction with the adjacent cancer cells. In this review, we discuss robust evidence showing that the master cytokine Transforming Growth Factor-β1 (TGFβ-1) is a prime mover in reshaping, via epigenetic switches, the phenotype of stromal fibroblasts to a durable state. We also examine, in detail, the pervasive involvement of TGFβ-1 signaling from both cancer cells and CAFs in fostering cancer development, taking colorectal cancer (CRC) as a paradigm of human neoplasia. Finally, we review the stroma-centric anticancer therapeutic approach focused on CAFs—the most abundant cell population of the tumor microenvironment (TME)—as target cells.
Collapse
Affiliation(s)
- Sergio Lamprecht
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Ina Sigal-Batikoff
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Shraga Shany
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
| | - Naim Abu-Freha
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Eduard Ling
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Pediatrics Department B, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - George J Delinasios
- International Institute of Anticancer Research, Kapandriti, Athens 19014, Greece.
| | - Keren Moyal-Atias
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - John G Delinasios
- International Institute of Anticancer Research, Kapandriti, Athens 19014, Greece.
| | - Alexander Fich
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| |
Collapse
|
3
|
Du H, Che G. Genetic alterations and epigenetic alterations of cancer-associated fibroblasts. Oncol Lett 2016; 13:3-12. [PMID: 28123515 PMCID: PMC5245074 DOI: 10.3892/ol.2016.5451] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/12/2016] [Indexed: 02/07/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are one major type of component identified in the tumor microenvironment. Studies have focused on the genetic and epigenetic status of CAFs, since they are critical in tumor progression and differ phenotypically and functionally from normal fibroblasts. The present review summarizes the recent achievements in understanding the gene profiles of CAFs and pays special attention to their possible epigenetic alterations. A total of 7 possible genetic alterations and epigenetic changes in CAFs are discussed, including gene differential expression, karyotype analysis, gene copy number variation, loss of heterozygosis, allelic imbalance, microsatellite instability, post-transcriptional control and DNA methylation. These genetic and epigenetic characteristics are hypothesized to provide a deep understanding of CAFs and a perspective on their clinical significance.
Collapse
Affiliation(s)
- Heng Du
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
4
|
Xu LL, Lu YT, Zhang J, Wu L, Merrilees MJ, Qu JM. Knockdown of versican 1 blocks cigarette-induced loss of insoluble elastin in human lung fibroblasts. Respir Physiol Neurobiol 2015; 215:58-63. [DOI: 10.1016/j.resp.2015.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/19/2015] [Accepted: 05/11/2015] [Indexed: 01/25/2023]
|
5
|
Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol 2015; 42:11-55. [PMID: 25701227 PMCID: PMC4859157 DOI: 10.1016/j.matbio.2015.02.003] [Citation(s) in RCA: 830] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Suhovskih AV, Aidagulova SV, Kashuba VI, Grigorieva EV. Proteoglycans as potential microenvironmental biomarkers for colon cancer. Cell Tissue Res 2015; 361:833-44. [PMID: 25715761 DOI: 10.1007/s00441-015-2141-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/28/2015] [Indexed: 12/18/2022]
Abstract
Glycosylation changes occur widely in colon tumours, suggesting glycosylated molecules as potential biomarkers for colon cancer diagnostics. In this study, proteoglycans (PGs) expression levels and their transcriptional patterns are investigated in human colon tumours in vivo and carcinoma cells in vitro. According to RT-PCR analysis, normal and cancer colon tissues expressed a specific set of PGs (syndecan-1, perlecan, decorin, biglycan, versican, NG2/CSPG4, serglycin, lumican, CD44), while the expression of glypican-1, brevican and aggrecan was almost undetectable. Overall transcriptional activity of the PGs in normal and cancer tissues was similar, although expression patterns were different. Expression of decorin and perlecan was down-regulated 2-fold in colon tumours, while biglycan and versican expression was significantly up-regulated (6-fold and 3-fold, respectively). Expression of collagen1A1 was also increased 6-fold in colon tumours. However, conventional HCT-116 colon carcinoma and AG2 colon cancer-initiating cells did not express biglycan and decorin and were versican-positive and -negative, respectively, demonstrating an extracellular origin of the PGs in cancer tissue. Selective expression of heparan sulfate (HS) proteoglycans syndecan-1 and perlecan in the AG2 colon cancer-initiating cell line suggests these PGs as potential biomarkers for cancer stem cells. Overall transcriptional activity of the HS biosynthetic system was similar in normal and cancer tissues, although significant up-regulation of extracellular sulfatases SULF1/2 argues for a possible distortion of HS sulfation patterns in colon tumours. Taken together, the obtained results suggest versican, biglycan, collagen1A1 and SULF1/2 expression as potential microenvironmental biomarkers and/or targets for colon cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Anastasia V Suhovskih
