1
|
Shin Y, Kim YW, Kim H, Shin N, Kim TS, Kwon TK, Choi JH, Chang JS. RASAL3 preferentially stimulates GTP hydrolysis of the Rho family small GTPase Rac2. Biomed Rep 2018; 9:241-246. [PMID: 30271600 DOI: 10.3892/br.2018.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/28/2018] [Indexed: 11/05/2022] Open
Abstract
Members of the Ras superfamily of small G-proteins serve as molecular switches of intracellular signaling pathways. Rac2 is a Rho subfamily GTPase switch that is specifically expressed in hematopoietic cells and regulates AKT activation in cell signaling. Ras activating protein-like 3 (RASAL3) is the recently identified Ras GTPase activating protein (GAP) that is also specifically expressed in hematopoietic cells and stimulates p21ras GTPase activity. The restricted expression of both Rac2 and RASAL3 suggests that they may serve critical roles in hematopoietic cell signaling. Here in the present study demonstrates that the catalytic domain of RASAL3 may also be able to interact with Rac2 and stimulate its GTPase activity in vitro. By contrast, p50 rhoGAP molecules did not markedly affect Rac2 GTPase activity, but did accelerate the activity of other Rho GTPases, including Rac1, RhoA and Cdc42. Collectively, the present results indicate, seemingly for the first time, that GAP activity for Rac2 is regulated by the RasGAP family protein, RASAL3.
Collapse
Affiliation(s)
- Yoonjae Shin
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Yong Woo Kim
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Hyemin Kim
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Nakyoung Shin
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Tae Sung Kim
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology and Physiology, School of Medicine, Keimyung University, Daegu 42601, South Korea
| | - Jang Hyun Choi
- Department of Biological Sciences, Division of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Jong-Soo Chang
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| |
Collapse
|
2
|
Rosowski EE, Deng Q, Keller NP, Huttenlocher A. Rac2 Functions in Both Neutrophils and Macrophages To Mediate Motility and Host Defense in Larval Zebrafish. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4780-4790. [PMID: 27837107 PMCID: PMC5367389 DOI: 10.4049/jimmunol.1600928] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/09/2016] [Indexed: 11/19/2022]
Abstract
Leukocyte motility is required for host defense responses. Rac-family Rho GTPases are implicated in leukocyte function; however, the distinct roles of different Rac isoforms in host defense in vivo have remained unclear. In this study, we generated Rac2-deficient zebrafish using transcription activator-like effector nucleases to directly compare the role of Rac2 in vivo in neutrophils and macrophages in motility and the response to infection. This zebrafish larval model is highly amenable to live imaging of leukocyte behavior, and we report that in rac2-/- larvae both neutrophils and macrophages are defective in basic motility, leading to impaired responses to localized wounds or infections. rac2-/- larvae are highly susceptible to infection with Pseudomonas aeruginosa, which can be almost fully rescued by ectopic expression of either Rac2 or Rac1 specifically in neutrophils, indicating that these isoforms have partially overlapping functions in vivo. Rescue of Rac2 expression specifically in macrophages also confers resistance to Pseudomonas infection, highlighting an important role for Rac2 in this leukocyte population as well. Surprisingly, in contrast to neutrophils expressing a Rac2 dominant inhibitory human disease mutation, rac2-/- neutrophils do not have altered polarity or mobilization from hematopoietic tissue, suggesting that a different Rac isoform, such as Rac1, also contributes to these phenotypes in vivo.
Collapse
Affiliation(s)
- Emily E Rosowski
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706; and
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706;
- Department of Pediatrics, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
3
|
Tang W, Cai P, Huo W, Li H, Tang J, Zhu D, Xie H, Chen P, Hang B, Wang S, Xia Y. Suppressive action of miRNAs to ARP2/3 complex reduces cell migration and proliferation via RAC isoforms in Hirschsprung disease. J Cell Mol Med 2016; 20:1266-1275. [PMID: 26991540 PMCID: PMC4929290 DOI: 10.1111/jcmm.12799] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 12/22/2015] [Indexed: 01/05/2023] Open
Abstract
Hirschsprung disease (HSCR) is a congenital disorder caused by the defective function of the embryonic enteric neural crest. The impaired migration of embryonic enteric neural crest plays an important role in the pathogenesis of this disease. Recent studies showed that the ARP2/3 complex and RAC isoforms had effects on actin cytoskeleton remodelling, which contributes to migration. Moreover, some regulatory relationships were identified between ARP2/3 complex and RAC isoforms. Although microRNAs (miRNAs) have been known to modulate target gene expression on the post-transcriptional level, little is known about the regulation among miRNAs, ARP2/3 complex and RAC isoforms. Here, we report that down-regulation of ARP2 and ARP3, two main subunits of ARP2/3 complex, suppressed migration and proliferation in 293T and SH-SY5Y cell lines via the inhibition of RAC1 and RAC2. Meanwhile, as the target genes, ARP2 and ARP3 are reduced by increased miR-24-1* and let-7a*, respectively, in 70 HSCR samples as compared with 74 normal controls. Co-immunoprecipitation showed that aberrant reduction in ARP2 and ARP3 could weaken the function of ARP2/3 complex. Our study demonstrates that the miR-24-1*/let-7a*-ARP2/3 complex-RAC isoforms pathway may represent a novel pathogenic mechanism for HSCR.
Collapse
Affiliation(s)
- Weibing Tang
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Cai
- Children's Hospital of Soochow University, Soochow, China
| | - Weiwei Huo
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, Nanjing, China
| | - Hongxing Li
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junwei Tang
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongmei Zhu
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hua Xie
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Pingfa Chen
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Bo Hang
- Department of Cell and Molecular Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shouyu Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, Nanjing, China
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- Children's Hospital of Soochow University, Soochow, China
- Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, Nanjing, China
| |
Collapse
|
4
|
Troeger A, Williams DA. Hematopoietic-specific Rho GTPases Rac2 and RhoH and human blood disorders. Exp Cell Res 2013; 319:2375-83. [PMID: 23850828 PMCID: PMC3997055 DOI: 10.1016/j.yexcr.2013.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/26/2023]
Abstract
The small guanosine triphosphotases (GTPases) Rho proteins are members of the Ras-like superfamily. Similar to Ras, most Rho GTPases cycle between active GTP-bound, and inactive GDP-bound conformations and act as molecular switches that control multiple cellular functions. While most Rho GTPases are expressed widely, the expression of Rac2 and RhoH are restricted to hematopoietic cells. RhoH is an atypical GTPase that lacks GTPase activity and remains in the active conformation. The generation of mouse knock-out lines has led to new understanding of the functions of both of these proteins in blood cells. The phenotype of these mice also led to the identification of mutations in human RAC2 and RHOH genes and the role of these proteins in immunodeficiency diseases. This review outlines the basic biology of Rho GTPases, focusing on Rac and RhoH and summarizes human diseases associated with mutations of these genes.
