Hornos Carneiro MF, Barbosa F. Gold nanoparticles: A critical review of therapeutic applications and toxicological aspects.
JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2016;
19:129-48. [PMID:
27282429 DOI:
10.1080/10937404.2016.1168762]
[Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Gold (Au) compounds have been utilized as effective therapeutic agents for the treatment of some inflammatory diseases such as rheumatoid arthritis. However, Au compound use has become limited due to associated high incidence of side effects. Recent development of nanomaterials for therapeutic use with Au-containing drugs is improving the beneficial actions and reducing toxic properties of these agents. Lower toxicity in conjunction with anti-inflammatory and antiangiogenic effects was reported to occur with gold nanoparticles (AuNP) treatment. However, despite this therapeutic potential, safety of AuNP remains to be determined, since the balance between therapeutic properties and development of adverse effects is not well established. Several variables that drive this benefit-risk balance, including physicochemical characteristics of nanoparticles such as size, shape, surface area, and chemistry, are poorly described in the scientific literature. Moreover, therapeutic and toxicological data were obtained employing nonstandardized or poorly described protocols with different experimental settings (animal species/cell type, route and time of exposure). In contrast, effective and safe application of AuNP may be established only after elucidation of various physicochemical properties of each specific AuNP, and determination of respective kinetics and interaction of compound with target tissue. This critical review conveys the state of the art, the therapeutic use, and adverse effects mediated by AuNP, with primary emphasis on anti-inflammatory and antiangiogenic potential, highlighting the limitations/gaps in the scientific literature concerning important points: (i) selection of experimental designs (in vitro and in vivo models) and (ii) consideration of different physicochemical properties of AuNP that are often disregarded in many scientific publications. In addition, prospects and future needs for research in this area are provided.
Collapse