- Institute of Molecular Biology and Biophysics SB RAMS, Timakova str 2, Novosibirsk, 630117, Russia
| | | | | | | |
Collapse
|
7
|
Buraschi S, Neill T, Owens RT, Iniguez LA, Purkins G, Vadigepalli R, Evans B, Schaefer L, Peiper SC, Wang ZX, Iozzo RV. Decorin protein core affects the global gene expression profile of the tumor microenvironment in a triple-negative orthotopic breast carcinoma xenograft model. PLoS One 2012; 7:e45559. [PMID: 23029096 PMCID: PMC3446891 DOI: 10.1371/journal.pone.0045559] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/21/2012] [Indexed: 12/21/2022] Open
Abstract
Decorin, a member of the small leucine-rich proteoglycan gene family, exists and functions wholly within the tumor microenvironment to suppress tumorigenesis by directly targeting and antagonizing multiple receptor tyrosine kinases, such as the EGFR and Met. This leads to potent and sustained signal attenuation, growth arrest, and angiostasis. We thus sought to evaluate the tumoricidal benefits of systemic decorin on a triple-negative orthotopic breast carcinoma xenograft model. To this end, we employed a novel high-density mixed expression array capable of differentiating and simultaneously measuring gene signatures of both Mus musculus (stromal) and Homo sapiens (epithelial) tissue origins. We found that decorin protein core modulated the differential expression of 374 genes within the stromal compartment of the tumor xenograft. Further, our top gene ontology classes strongly suggests an unexpected and preferential role for decorin protein core to inhibit genes necessary for immunomodulatory responses while simultaneously inducing expression of those possessing cellular adhesion and tumor suppressive gene properties. Rigorous verification of the top scoring candidates led to the discovery of three genes heretofore unlinked to malignant breast cancer that were reproducibly found to be induced in several models of tumor stroma. Collectively, our data provide highly novel and unexpected stromal gene signatures as a direct function of systemic administration of decorin protein core and reveals a fundamental basis of action for decorin to modulate the tumor stroma as a biological mechanism for the ascribed anti-tumorigenic properties.
Collapse
Affiliation(s)
- Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Rick T. Owens
- LifeCell Corporation, Branchburg, New Jersey, United States of America
| | - Leonardo A. Iniguez
- Roche NimbleGen, Inc., Research and Development, Madison, Wisconsin, United States of America
| | - George Purkins
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Barry Evans
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Liliana Schaefer
- Department of Pharmacology, Goethe University, Frankfurt, Germany
| | - Stephen C. Peiper
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Zi-Xuan Wang
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
8
|
Allen M, Louise Jones J. Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J Pathol 2010; 223:162-76. [PMID: 21125673 DOI: 10.1002/path.2803] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 12/13/2022]
Abstract
It is now recognized that the host microenvironment undergoes extensive change during the evolution and progression of cancer. This involves the generation of cancer-associated fibroblasts (CAFs), which, through release of growth factors and cytokines, lead to enhanced angiogenesis, increased tumour growth and invasion. It has also been demonstrated that CAFs may modulate the cancer stem cell (CSC) phenotype, which has therapeutic implications. The altered fibroblast phenotype also contributes to the development of an altered extracellular matrix (ECM), with synthesis of ECM isoforms rarely found in normal tissues, including tenascin-C isoforms and the fibronectin EDA isoform. There is also emerging evidence of how the tensile strength of the tumour-associated ECM may be modified and lead to altered signalling in tumour cells. The hypoxic environment of the tumour stimulates angiogenesis and also impacts on other aspects of cell signalling, including the c-met pathway and lysyl oxidase-mediated signalling, which can directly promote tumour cell invasion. The inflammatory infiltrate associated with many solid tumours also modulates tumour function, having both anti- and pro-tumour effects. All of these components of the microenvironment provide potential targets for therapeutic attack, with a number of molecules already in clinical trials. It is also becoming evident that characterizing the tumour microenvironment can provide important prognostic and predictive information about tumours, independent of the tumour cell phenotype.