Collapse
Affiliation(s)
- Anja Troeger
- Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Duesseldorf, Moorenstreet 5, 40225 Duesseldorf, Germany
| | | |
Collapse
|
5
|
Ramgolam VS, DeGregorio SD, Rao GK, Collinge M, Subaran SS, Markovic-Plese S, Pardi R, Bender JR. T cell LFA-1 engagement induces HuR-dependent cytokine mRNA stabilization through a Vav-1, Rac1/2, p38MAPK and MKK3 signaling cascade. PLoS One 2010; 5:e14450. [PMID: 21206905 PMCID: PMC3012057 DOI: 10.1371/journal.pone.0014450] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 12/06/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Engagement of the β2 integrin, lymphocyte function-associated antigen-1 (LFA-1), results in stabilization of T cell mRNA transcripts containing AU-rich elements (AREs) by inducing rapid nuclear-to-cytosolic translocation of the RNA-stabilizing protein, HuR. However, little is known regarding integrin-induced signaling cascades that affect mRNA catabolism. This study examines the role of the GTPases, Rac 1 and Rac 2, and their downstream effectors, in the LFA-1-induced effects on mRNA. METHODOLOGY/PRINCIPAL FINDINGS Engagement of LFA-1 to its ligand, ICAM-1, in human peripheral T cells resulted in rapid activation of Rac1 and Rac2. siRNA-mediated knockdown of either Rac1 or Rac2 prevented LFA-1-stimulated stabilization of the labile transcripts encoding IFN-γ and TNF-α, and integrin mediated IFN-γ mRNA stabilization was absent in T cells obtained from Rac2 gene-deleted mice. LFA-1 engagement-induced translocation of HuR and stabilization of TNF- α mRNA was lost in Jurkat cells deficient in the Rac guanine nucleotide exchange factor Vav-1 (J.Vav1). The transfection of J.Vav1 cells with constitutively active Rac1 or Rac2 stabilized a labile β-globin reporter mRNA, in a HuR-dependent manner. Furthermore, LFA-1-mediated mRNA stabilization and HuR translocation in mouse splenic T cells was dependent on the phosphorylation of the mitogen-activated protein kinase kinase, MKK3, and its target MAP kinase p38MAPK, and lost in T cells obtained from MKK3 gene-deleted mice. CONCLUSIONS/SIGNIFICANCE Collectively, these results demonstrate that LFA-1-induced stabilization of ARE-containing mRNAs in T cells is dependent on HuR, and occurs through the Vav-1, Rac1/2, MKK3 and p38MAPK signaling cascade. This pathway constitutes a molecular switch that enhances immune and pro-inflammatory gene expression in T cells undergoing adhesion at sites of activation and effector function.
Collapse
Affiliation(s)
- Vinod S. Ramgolam
- Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Departments of Medicine (Cardiovascular Medicine) and Immunobiology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Scott D. DeGregorio
- Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Departments of Medicine (Cardiovascular Medicine) and Immunobiology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Gautham K. Rao
- Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Departments of Medicine (Cardiovascular Medicine) and Immunobiology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Mark Collinge
- Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Departments of Medicine (Cardiovascular Medicine) and Immunobiology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sharmila S. Subaran
- Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Departments of Medicine (Cardiovascular Medicine) and Immunobiology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Silva Markovic-Plese
- Department of Neurology and of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ruggero Pardi
- Department of Molecular Pathology, Universitá Vita-Salute School of Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Jeffrey R. Bender
- Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Departments of Medicine (Cardiovascular Medicine) and Immunobiology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
6
|
Hidalgo A. Hematopoietic stem cell homing: The long, winding and adhesive road to the bone marow. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s0213-9626(08)70046-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Boureux A, Vignal E, Faure S, Fort P. Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol 2006; 24:203-16. [PMID: 17035353 PMCID: PMC2665304 DOI: 10.1093/molbev/msl145] [Citation(s) in RCA: 321] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
GTPases of the Rho family are molecular switches that play important roles in converting and amplifying external signals into cellular effects. Originally demonstrated to control the dynamics of the F-actin cytoskeleton, Rho GTPases have been implicated in many basic cellular processes that influence cell proliferation, differentiation, motility, adhesion, survival, or secretion. To elucidate the evolutionary history of the Rho family, we have analyzed over 20 species covering major eukaryotic clades from unicellular organisms to mammals, including platypus and opossum, and have reconstructed the ontogeny and the chronology of emergence of the different subfamilies. Our data establish that the 20 mammalian Rho members are structured into 8 subfamilies, among which Rac is the founder of the whole family. Rho, Cdc42, RhoUV, and RhoBTB subfamilies appeared before Coelomates and RhoJQ, Cdc42 isoforms, RhoDF, and Rnd emerged in chordates. In vertebrates, gene duplications and retrotranspositions increased the size of each chordate Rho subfamily, whereas RhoH, the last subfamily, arose probably by horizontal gene transfer. Rac1b, a Rac1 isoform generated by alternative splicing, emerged in amniotes, and RhoD, only in therians. Analysis of Rho mRNA expression patterns in mouse tissues shows that recent subfamilies have tissue-specific and low-level expression that supports their implication only in narrow time windows or in differentiated metabolic functions. These findings give a comprehensive view of the evolutionary canvas of the Rho family and provide guides for future structure and evolution studies of other components of Rho signaling pathways, in particular regulators of the RhoGEF family.
Collapse
Affiliation(s)
| | | | | | - Philippe Fort
- * Correspondence should be adressed to: Philippe Fort
| |
Collapse
|
8
|
Cancelas JA, Jansen M, Williams DA. The role of chemokine activation of Rac GTPases in hematopoietic stem cell marrow homing, retention, and peripheral mobilization. Exp Hematol 2006; 34:976-85. [PMID: 16863904 DOI: 10.1016/j.exphem.2006.03.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Indexed: 01/13/2023]
Abstract
Signaling downstream from the chemokine receptor CXCR4, the tyrosine kinase receptor c-kit and beta1-integrins has been shown to be crucial in the regulation of migration, homing, and engraftment of hematopoietic stem cells and progenitors. Each of these receptors signal through Rac-type Rho guanosine triphosphatases (GTPases). Rac GTPases play a major role in the organization of the actin cytoskeleton and also in the control of gene expression and the activation of proliferation and survival pathways. Here we review the specific roles of the members of the Rac subfamily of the Rho GTPase family in regulating the intracellular signaling of hematopoietic cells responsible for regulation of homing, marrow retention, and peripheral mobilization.
