1
|
Hu J, Bibli SI, Wittig J, Zukunft S, Lin J, Hammes HP, Popp R, Fleming I. Soluble epoxide hydrolase promotes astrocyte survival in retinopathy of prematurity. J Clin Invest 2020; 129:5204-5218. [PMID: 31479425 DOI: 10.1172/jci123835] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Polyunsaturated fatty acids such as docosahexaenoic acid (DHA) positively affect the outcome of retinopathy of prematurity (ROP). Given that DHA metabolism by cytochrome P450 and soluble epoxide hydrolase (sEH) enzymes affects retinal angiogenesis and vascular stability, we investigated the role of sEH in a mouse model of ROP. In WT mice, hyperoxia elicited tyrosine nitration and inhibition of sEH and decreased generation of the DHA-derived diol 19,20-dihydroxydocosapentaenoic acid (19,20-DHDP). Correspondingly, in a murine model of ROP, sEH-/- mice developed a larger central avascular zone and peripheral pathological vascular tuft formation than did their WT littermates. Astrocytes were the cells most affected by sEH deletion, and hyperoxia increased astrocyte apoptosis. In rescue experiments, 19,20-DHDP prevented astrocyte loss by targeting the mitochondrial membrane to prevent the hyperoxia-induced dissociation of presenilin-1 and presenilin-1-associated protein to attenuate poly ADP-ribose polymerase activation and mitochondrial DNA damage. Therapeutic intravitreal administration of 19,20-DHDP not only suppressed astrocyte loss, but also reduced pathological vascular tuft formation in sEH-/- mice. Our data indicate that sEH activity is required for mitochondrial integrity and retinal astrocyte survival in ROP. Moreover, 19,20-DHDP may be more effective than DHA as a nutritional supplement for preventing retinopathy in preterm infants.
Collapse
Affiliation(s)
- Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Janina Wittig
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Jihong Lin
- Fifth Medical Department, University Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hans-Peter Hammes
- Fifth Medical Department, University Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rüdiger Popp
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Edin ML, Hamedani BG, Gruzdev A, Graves JP, Lih FB, Arbes SJ, Singh R, Orjuela Leon AC, Bradbury JA, DeGraff LM, Hoopes SL, Arand M, Zeldin DC. Epoxide hydrolase 1 (EPHX1) hydrolyzes epoxyeicosanoids and impairs cardiac recovery after ischemia. J Biol Chem 2018; 293:3281-3292. [PMID: 29298899 DOI: 10.1074/jbc.ra117.000298] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Stimuli such as inflammation or hypoxia induce cytochrome P450 epoxygenase-mediated production of arachidonic acid-derived epoxyeicosatrienoic acids (EETs). EETs have cardioprotective, vasodilatory, angiogenic, anti-inflammatory, and analgesic effects, which are diminished by EET hydrolysis yielding biologically less active dihydroxyeicosatrienoic acids (DHETs). Previous in vitro assays have suggested that epoxide hydrolase 2 (EPHX2) is responsible for nearly all EET hydrolysis. EPHX1, which exhibits slow EET hydrolysis in vitro, is thought to contribute only marginally to EET hydrolysis. Using Ephx1-/-, Ephx2-/-, and Ephx1-/-Ephx2-/- mice, we show here that EPHX1 significantly contributes to EET hydrolysis in vivo Disruption of Ephx1 and/or Ephx2 genes did not induce compensatory changes in expression of other Ephx genes or CYP2 family epoxygenases. Plasma levels of 8,9-, 11,12-, and 14,15-DHET were reduced by 38, 44, and 67% in Ephx2-/- mice compared with wildtype (WT) mice, respectively; however, plasma from Ephx1-/-Ephx2-/- mice exhibited significantly greater reduction (100, 99, and 96%) of those respective DHETs. Kinetic assays and FRET experiments indicated that EPHX1 is a slow EET scavenger, but hydrolyzes EETs in a coupled reaction with cytochrome P450 to limit basal EET levels. Moreover, we also found that EPHX1 activities are biologically relevant, as Ephx1-/-Ephx2-/- hearts had significantly better postischemic functional recovery (71%) than both WT (31%) and Ephx2-/- (51%) hearts. These findings indicate that Ephx1-/-Ephx2-/- mice are a valuable model for assessing EET-mediated effects, uncover a new paradigm for EET metabolism, and suggest that dual EPHX1 and EPHX2 inhibition may represent a therapeutic approach to manage human pathologies such as myocardial infarction.