Collapse
Affiliation(s)
- Michael Allen
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, London, UK
| | | |
Collapse
|
9
|
Hu M, Polyak K. Molecular characterisation of the tumour microenvironment in breast cancer. Eur J Cancer 2008; 44:2760-5. [PMID: 19026532 PMCID: PMC2729518 DOI: 10.1016/j.ejca.2008.09.038] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 09/23/2008] [Indexed: 12/30/2022]
Abstract
The tumour microenvironment plays important roles in cancer initiation, growth, progression, invasion and metastasis, yet the molecular basis underlying these tumour-promoting effects is not fully delineated. Recent advances in gene expression, genetic and epigenetic profiling of stromal cells have improved our understanding of how mesenchymal-epithelial cell interactions may create a permissive microenvironment for malignancy and identified potential targets for cancer prevention and treatment including chemokine and cytokine networks. However, translating these findings into clinical practice may be difficult due to the complexity and redundancy of the interactions and the inherent ability of tumour epithelial cells to evolve and thrive in diverse environmental conditions.
Collapse
Affiliation(s)
- Min Hu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
10
|
Hu M, Yao J, Cai L, Bachman KE, van den Brûle F, Velculescu V, Polyak K. Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet 2005; 37:899-905. [PMID: 16007089 DOI: 10.1038/ng1596] [Citation(s) in RCA: 411] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 05/16/2005] [Indexed: 12/15/2022]
Abstract
Increasing evidence suggests that changes in the cellular microenvironment contribute to tumorigenesis, but the molecular basis of these alterations is not well understood. Although epigenetic modifications of the neoplastic cells in tumors have been firmly implicated in tumorigenesis, it is not known whether epigenetic modifications occur in the non-neoplastic stromal cells. To address this question in an unbiased and genome-wide manner, we developed a new method, methylation-specific digital karyotyping, and applied it to epithelial and myoepithelial cells, stromal fibroblasts from normal breast tissue, and in situ and invasive breast carcinomas. Our analyses showed that distinct epigenetic alterations occur in all three cell types during breast tumorigenesis in a tumor stage- and cell type-specific manner, suggesting that epigenetic changes have a role in the maintenance of the abnormal cellular microenvironment in breast cancer.
Collapse
Affiliation(s)
- Min Hu
- Department of Medical Oncology, Dana Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Stacey M, Chang GW, Davies JQ, Kwakkenbos MJ, Sanderson RD, Hamann J, Gordon S, Lin HH. The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood 2003; 102:2916-24. [PMID: 12829604 DOI: 10.1182/blood-2002-11-3540] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using multivalent protein probes, an evolutionarily conserved endogenous ligand for EMR2, a human myeloid cell-restricted EGF-TM7 receptor, was identified on the surface of a number of adherent cell lines. In addition, in situ staining of the ligand has revealed specific in vivo patterns consistent with a connective tissue distribution. The interaction is conserved across species and mediated exclusively by the largest EMR2 isoform containing 5 epidermal growth factor (EGF)-like modules. Antibody-blocking studies subsequently revealed that the fourth EGF-like module constitutes the major ligand-binding site. The largest isoform of CD97, a related EGF-TM7 molecule containing an identical EGF-like module, also binds to the putative EMR2 ligand. Through the use of mutant Chinese hamster ovary (CHO) cell lines defective in glycosaminoglycans (GAGs) biosynthesis as well as the enzymatic removal of specific cell surface GAGs, the molecular identity of the EMR2 ligand was identified as chondroitin sulfate (CS). Thus, exogenous CS GAGs blocked the EMR2-ligand interaction in a dose-dependent manner. EMR2-CS interaction is Ca2+- and sulphation-dependent and results in cell attachment. This is the first report of a GAG ligand for the TM7 receptors extending the already vast repertoire of stimuli of the GPCR superfamily.