Collapse
Affiliation(s)
- Jose A Cancelas
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45215, USA
| | | | | |
Collapse
|
9
|
Mzali R, Seguin L, Liot C, Auger A, Pacaud P, Loirand G, Thibault C, Pierre J, Bertoglio J. Regulation of Rho signaling pathways in interleukin-2-stimulated human T-lymphocytes. FASEB J 2005; 19:1911-3. [PMID: 16148026 DOI: 10.1096/fj.05-4030fje] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Rho GTPases are key regulators of many cellular functions, including cytoskeleton organization which is important for cell morphology and mobility, gene expression, cell cycle progression, and cytokinesis. In addition, it has recently been recognized that Rho GTPase activity is required for development of the immune system, as well as for the specialized functions of the peripheral cells that act in the immune response such as antigen presenting cells and lymphocytes. Stimulation of T lymphocytes with interleukin-2 (IL-2) induces clonal expansion of antigen-specific populations and provides a model to study cell cycle entry and cell cycle progression. We have performed gene expression analysis in a model of human T lymphocytes, which proliferate in response to IL-2. In addition to changes in genes relevant to cell cycling and to the antiapoptotic effects of IL-2, we have analyzed expression and variations of more than 300 genes involved in Rho GTPase signaling pathways. We report here that IL-2 regulates the expression of a number of proteins, which participate in the Rho GTPase pathways, including some of the GTPases themselves, GDP/GTP exchange factors, GTPase activating proteins, as well as GDIs and effectors. Our results suggest that regulation of expression of components of the Rho GTPase pathways may be an important mechanism in assembling specific signal transduction cascades that need to be active at certain times during the cell cycle. Some of our findings may also be relevant to the roles of Rho GTPases in T lymphocyte functions and proliferation.
Collapse
Affiliation(s)
- Rym Mzali
- Inserm U461, Faculté de Pharmacie Paris-XI, Chatenay-Malabry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
The TRQQKRP motif located near the C-terminus of Rac2 is essential for Rac2 biologic functions and intracellular localization. Blood 2002. [DOI: 10.1182/blood.v100.5.1679.h81702001679_1679_1688] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rac GTPases regulate a wide variety of cellular processes including actin cytoskeleton organization, gene expression, cell-cycle progression, and apoptosis. Here we report that the TRQQKRP motif of Rac2 located near the C-terminus, a region of sequence disparity among Rac proteins, is essential for complementation of Rac2 function in Rac2-deficient cells. Deletion of this sequence can also intragenically suppress the dominant-negative Rac2D57Nmutation in a variety of functional assays. In Rac2-deficient cells, expression of TRQQKRP-deleted Rac2 protein is unable to completely rescue migration and nicotinamide adenine dinucleotide phosphate oxidase deficiencies previously described in these cells. In fibroblasts, the Rac2D57N mutant phenotypes of abnormal proliferation, cell morphology, and membrane ruffling are suppressed by the TRQQKRP motif deletion. In myeloid hematopoietic cells, the deletion of the TRQQKRP motif eliminates a Rac2D57N-induced block in in vitro differentiation of neutrophils not previously described with this mutant. Mechanistically, deletion of the TRQQKRP motif results in diminished geranylgeranylation and delocalization of intracellular Rac2 protein. Taken together, these results indicate that the TRQQKRP motif in Rac2 protein is required for efficient prenylation and correct intracellular localization of Rac2 protein and is essential for Rac2 to mediate a variety of its biologic functions. These data suggest that precise localization of Rac2 protein in intracellular compartments and/or with other proteins/lipids is a prerequisite for its diverse functions.
Collapse
|
11
|
Croker BA, Handman E, Hayball JD, Baldwin TM, Voigt V, Cluse LA, Yang FC, Williams DA, Roberts AW. Rac2-deficient mice display perturbed T-cell distribution and chemotaxis, but only minor abnormalities in T(H)1 responses. Immunol Cell Biol 2002; 80:231-40. [PMID: 12067410 DOI: 10.1046/j.1440-1711.2002.01077.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The haematopoietic-specific RhoGTPase, Rac2, has been indirectly implicated in T-lymphocyte development and function, and as a pivotal regulator of T Helper 1 (T(H)1) responses. In other haematopoietic cells it regulates cytoskeletal rearrangement downstream of extracellular signals. Here we demonstrate that Rac2 deficiency results in an abnormal distribution of T lymphocytes in vivo and defects in T-lymphocyte migration and filamentous actin generation in response to chemoattractants in vitro. To investigate the requirement for Rac2 in IFN-gamma production and TH1 responses in vivo, Rac2-deficient mice were challenged with Leishmania major and immunized with ovalbumin-expressing cytomegalovirus. Despite a minor skewing towards a T(H)2 phenotype, Rac2-deficient mice displayed no increased susceptibility to L. major infection. Cytotoxic T-lymphocyte responses to cytomegalovirus and ovalbumin were also normal. Although Rac2 is required for normal T-lymphocyte migration, its role in the generation of T(H)1 responses to infection in vivo is largely redundant.