Collapse
Affiliation(s)
- Martin Stacey
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Theocharis AD. Human colon adenocarcinoma is associated with specific post-translational modifications of versican and decorin. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1588:165-72. [PMID: 12385781 DOI: 10.1016/s0925-4439(02)00161-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, the amounts and the fine structural characteristics of versican and decorin present in human colon adenocarcinomas (HCC) were investigated and compared with those in human normal colon (HNC). HCC is characterized by significant increase in the amounts of versican and decorin (13- and 8-fold in terms of protein, respectively). These two proteoglycans (PGs) were the predominant in HCC (86% of total uronic acid). In HNC, versican and decorin contained both chondroitin sulfate/dermatan sulfate chains (CS/DS), with DS to be the predominant one (90-93%). The molecular sizes (M(r)s) estimated for DS and CS chains were 25-28 and 21-28 kDa, respectively. In CS/DS chains isolated from both versican and decorin, 4-sulfated disaccharides accounted for 79-86% of total disaccharide units, respectively, whereas lower amounts of 6- and non-sulfated units were also recorded. In contrast, the tumor-associated versican and decorin were of smaller hydrodynamic size with lower glycosaminoglycan (GAG) content per PG molecule as compared with those found in HNC. In HCC, both PGs contained mainly CS chains (up to 86%) and the M(r)s of CS and DS chains were also found to be of smaller size (12 and 16 kDa, respectively). The sulfation patterns of CS/DS chains from both PGs were also significantly different. They were composed mainly of 6-sulfated disaccharides (63-70%), whereas 4-sulfated units accounted for 23-31%. A significant increase in the proportion of non-sulfated disaccharides was also recorded. These findings indicate that the colon adenocarcinoma is characterized by a remarkable increase in the concentration of versican and decorin. Furthermore, these PGs are significantly modified at the post-translational level, i.e. the type, length and the sulfation pattern of their GAG chains. These specific structural alterations of versican and decorin may influence the biology of cancer cells in HCC.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Department of Chemistry, Section of Organic Chemistry, Biochemistry and Natural Products, Laboratory of Biochemistry, University of Patras, 261 10 Patras, Greece
| |
Collapse
|
13
|
Abstract
DNA methylation is not just for basic scientists any more. There is a growing awareness in the medical field that having the correct pattern of genomic methylation is essential for healthy cells and organs. If methylation patterns are not properly established or maintained, disorders as diverse as mental retardation, immune deficiency, and sporadic or inherited cancers may follow. Through inappropriate silencing of growth regulating genes and simultaneous destabilisation of whole chromosomes, methylation defects help create a chaotic state from which cancer cells evolve. Methylation defects are present in cells before the onset of obvious malignancy and therefore cannot be explained simply as a consequence of a deregulated cancer cell. Researchers are now able to detect with exquisite sensitivity the cells harbouring methylation defects, sometimes months or years before the time when cancer is clinically detectable. Furthermore, aberrant methylation of specific genes has been directly linked with the tumour response to chemotherapy and patient survival. Advances in our ability to observe the methylation status of the entire cancer cell genome have led us to the unmistakable conclusion that methylation abnormalities are far more prevalent than expected. This methylomics approach permits the integration of an ever growing repertoire of methylation defects with the genetic alterations catalogued from tumours over the past two decades. Here we discuss the current knowledge of DNA methylation in normal cells and disease states, and how this relates directly to our current understanding of the mechanisms by which tumours arise.
Collapse
Affiliation(s)
- J F Costello
- The Brain Tumor Research Center and the Department of Neurological Surgery, University of California, 2340 Sutter, Room N261, San Francisco, San Francisco, CA 94143-0875, USA.
| | | |
Collapse
|
14
|
Iozzo RV, Danielson KG. Transcriptional and posttranscriptional regulation of proteoglycan gene expression. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:19-53. [PMID: 9932451 DOI: 10.1016/s0079-6603(08)60504-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Proteoglycans are among the most complex and sophisticated molecules of mammalian systems in terms of their protein and carbohydrate moieties. These macromolecules are in a continuous interplay with each other and the cell surface signal-transducing pathways, some of which are beginning to be elucidated. Because of their domain structure, catalytic potential, and diversity, these molecules appear to be designed for integrating numerous signaling events. For example, some proteoglycans interact with hyaluronan and lectins, thereby linking cell surfaces and distant matrix molecules. Some interact with collagen during the complex process of fibrillogenesis and regulate this biological process fundamental to animal life. Others interact with growth factors and serve as depot available during growth or tissue remodeling. In this review, we center on the most recent developments of proteoglycan biology, focusing primarily on genomic organization and transcriptional and posttranscriptional control. We discuss only those proteoglycans whose gene and promoter elements have been characterized and proved to be functional. When possible, we correlate the effects of growth factors and cytokines on proteoglycan gene expression with the topology of cis-acting elements in their genomic control regions. The analysis leads to a comprehensive critical appraisal of the principles that underlie the regulation of proteoglycan gene expression and to the delineation of common regulatory mechanisms.
Collapse
Affiliation(s)
- R V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
15
|
Abstract
The proteoglycan superfamily now contains more than 30 full-time molecules that fulfill a variety of biological functions. Proteoglycans act as tissue organizers, influence cell growth and the maturation of specialized tissues, play a role as biological filters and modulate growth-factor activities, regulate collagen fibrillogenesis and skin tensile strength, affect tumor cell growth and invasion, and influence corneal transparency and neurite outgrowth. Additional roles, derived from studies of mutant animals, indicate that certain proteoglycans are essential to life whereas others might be redundant. The review focuses on the most recent genetic and molecular biological studies of the matrix proteoglycans, broadly defined as proteoglycans secreted into the pericellular matrix. Special emphasis is placed on the molecular organization of the protein core, the utilization of protein modules, the gene structure and transcriptional control, and the functional roles of the various proteoglycans. When possible, proteoglycans have been grouped into distinct gene families and subfamilies offering a simplified nomenclature based on their protein core design. The structure-function relationship of some paradigmatic proteoglycans is discussed in depth and novel aspects of their biology are examined.
Collapse
Affiliation(s)
- R V Iozzo
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-6799, USA.
| |
Collapse
|
16
|
Tiedemann K, Malmström A, Westergren-Thorsson G. Cytokine regulation of proteoglycan production in fibroblasts: separate and synergistic effects. Matrix Biol 1997; 15:469-78. [PMID: 9106158 DOI: 10.1016/s0945-053x(97)90020-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have studied the effects of cytokines, separately or in combination, on the production of proteoglycans in confluent cultures of fibroblasts. The cytokines used were the transforming growth factor-beta (TGF-beta), the platelet derived growth factor-AA (PDGF-AA), the platelet derived growth factor-BB (PDGF-BB) and the epidermal growth factor (EGF). Hyaluronan production increased in cells treated with TGF-beta, PDGF-AA and PDGF-BB. Combining pairs of factors did not contribute further to hyaluronan production, whereas the triple combination of EGF, TGF-beta and PDGF-BB induced an additional 1.9-fold increase. Proteoglycan production was only increased by TGF-beta alone. As for hyaluronan, combining pairs of the cytokines had no further effect on metabolism, whereas the combination of EGF, TGF-beta and PDGF-BB induced a further 1.6-fold increase in production and secretion. Compared with the control, an extensive increase in proteoglycan production was generated by the combination of EGF, TGF-beta and PDGF-BB, 7-fold for biglycan, approximately 5-fold for versican and hyaluronan and 2.4-4-fold for heparan sulfate proteoglycan and decorin. Compared with TGF-beta alone, this combination increased, in falling order, the production of heparan sulfate proteoglycan, hyaluronan, biglycan, decorin and versican. The mRNA levels for the various proteoglycans did not completely agree with the changes in production, suggesting that changes not only in synthesis but also in rate of degradation generate these variations. The data indicate that cytokines cooperate to produce a proper and physiological response, one needed by the organism during physiological and pathophysiological remodeling.