Collapse
Affiliation(s)
- Ben A Croker
- Divisions of Cancer, Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Victoria, South Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Price MO, McPhail LC, Lambeth JD, Han CH, Knaus UG, Dinauer MC. Creation of a genetic system for analysis of the phagocyte respiratory burst: high-level reconstitution of the NADPH oxidase in a nonhematopoietic system. Blood 2002; 99:2653-61. [PMID: 11929750 DOI: 10.1182/blood.v99.8.2653] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The phagocyte nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH) oxidase was functionally reconstituted in monkey kidney COS-7 cells by transfection of essential subunits, gp91(phox), p22(phox), p47(phox), and p67(phox). COS-7 cells express the essential small guanosine 5'-triphosphatase, Rac1. Transgenic COS-phox cells were capable of arachidonic acid-induced NADPH oxidase activity up to 80% of that of human neutrophils, and of phorbol myristate acetate (PMA)-induced activity up to 20% of that of neutrophils. Expression of all 4 phox components was required for enzyme activity, and enzyme activation was associated with membrane translocation of p47(phox), p67(phox), and Rac1. Expression of p47(phox) Ser303Ala/Ser304Ala or Ser379Ala phosphorylation-deficient mutants resulted in significantly impaired NAPDH oxidase activity, compared with expression of wild-type p47(phox) or the p47(phox) Ser303Glu/Ser304Glu phosphorylation mimic, suggesting that p47(phox) phosphorylation contributes to enzyme activity in the COS system, as is the case in neutrophils. Hence, COS-phox cells should be useful as a new whole-cell model that is both capable of high-level superoxide production and readily amenable to genetic manipulation for investigation of NADPH oxidase function. PMA-elicited superoxide production in COS-phox cells was regulated by activation of protein kinase C (PKC) and Rac. Although COS-7 cells differ from human neutrophils in PKC isoform expression, transient expression of major neutrophil isoforms in COS-phox cells did not increase PMA-induced superoxide production, suggesting that endogenous isoforms were not rate limiting. Val204 in p67(phox), previously shown to be required for NADPH oxidase activity under cell-free conditions, was found to be essential for superoxide production by intact COS-phox cells, on the basis of transfection studies using a p67(phox) (Val204Ala) mutant.
Collapse
Affiliation(s)
- Marianne O Price
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, James Whitcomb Riley Hospital for Children, Indiana University Medical Center, Indianapolis 46202, USA
| | | | | | | | | | | |
Collapse
|
13
|
Yu H, Leitenberg D, Li B, Flavell RA. Deficiency of small GTPase Rac2 affects T cell activation. J Exp Med 2001; 194:915-26. [PMID: 11581314 PMCID: PMC2193485 DOI: 10.1084/jem.194.7.915] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2001] [Accepted: 07/25/2001] [Indexed: 11/04/2022] Open
Abstract
Rac2 is a hematopoietic-specific GTPase acting as a molecular switch to mediate both transcriptional activation and cell morphological changes. We have examined the effect of Rac2 deficiency during T cell activation. In Rac2(-/-) T cells, proliferation was reduced upon stimulation with either plate-bound anti-CD3 or T cell receptor-specific antigen. This defect is accompanied with decreased activation of mitogen activated protein kinase extracellular signal-regulated kinase (ERK)1/2 and p38, and reduced Ca(2)+ mobilization. TCR stimulation-induced actin polymerization is also reduced. In addition, anti-CD3 cross-linking-induced T cell capping is reduced compared with wild-type T cells. These results indicate that Rac2 is important in mediating both transcriptional and cytoskeletal changes during T cell activation. The phenotypic similarity of Rac2(-/-) to Vav(-/-) cells implicates Rac2 as a downstream mediator of Vav signaling.
Collapse
Affiliation(s)
- Hong Yu
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520
| | - Dave Leitenberg
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520
| | - Baiyong Li
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Richard A. Flavell
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
14
|
Gu Y, Jia B, Yang FC, D'Souza M, Harris CE, Derrow CW, Zheng Y, Williams DA. Biochemical and biological characterization of a human Rac2 GTPase mutant associated with phagocytic immunodeficiency. J Biol Chem 2001; 276:15929-38. [PMID: 11278678 DOI: 10.1074/jbc.m010445200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rho GTPase, Rac2, is expressed only in hematopoietic cell lineages, suggesting a specific cellular function in these cells. Genetic targeting studies in mice showed that Rac2 is an essential regulator of neutrophil chemotaxis, L-selectin capture and rolling, and superoxide production. Recently, a dominant negative mutation of Rac2, D57N, has been reported to be associated with a human phagocytic immunodeficiency. To understand further the cellular phenotypes associated with this D57N Rac2 mutant we examined its biochemical characteristics and functional effects when expressed in primary murine bone marrow cells. When compared with wild type (WT) Rac2, D57N Rac2 displayed approximately 10% GTP binding ability resulting from a markedly enhanced rate of GTP dissociation and did not respond to the guanine nucleotide exchange factors. These results suggest that D57N Rac2 may act in a dominant negative fashion in cells by sequestering endogenous guanine nucleotide exchange factors. When expressed in hematopoietic cells, D57N Rac2 reduced endogenous activities of not only Rac2, but also Rac1 and decreased cell expansion in vitro in the presence of growth factors due to increased cell apoptosis. Unexpectedly, D57N expression had no effect on proliferation. In contrast, expansion of cells transduced with WT Rac2 and a dominant active mutant, Q61L, was associated with significantly increased proliferation. Transplantation of transduced bone marrow cells into lethally irradiated recipients showed that the percentage of D57N-containing peripheral blood cells decreased markedly from 40% at 1 month to <5% by 3 months postinjection. Neutrophils derived in vitro from the transduced progenitor cells containing D57N demonstrated markedly impaired migration and O(2)(-) responses to formyl-methionyl-leucyl-phenylalanine, reflecting the same cellular phenotype in these differentiated cells as those described previously in patient cells. These data suggest that the phenotypic abnormalities associated with D57N Rac2 may involve not only neutrophil cellular functions, but also abnormal cell survival in other hematopoietic cells and that overexpression of Rac leads to increased proliferation of normal cells in vitro, whereas deficiency of Rac leads to increased apoptosis.
Collapse
Affiliation(s)
- Y Gu
- Howard Hughes Medical Institute and the Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yang FC, Kapur R, King AJ, Tao W, Kim C, Borneo J, Breese R, Marshall M, Dinauer MC, Williams DA. Rac2 stimulates Akt activation affecting BAD/Bcl-XL expression while mediating survival and actin function in primary mast cells. Immunity 2000; 12:557-68. [PMID: 10843388 DOI: 10.1016/s1074-7613(00)80207-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mast cells generated from Rac2-deficient (-/-) mice demonstrated defective actin-based functions, including adhesion, migration, and degranulation. Rac2(-/-) mast cells generated lower numbers and less mast cell colonies in response to growth factors and were deficient in vivo. Rac2(-/-) mast cells demonstrated a significant reduction in growth factor-induced survival, which correlated with the lack of activation of Akt and significant changes in the expression of the Bcl-2 family members BAD and Bcl-XL, in spite of a 3-fold induction of Rac1 protein. These results suggest that Rac2 plays a unique role in multiple cellular functions and describe an essential role for Rac2 in growth factor-dependent survival and expression of BAD/Bcl-XL.