Collapse
Affiliation(s)
- K Tiedemann
- Department of Cell and Molecular Biology, Faculty of Medicine, Lund University, Sweden
| | | | | |
Collapse
|
17
|
Characterization of the complete genomic structure of the human versican gene and functional analysis of its promoter. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(20)30090-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Jessup JM, Steele G, Thomas P, Summerhayes IC, Mercurio A, Andrews C, Chen LB, Kolodner R. Molecular Biology of Neoplastic Transformation of the Large Bowel: Identification of Two Etiologic Pathways. Surg Oncol Clin N Am 1994. [DOI: 10.1016/s1055-3207(18)30497-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Ray JS, Harbison ML, McClain RM, Goodman JI. Alterations in the methylation status and expression of the raf oncogene in phenobarbital-induced and spontaneous B6C3F1 mouse liver tumors. Mol Carcinog 1994; 9:155-66. [PMID: 7908202 DOI: 10.1002/mc.2940090307] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The liver tumor-prone B6C3F1 mouse (C57Bl/6 female x C3H/He male), in conjunction with the more susceptible C3H/He paternal strain and the resistant C57BL/6 maternal strain, is an excellent model for studying the mechanisms involved in carcinogenesis. The study reported here indicated that the B6C3F1 mouse inherited a maternal raf allele containing a methylated site not present in the paternal allele. Seven days after partial hepatectomy or after administration of a promoting dose of phenobarbital (PB) for 14 d; raf in B6C3F1 mouse liver was hypomethylated. The additional methylated site in the allele inherited from C57BL/6 was not maintained. The methylation status of raf in the liver of the C57BL/6 mouse was not affected by PB treatment. This indicates that the B6C3F1 mouse is less capable of maintaining methylation of raf than the C57BL/6 strain is. In both PB-induced and spontaneous B6C3F1 liver tumors, raf was hypomethylated in a nonrandom fashion. The level of raf mRNA increased in seven of 10 PB-induced tumors but in only one of five spontaneous tumors, whereas the level of Ha-ras mRNA increased in nine of 10 PB-induced tumors and in four of five spontaneous tumors. The results of our investigation (a) support the hypothesis that hypomethylation of DNA is a nongenotoxic mechanism involved in tumorigenesis, (b) support the notion that PB promotes liver tumors that develop along a pathway different from that leading to spontaneous tumors, and (c) indicate that differences in DNA methylation between C57BL/6 and B6C3F1 mice could, in part, account for the unusually high tendency of the latter strain to develop liver tumors.
Collapse
Affiliation(s)
- J S Ray
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing 48824
| | | | | | | |
Collapse
|
20
|
Abstract
Tumor stroma is a specialized form of tissue that is associated with epithelial neoplasms. Recent evidence indicates that significant changes in proteoglycan content occur in the tumor stroma and that these alterations could support tumor progression and invasion as well as tumor growth. Our main hypothesis is that the generation of tumor stroma is under direct control of the neoplastic cells and that, via a feedback loop, altered proteoglycan gene expression would influence the behavior of tumor cells. In this review, we will focus primarily on the work from our laboratory related to the altered expression of chondroitin sulfate proteoglycan and its role in tumor development and progression. The connective tissue stroma of human colon cancer is enriched in chondroitin sulfate and the stromal cell elements, primarily colon fibroblasts and smooth muscle cells, are responsible for this biosynthetic increase. These changes can be reproduced in vitro by using either tumor metabolites or co-cultures of human colon carcinoma cells and colon mesenchymal cells. The levels of decorin, a leucine-rich proteoglycan involved in the regulation of matrix assembly and cell proliferation, are markedly elevated in the stroma of colon carcinoma. These changes correlate with a marked increase in decorin mRNA levels and a concurrent hypomethylation of decorin gene, a DNA alteration associated with enhanced gene expression. Elucidation of decorin gene structure has revealed an unexpected degree of complexity in the 5' untranslated region of the gene with two leader exons that are alternatively spliced to the second coding exon. Furthermore, a transforming growth factor beta (TGF-beta)-negative element is present in the promotor region of decorin gene.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R V Iozzo
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | |
Collapse
|
21
|
Abstract