Collapse
Affiliation(s)
- F C Yang
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Preudhomme C, Roumier C, Hildebrand MP, Dallery-Prudhomme E, Lantoine D, Laï JL, Daudignon A, Adenis C, Bauters F, Fenaux P, Kerckaert JP, Galiègue-Zouitina S. Nonrandom 4p13 rearrangements of the RhoH/TTF gene, encoding a GTP-binding protein, in non-Hodgkin's lymphoma and multiple myeloma. Oncogene 2000; 19:2023-32. [PMID: 10803463 DOI: 10.1038/sj.onc.1203521] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We recently isolated the RhoH/TTF gene by its fusion to the LAZ3/BCL6 gene, in a non-Hodgkin's lymphoma (NHL) cell line, which bore a t(3;4)(q27;p11-13) translocation. This gene encodes a novel Rho GTP-binding protein and is specifically expressed in hematopoietic tissues. We made its precise mapping at band 4p13, and described its partial genomic structure. Using fluorescence in situ hybridization and molecular analyses, we report here on the rearrangement of the RhoH/TTF gene, at band 4p13, in four cases of NHL with t(3;4)(q27;p13) translocation and its fusion to the LAZ3/BCL6 gene at band 3q27, in three of these cases. RT-PCR analysis of two cases allowed the detection of variable fusion transcripts emerging from the rearranged alleles, and in one case, a deregulated expression of both RhoH/TTF and LAZ3/BCL6 genes, by promoter substitution, was observed. We also show here another rearrangement of the RhoH/TTF gene in a patient with multiple myeloma and t(4;14)(p13;q32) translocation, with breakage within the IGH gene. It is the first report which describes the recurrent chromosomal alteration of a GTP-binding protein encoding gene, in patients with hematopoietic malignancies.
Collapse
Affiliation(s)
- C Preudhomme
- INSERM U.524, Institut de Recherches sur le Cancer, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Altman A, Deckert M. The function of small GTPases in signaling by immune recognition and other leukocyte receptors. Adv Immunol 1999; 72:1-101. [PMID: 10361572 DOI: 10.1016/s0065-2776(08)60017-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- A Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | |
Collapse
|
18
|
Ou X, Pollock J, Dinauer MC, Gharehbaghi-Schnell E, Skalnik DG. Identification and functional characterization of the murine Rac2 gene promoter. DNA Cell Biol 1999; 18:253-63. [PMID: 10098607 DOI: 10.1089/104454999315475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rac2, a member of the Rho family of GTPases, is highly expressed in myeloid cells and is a regulator of the NADPH-oxidase complex. A murine genomic clone was isolated that contains the 5' end and putative promoter region of the Rac2 gene. Ribonuclease protection experiments detected 13 transcription initiation sites scattered 50 to 130 bp upstream of the translation initiation site. Transient transfection studies revealed that -7 kb to +31 bp (relative to the strongest transcription initiation site) of the Rac2 gene 5'-flanking region exhibited strong promoter activity in both RAW 264.7 macrophage cells that express the endogenous Rac2 gene and NIH-3T3 fibroblast cells that do not express the endogenous gene. Truncated Rac2 promoter fragments containing as little as the -74 to +31 bp sequence produced full transcriptional activity. However, a -57 to +31 promoter fragment directed significantly less transcription, and a -39 to +31 promoter fragment was transcriptionally inactive. In vitro binding assays revealed sequence-specific and widely expressed DNA-binding activities that interacted within the -74 to -58 Rac2 promoter cis element. Oligonucleotide competition and antibody disruption studies indicated that these complexes contained the transcription factors Spl and Sp3. Specific ablation of the Sp1/Sp3 binding site significantly decreased Rac2 promoter activity in both RAW 264.7 and NIH-3T3 cells. Additional cis elements may be required to restrict Rac2 promoter activity to hematopoietic cells expressing the endogenous gene.
Collapse
Affiliation(s)
- X Ou
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- A J Darmon
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, UK
| | | | | |
Collapse
|
20
|
Roux P, Gauthier-Rouvière C, Doucet-Brutin S, Fort P. The small GTPases Cdc42Hs, Rac1 and RhoG delineate Raf-independent pathways that cooperate to transform NIH3T3 cells. Curr Biol 1997; 7:629-37. [PMID: 9285711 DOI: 10.1016/s0960-9822(06)00289-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ras-mediated transformation of mammalian cells has been shown to activate multiple signalling pathways, including those involving mitogen-activated protein kinases and the small GTPase Rho. Members of the Rho family affect cell morphology by controlling the formation of actin-dependent structures: specifically, filopodia are induced by Cdc42Hs, lamellipodia and ruffles by Rac, and stress fibers by RhoA. In addition, Rho GTPases are involved in progression through the G1 phase of the cell cycle, and Rac1 and RhoA have recently been directly implicated in the morphogenic and mitogenic responses to transformation by oncogenic Ras. In order to examine the cross-talk between Ras and Rho proteins, we investigated the effects on focus-forming activity and cell growth of the Rho-family members Cdc42Hs, Rac1 and RhoG by expressing constitutively active or dominant-negative forms in NIH3T3 cells. RESULTS Expression of Rac1 or RhoG modulated the saturation density to which the cells grew, probably by affecting the level of contact inhibition. Although all three GTPases were required for cell transformation mediated by Ras but not by constitutively active Raf, the selective activation of each GTPase was not sufficient to induce the formation of foci. The coordinated activation of Cdc42Hs, RhoG and Rac1, however, elicited a high focus-forming activity, independent of the mitogen-activated ERK and JNK protein kinase pathways. CONCLUSIONS Ras-mediated transformation induces extensive changes in cell morphology which require the activity of members of the Rho family of GTPases. Our data show that the pattern of coordinated Rho family activation that elicits a focus-forming activity in NIH3T3 cells is distinct from the regulatory cascade that has been proposed for the control of actin-dependent structures in Swiss 3T3 cells.
Collapse
Affiliation(s)
- P Roux
- Institut de Génétique Moléculaire, C.N.R.S. UMR5535, 1919 route de Mende, F-34293 Montpellier cedex 5, France.
| | | | | | | |
Collapse
|
21
|
Courjal F, Chuchana P, Theillet C, Fort P. Structure and chromosomal assignment to 22q12 and 17qter of the ras-related Rac2 and Rac3 human genes. Genomics 1997; 44:242-6. [PMID: 9299243 DOI: 10.1006/geno.1997.4871] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Members of the Rho/Rac/Cdc42Hs family of GTPases have been shown to participate in many aspects of the signaling of cell growth and differentiation. Although the biochemical properties of these GTPases have been extensively studied, very little is known about the structure of the corresponding genes. To gain insight on the evolution of the Rho family, we were interested in studying the genomic structure of several members. We report here the structure and the localization to 22q12 of the human Rac2 gene, as well as the localization to 17qter of Rac3, a new member closely related to Rac1 and Rac2. Unlike the structure of its closest relative ARH-G gene, which contains a single intron, Rac2 is made of at least 7 exons, spanning over 18 kb of DNA. Comparison of gene structure and exonic borders suggests that the emergence of the whole superfamily took place early during evolution.