Tumor stroma is a specialized form of tissue that is associated with epithelial neoplasms. Recent evidence indicates that significant changes in proteoglycan content occur in the tumor stroma and that these alterations could support tumor progression and invasion as well as tumor growth. Our main hypothesis is that the generation of tumor stroma is under direct control of the neoplastic cells and that, via a feedback loop, altered proteoglycan gene expression would influence the behavior of tumor cells. In this review, we will focus primarily on the work from our laboratory related to the altered expression of chondroitin sulfate proteoglycan and its role in tumor development and progression. The connective tissue stroma of human colon cancer is enriched in chondroitin sulfate and the stromal cell elements, primarily colon fibroblasts and smooth muscle cells, are responsible for this biosynthetic increase. These changes can be reproduced in vitro by using either tumor metabolites or co-cultures of human colon carcinoma cells and colon mesenchymal cells. The levels of decorin, a leucine-rich proteoglycan involved in the regulation of matrix assembly and cell proliferation, are markedly elevated in the stroma of colon carcinoma. These changes correlate with a marked increase in decorin mRNA levels and a concurrent hypomethylation of decorin gene, a DNA alteration associated with enhanced gene expression. Elucidation of decorin gene structure has revealed an unexpected degree of complexity in the 5' untranslated region of the gene with two leader exons that are alternatively spliced to the second coding exon.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R V Iozzo
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | |
Collapse
|
22
|
Iozzo RV, Naso MF, Cannizzaro LA, Wasmuth JJ, McPherson JD. Mapping of the versican proteoglycan gene (CSPG2) to the long arm of human chromosome 5 (5q12-5q14). Genomics 1992; 14:845-51. [PMID: 1478664 DOI: 10.1016/s0888-7543(05)80103-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Versican is a major chondroitin sulfate proteoglycan of vascularized connective tissues whose eponym reflects its functional versatility in macromolecular affinity and interactions. In this report we have localized the versican gene (CSPG2) to the long arm of human chromosome 5 by utilizing a combination of somatic cell hybrids, Southern blotting, polymerase chain reaction, and chromosomal in situ hybridization. The proteoglycan gene segregated concordantly with hybrid cell lines containing the long arm of chromosome 5, comprising the 5q12-q14 band regions. To refine this locus further, we screened a chromosome 5-specific library and isolated several genomic clones encoding a portion of the 5' end of versican. One of these genomic clones was used as a probe for in situ hybridization of human chromosome metaphases. The results corroborated the data obtained using somatic cell hybrids and further refined the assignment of the versican gene to the narrow band region of 5q12-5q14, with the primary site likely to be 5q13.2. The availability of novel genomic clones and the mapping data presented here will make possible the identification of any defect genetically linked to this proteoglycan gene.
Collapse
Affiliation(s)
- R V Iozzo
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Adany R, Iozzo RV. Hypomethylation of the decorin proteoglycan gene in human colon cancer. Biochem J 1991; 276 ( Pt 2):301-6. [PMID: 1710888 PMCID: PMC1151091 DOI: 10.1042/bj2760301] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have previously reported that the connective tissue stroma of human colon carcinoma contains elevated amounts of decorin, a small proteoglycan involved in the regulation of matrix formation and cell proliferation. These biochemical changes were correlated with increased mRNA levels and general hypomethylation of the decorin gene in human colon cancer DNA. In this report we use a quantitative polymerase chain reaction method coupled with digestion of the DNA template by methylation-sensitive restriction endonucleases to investigate in detail the location of hypomethylated sites in decorin gene. We demonstrate that a specific site in the 3' region of the gene, encompassing codons 360-361, is specifically hypomethylated in both colon carcinoma and benign polyp. In contrast, three HpaII sites, clustered in the 5' untranslated region, show full methylation in normal and neoplastic DNA. The lack of such changes in ulcerative colitis DNA suggests that chronic inflammation alone is not sufficient to alter cytosine methylation in the decorin gene. These results suggest the possibility that the 3' region of the decorin-coding sequence may be involved in the control of decorin gene expression.
Collapse
Affiliation(s)
- R Adany
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | | |
Collapse
|