Collapse
MESH Headings
- Amino Acid Sequence
- Cell Cycle Proteins/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 17/genetics
- Chromosomes, Human, Pair 17/ultrastructure
- Chromosomes, Human, Pair 22/genetics
- Chromosomes, Human, Pair 22/ultrastructure
- Evolution, Molecular
- Exons
- GTP Phosphohydrolases
- GTP-Binding Proteins/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Molecular Sequence Data
- Sequence Homology, Amino Acid
- Transcription Factors/genetics
- cdc42 GTP-Binding Protein
- rac GTP-Binding Proteins
- rho GTP-Binding Proteins
Collapse
Affiliation(s)
- F Courjal
- IGM-UMR5535, CNRS, route de Mende, Montpellier cedex 5, 34293, France
| | | | | | | |
Collapse
|
22
|
Finlin BS, Andres DA. Rem is a new member of the Rad- and Gem/Kir Ras-related GTP-binding protein family repressed by lipopolysaccharide stimulation. J Biol Chem 1997; 272:21982-8. [PMID: 9268335 DOI: 10.1074/jbc.272.35.21982] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report the cDNA cloning and characterization of a novel GTP-binding protein, termed Rem (for Rad and Gem-related), that was identified as a product of polymerase chain reaction amplification using oligonucleotide primers derived from conserved regions of the Rad, Gem, and Kir Ras subfamily. Alignment of the full-length open reading frame of mouse Rem revealed the encoded protein to be 47% identical to the Rad, Gem, and Kir proteins. The distinct structural features of the Rad, Gem, and Kir subfamily are maintained including a series of nonconservative amino acid substitutions at positions important for GTPase activity and a unique sequence motif thought to direct membrane association. Recombinant Rem binds GTP in a specific and saturable manner. Ribonuclease protection analysis found Rem to be expressed at comparatively high levels in cardiac muscle and at moderate levels in lung, skeletal muscle, and kidney. The administration of lipopolysaccharide to mice, a potent activator of the inflammatory and immune systems, results in the general repression of Rem mRNA levels in a dose- and time-dependent manner. Thus, Rem is the first Ras-related gene whose mRNA levels have been shown to be regulated by repression.
Collapse
Affiliation(s)
- B S Finlin
- Department of Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0084, USA
| | | |
Collapse
|
23
|
Dallery-Prudhomme E, Roumier C, Denis C, Preudhomme C, Kerckaert JP, Galiegue-Zouitina S. Genomic structure and assignment of the RhoH/TTF small GTPase gene (ARHH) to 4p13 by in situ hybridization. Genomics 1997; 43:89-94. [PMID: 9226377 DOI: 10.1006/geno.1997.4788] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The RhoH/TTF (ARHH) gene encodes a new member of the Ras superfamily of small GTPases. The gene was identified by fusion to the BCL6/LAZ3 oncogene in an initially described t(3;4)(q27;p11) translocation in a non-Hodgkin's lymphoma cell line. The predicted amino acid sequence of the RhoH/TTF gene product includes Rho-like GTPase structural motifs. The RhoH/TTF gene is restrictively expressed in hematopoietic cells and tissues. Mutations in the human RAS genes have been shown previously to be tumorigenic; in the search for a potential implication of the RhoH/TTF gene in hemopoietic malignancies, we established its genomic structure. The RhoH/TTF gene spans 35 kb and contains two exons, with the second bearing the entire amino-acid-coding region. Chromosomal mapping, by FISH experiments, places the RhoH/TTF gene on the short arm of chromosome 4, band p13.
Collapse
|
24
|
Vanhove B, Hofer-Warbinek R, Kapetanopoulos A, Hofer E, Bach FH, de Martin R. Gem, a GTP-binding protein from mitogen-stimulated T cells, is induced in endothelial cells upon activation by inflammatory cytokines. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 1997; 5:51-61. [PMID: 9142321 DOI: 10.3109/10623329709044158] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Using differential screening of cytokine-activated versus resting porcine aortic endothelial cells (PAEC), we have isolated a member of the family of Ras/GTP-binding proteins. The cDNA encodes a 34-kilodalton protein showing 97% homology to Gem, a gene recently isolated from activated T cells, likely representing its porcine homologue. The amino acid sequence differs from the Ras consensus by the absence of a C-terminal isoprenylation site and a glycine to glutamic acid substitution in the third GTP-binding domain. We report here, that pigGem mRNA is strongly inducible in PAEC upon activation by either IL-1 alpha, TNF alpha or lipopolysaccharide (LPS). Low constitutive expression is found in several organs. Epitope-tagged pigGem transfected into endothelial cells (EC) localizes to the cytoplasm and to the inner side of the plasma membrane. Structural features of Gem and its inducibility apparently restricted to T cells and endothelial cells, together with Rad, a GTPase overexpressed in skeletal muscle cells of type II diabetic individuals, define a new branch within the superfamily of GTP-binding proteins.
Collapse
Affiliation(s)
- B Vanhove
- Vienna International Research Cooperation Center (VIRCC), Austria
| | | | | | | | | | | |
Collapse
|
25
|
Chen W, Yap SF, Lim L. Isolation of the gene coding for Caenorhabditis elegans Rac2 homologue, a Ras-related small GTP-binding protein. Gene 1996; 180:217-9. [PMID: 8973370 DOI: 10.1016/s0378-1119(96)00414-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
When screening a Caenorhabditis elegans genomic library using the human Rac1 cDNA as probe, a hybridizing fragment of 2.7 kb was isolated which contained four exons with high sequence similarity to CeRac1, coding for the nematode homologue of the Ras-related small GTP-binding protein Rac1. The putative translational product of 195 amino acids (aa) from the exons displayed 88% identity to the sequence of CeRac1. Interestingly, three alterations were found in the N-terminal "effector domain' (residues 22-45) which hitherto was identical among all known Rac p21s, suggesting that CeRac2 might have different targets/functions for nematode development. Additionally, an insertion of 4 aa was found in the hypervariable region at the C terminus of CeRac2.
Collapse
Affiliation(s)
- W Chen
- Glaxo-IMCB Group, National University of Singapore, Singapore
| | | | | |
Collapse
|
26
|
Boivin D, Bilodeau D, Béliveau R. Regulation of cytoskeletal functions by Rho small GTP-binding proteins in normal and cancer cells. Can J Physiol Pharmacol 1996. [DOI: 10.1139/y96-083] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Wu J, Katzav S, Weiss A. A functional T-cell receptor signaling pathway is required for p95vav activity. Mol Cell Biol 1995; 15:4337-46. [PMID: 7623828 PMCID: PMC230673 DOI: 10.1128/mcb.15.8.4337] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Stimulation of the T-cell antigen receptor (TCR) induces activation of multiple tyrosine kinases, resulting in phosphorylation of numerous intracellular substrates. One substrate is p95vav, which is expressed exclusively in hematopoietic and trophoblast cells. It contains a number of structural motifs, including Src homology 2, Src homology 3, and pleckstrin homology domains and a putative guanine nucleotide exchange domain. The role of p95vav in TCR-mediated signaling processes is unclear. Here, we show that overexpression of p95vav alone in Jurkat T cells leads to activation of the nuclear factors, including NFAT, involved in interleukin-2 expression. Furthermore, p95vav synergizes with TCR stimulation in inducing NFAT- and interleukin-2-dependent transcription. In contrast, NFAT activation by a G-protein-coupled receptor is not modulated by p95vav overexpression, suggesting that the effect is specific to the TCR signaling pathways. Although removal of the first 67 amino acids of p95vav activates its transforming potential in NIH 3T3 cells, this region appears to be required for its function in T cells. We further demonstrate that the p95vav-induced NFAT activation is not mimicked by Ras activation, though its function is dependent upon Ras and Raf. Furthermore, the activating function of p95vav is blocked by FK506, suggesting that its activity also depends on calcineurin. To further dissect p95vav involvement in TCR signaling, we analyzed various Jurkat mutants deficient in TCR signaling function or TCR expression and showed that an intact TCR signaling pathway is required for p95vav to function. However, overexpression of p95vav does not appear to influence TCR-induced protein tyrosine phosphorylation or increases in cytoplasmic free calcium. Taken together, our data suggest that p95vav plays an important role at an yet unidentified proximal position in the TCR signaling cascade.
Collapse
Affiliation(s)
- J Wu
- Department of Microbiology and Immunology, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
28
|
Fort P, Vincent S. Serum induction of RhoG expression. Methods Enzymol 1995; 256:151-62. [PMID: 7476429 DOI: 10.1016/0076-6879(95)56020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- P Fort
- Institute of Molecular Genetics, University Montipellier, France
| | | |
Collapse
|
29
|
de Cremoux P, Gauville C, Closson V, Linares G, Calvo F, Tavitian A, Olofsson B. EGF modulation of the ras-related rhoB gene expression in human breast-cancer cell lines. Int J Cancer 1994; 59:408-15. [PMID: 7927950 DOI: 10.1002/ijc.2910590320] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mRNA levels of the ras-related human rhoA, rhoB and rhoC genes were studied in human breast-cancer cell lines (HBCal), and in normal and immortalized mammary epithelial cells (HMEC) by Northern blot analysis and in situ hybridization. In contrast to the ubiquitous rhoA and rhoC gene expression, dramatic variations in the mRNA level of the rhoB gene were evidenced. The rhoB mRNA level appeared to be inversely correlated to the amounts of the epidermal-growth-factor(EGF) receptors in these cells. The rhoB transcripts were detected at high levels in ZR75-1, MCF7, HSL 53, HSL 59, HSL 90, T47D and SKBR3 HBCal, at hardly detectable levels in BT 20, MDA-MB 231 and H466B HBCal and at intermediate levels in normal and immortalized breast epithelial cells. Rapid and transient induction of the rhoB transcription was observed after EGF treatment in serum-deprived MDA-MB231, T47D and immortalized epithelial cells. In contrast, no modulation of rhoB expression by EGF could be objectified in the MCF7 and ZR75-1 cell lines. Yet a normal function of EGF receptors was evidenced, since the immediate early gene c-fos was rapidly induced, suggesting a constitutive expression of rhoB in these cell lines bypassing the regulation by EGF. In human mammary epithelial cells, rhoB mRNA is rapidly and transiently induced with EGF concentrations known to stimulate cell proliferation. This suggests that the rhoB product might be involved in a cascade that initiates or promotes cell proliferation, and plays an important role in EGF-stimulated growth of breast normal and cancer cells.
Collapse
Affiliation(s)
- P de Cremoux
- Laboratoire de Pharmacologie Expérimentale, UFR Médicale Faculté de Médecine, Lariboisière-Saint-Louis, Paris, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Thrasher AJ, Keep NH, Wientjes F, Segal AW. Chronic granulomatous disease. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1227:1-24. [PMID: 7918677 DOI: 10.1016/0925-4439(94)90100-7] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A J Thrasher
- Division of Molecular Medicine, University College London, Medical School, UK
| | | | | | | |
Collapse
|
31
|
Yamagata K, Sanders L, Kaufmann W, Yee W, Barnes C, Nathans D, Worley P. rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34012-7] [Citation(s) in RCA: 227] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
32
|
Abstract
Recent progress in understanding the regulation of the phagocyte NADPH oxidase by the Rac GTP-binding protein(s) provides the first detailed glimpse into the mechanisms of leukocyte regulation by a small GTP-binding protein. Studies over the past year indicate that the activity of NADPH oxidase can be modulated by regulation of the GTP- versus GDP-bound state of Rac. Additional proteins of the Ras superfamily are likely to be involved in a variety of normal leukocyte functions.
Collapse
Affiliation(s)
- G M Bokoch
- Department of Immunology, Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
33
|
Culine S, Honore N, Closson V, Droz JP, Extra JM, Marty M, Tavitian A, Olofsson B. A small GTP-binding protein is frequently overexpressed in peripheral blood mononuclear cells from patients with solid tumours. Eur J Cancer 1994; 30A:670-4. [PMID: 8080685 DOI: 10.1016/0959-8049(94)90542-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ras oncoproteins and ras-related proteins constitute a large family of the small GTP-binding protein family. The rab branch of the ras superfamily is involved in the intracellular transport along the secretory and endocytic pathway in eukaryotic cells. We here demonstrate that a member of the rab branch, the rab2 protein, is frequently overexpressed in peripheral blood mononuclear cells from patients with solid neoplasms. Moreover, this expression is shown to be greatly modified during the course of therapy. Our results provide strong evidence for the implication of a small GTP-binding protein in immunological events associated with neoplastic diseases. The precise cellular population involved as well as the potential prognostic value of this process remains to be determined.
Collapse
|
34
|
Chavrier P, Gorvel JP, Bertoglio J. An immunologist's look at the Rho and Rab GTP-binding proteins. IMMUNOLOGY TODAY 1993; 14:440-4. [PMID: 8216722 DOI: 10.1016/0167-5699(93)90247-i] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The ras superfamily of small GTP-binding proteins contains three major branches: the Ras, Rho and Rab protein subfamilies. Recent advances in the field of ras-related small GTP-binding proteins suggest that it may be worthwhile to look at this superfamily from the standpoint of immunology. The subject of this review is to outline briefly the areas of lymphocyte function which may implicate small G proteins, with special emphasis on the established or possible roles of proteins of the Rho and Rab subfamilies in cytoskeleton organization and antigen presentation.
Collapse
Affiliation(s)
- P Chavrier
- Centre d'Immunologie INSERM-CNRS Marseille, Luminy, France
| | | | | |
Collapse
|
35
|
Abstract
A cDNA encoding a small GTP-binding protein, S10, was cloned from Jurkat cells. The deduced amino acid sequence of S10 had the structural features characteristic to this family of proteins with highest homology to rab subfamily. Northern blot analysis revealed that this gene is expressed only in lymphoid cell lines and a histiocytic leukemia, U937. Hence, it should have a specialized function in cells derived from the hematopoietic stem cell.
Collapse
Affiliation(s)
- T Koda
- Section of Bacterial Infection, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
36
|
Heyworth PG, Knaus UG, Xu X, Uhlinger DJ, Conroy L, Bokoch GM, Curnutte JT. Requirement for posttranslational processing of Rac GTP-binding proteins for activation of human neutrophil NADPH oxidase. Mol Biol Cell 1993; 4:261-9. [PMID: 8387355 PMCID: PMC300924 DOI: 10.1091/mbc.4.3.261] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Rac1 and Rac2 are closely related, low molecular weight GTP-binding proteins that have both been implicated in regulation of phagocyte NADPH oxidase. This enzyme system is composed of multiple membrane-bound and cytosolic subunits and when activated catalyzes the one-electron reduction of oxygen to superoxide. Superoxide and its highly reactive derivatives are essential for killing microorganisms. Rac proteins undergo posttranslational processing, primarily the addition of an isoprenyl group to a carboxyl-terminal cysteine residue. We directly compared recombinant Rac1 and Rac2 in a human neutrophil cell-free NADPH oxidase system in which cytosol was replaced by purified recombinant cytosolic components (p47-phox and p67-phox). Processed Rac1 and Rac2 were both highly active in this system and supported comparable rates of superoxide production. Under different cell-free conditions, however, in which suboptimal amounts of cytosol were present in the assay mixture, processed Rac2 worked much better than Rac1 at all but the lowest concentrations. This suggests that a factor in the cytosol may suppress the activity of Rac1 but not of Rac2. Unprocessed Rac proteins were only weakly able to support superoxide generation in either system, but preloading of Rac1 or Rac2 with guanosine 5'-O-(3-thio-triphosphate) (GTP gamma S) restored activity. These results indicate that processing is required for nucleotide exchange but not for interaction with oxidase components.
Collapse
Affiliation(s)
- P G Heyworth
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037
| | | | | | | | | | | | | |
Collapse
|
37
|
Dorseuil O, Vazquez A, Lang P, Bertoglio J, Gacon G, Leca G. Inhibition of superoxide production in B lymphocytes by rac antisense oligonucleotides. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36716-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
38
|
Abstract
Cellular transition from the resting state to DNA synthesis involves master switches genes encoding transcriptional factors (e.g., fos, jun, and egr genes), whose targets remain to be fully characterized. To isolate coding sequences specifically accumulated in late G1, a differential screening was performed on a cDNA library prepared from hamster lung fibroblasts stimulated for 5 h with serum. One of the positive clones which displayed a sevenfold induction, turned out to code for a protein sharing homology to Ras-like products. Cloning and sequence analysis of the human homolog revealed that this putative new small GTPase, referred to as rhoG, is more closely related to the rac, CDC42, and TC10 members of the rho (ras homolog) gene family and might have diverged very early during evolution. rhoG mRNA accumulates in proportion to the mitogenic strength of various purified growth factors used for the stimulation, as a consequence of transcriptional activation. G1-specific RNA accumulation is impaired upon addition of antimitogenic cyclic AMP and is enhanced when protein synthesis is inhibited, mainly as a result of RNA stabilization. rhoG mRNA expression is observed in a wide variety of human organs but reaches a particularly high level in lung and placental tissues.
Collapse
|
39
|
Vincent S, Jeanteur P, Fort P. Growth-regulated expression of rhoG, a new member of the ras homolog gene family. Mol Cell Biol 1992; 12:3138-48. [PMID: 1620121 PMCID: PMC364528 DOI: 10.1128/mcb.12.7.3138-3148.1992] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cellular transition from the resting state to DNA synthesis involves master switches genes encoding transcriptional factors (e.g., fos, jun, and egr genes), whose targets remain to be fully characterized. To isolate coding sequences specifically accumulated in late G1, a differential screening was performed on a cDNA library prepared from hamster lung fibroblasts stimulated for 5 h with serum. One of the positive clones which displayed a sevenfold induction, turned out to code for a protein sharing homology to Ras-like products. Cloning and sequence analysis of the human homolog revealed that this putative new small GTPase, referred to as rhoG, is more closely related to the rac, CDC42, and TC10 members of the rho (ras homolog) gene family and might have diverged very early during evolution. rhoG mRNA accumulates in proportion to the mitogenic strength of various purified growth factors used for the stimulation, as a consequence of transcriptional activation. G1-specific RNA accumulation is impaired upon addition of antimitogenic cyclic AMP and is enhanced when protein synthesis is inhibited, mainly as a result of RNA stabilization. rhoG mRNA expression is observed in a wide variety of human organs but reaches a particularly high level in lung and placental tissues.
Collapse
Affiliation(s)
- S Vincent
- URA CNRS 1191 Génétique Moléculaire, Université Montpellier II Sciences et Techniques du Languedoc, France
| | | | | |
Collapse
|
40
|
ADP-ribosylation of the ras-related, GTP-binding protein RhoA inhibits lymphocyte-mediated cytotoxicity. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49747-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|