Collapse
Affiliation(s)
- Matthew L Edin
- From the Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709 and
| | - Behin Gholipour Hamedani
- the Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Artiom Gruzdev
- From the Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709 and
| | - Joan P Graves
- From the Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709 and
| | - Fred B Lih
- From the Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709 and
| | - Samuel J Arbes
- From the Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709 and
| | - Rohanit Singh
- From the Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709 and
| | - Anette C Orjuela Leon
- the Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - J Alyce Bradbury
- From the Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709 and
| | - Laura M DeGraff
- From the Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709 and
| | - Samantha L Hoopes
- From the Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709 and
| | - Michael Arand
- the Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Darryl C Zeldin
- From the Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709 and
| |
Collapse
|
3
|
Bendigiri C, Harini K, Yenkar S, Zinjarde S, Sowdhamini R, RaviKumar A. Evaluating Ylehd, a recombinant epoxide hydrolase from Yarrowia lipolytica as a potential biocatalyst for the resolution of benzyl glycidyl ether. RSC Adv 2018; 8:12918-12926. [PMID: 35541265 PMCID: PMC9079618 DOI: 10.1039/c8ra00628h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/26/2018] [Indexed: 11/22/2022] Open
Abstract
Glycidyl ethers and their vicinal diols are important building blocks in the organic synthesis of anti-cancer and anti-obesity drugs. Ylehd, an epoxide hydrolase from tropical marine yeast Yarrowia lipolytica, was explored for its enantioselective properties by kinetic, thermodynamic and in silico studies. Kinetic resolution of racemic phenyl glycidyl ether (PGE) yielded (S)-epoxide while for benzyl glycidyl ether (BGE) (R)-epoxide was obtained, with vicinal diols of the opposite configuration. Amongst the enantiomers of PGE and BGE, the (S)-selective conversion of benzyl glycidyl ether to its corresponding diol, (S)-3-benzyloxy-1,2-propanediol while retaining (R)-BGE was most favourable with 95% ee in 20 min. Enantioselective conversion of specific enantiomer of BGE to its corresponding diols was attributed to the favourable kinetic and thermodynamic parameters as well as to the number and proximity of water molecules near the base H325 in the active site pocket. The easily available and highly active Ylehd could be a potential biocatalyst for large scale preparation of pharmaceutically relevant chiral (R)-benzyl glycidyl ether and (S)-3-benzyloxy-1,2-propanediol. Ylehd, an enantioselective epoxide hydrolase with potential application in resolution of racemic benzyl glycidyl ether.![]()
Collapse
Affiliation(s)
- Chandrika Bendigiri
- Institute of Bioinformatics and Biotechnology
- Savitribai Phule Pune University
- Pune 411 007
- India
| | - K. Harini
- National Centre for Biological Sciences
- Bengaluru
- India
| | - Sajal Yenkar
- Institute of Bioinformatics and Biotechnology
- Savitribai Phule Pune University
- Pune 411 007
- India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology
- Savitribai Phule Pune University
- Pune 411 007
- India
| | - R. Sowdhamini
- National Centre for Biological Sciences
- Bengaluru
- India
| | - Ameeta RaviKumar
- Institute of Bioinformatics and Biotechnology
- Savitribai Phule Pune University
- Pune 411 007
- India
- Department of Biotechnology
| |
Collapse
|
4
|
Yang F, Yang H, Ramesh A, Goodwin JS, Okoro EU, Guo Z. Overexpression of Catalase Enhances Benzo(a)pyrene Detoxification in Endothelial Microsomes. PLoS One 2016; 11:e0162561. [PMID: 27607467 PMCID: PMC5015903 DOI: 10.1371/journal.pone.0162561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/24/2016] [Indexed: 02/07/2023] Open
Abstract
We previously reported that overexpression of catalase upregulated xenobiotic- metabolizing enzyme (XME) expression and diminished benzo(a)pyrene (BaP) intermediate accumulation in mouse aortic endothelial cells (MAECs). Endoplasmic reticulum (ER) is the most active organelle involved in BaP metabolism. To examine the involvement of ER in catalase-induced BaP detoxification, we compared the level and distribution of XMEs, and the profile of BaP intermediates in the microsomes of wild-type and catalase transgenic endothelial cells. Our data showed that endothelial microsomes were enriched in cytochrome P450 (CYP) 1A1, CYP1B1 and epoxide hydrolase 1 (EH1), and contained considerable levels of NAD(P)H: quinone oxidoreductase-1 (NQO1) and glutathione S-transferase-pi (GSTP). Treatment of wild-type MAECs with 1μM BaP for 2 h increased the expression of microsomal CYP1A1, 1B1 and NQO1 by ~300, 64 and 116%, respectively. However, the same treatment did not significantly alter the expression of EH1 and GSTP. Overexpression of catalase did not significantly increase EH1, but upregulated BaP-induced expression of microsomal CYP1A1, 1B1, NQO1 and GSTP in the following order: 1A1>NQO1>GSTP>1B1. Overexpression of catalase did not alter the distribution of each of these enzymes in the microsomes. In contrast to our previous report showing lower level of BaP phenols versus BaP diols/diones in the whole-cell, this report demonstrated that the sum of microsomal BaP phenolic metabolites were ~60% greater than that of the BaP diols/diones after exposure of microsomes to BaP. Overexpression of catalase reduced the concentrations of microsomal BaP phenols and diols/diones by ~45 and 95%, respectively. This process enhanced the ratio of BaP phenol versus diol/dione metabolites in a potent manner. Taken together, upregulation of phase II XMEs and CYP1 proteins, but not EH1 in the ER might be the mechanism by which overexpression of catalase reduces the levels of all the BaP metabolites, and enhances the ratio of BaP phenolic metabolites versus diol/diones in endothelial microsomes.
Collapse
Affiliation(s)
- Fang Yang
- Department of Physiology, Meharry Medical College, Nashville, United States of America.,Wuhan University School of Basic Medical Science, Wuhan, P.R. China
| | - Hong Yang
- Department of Physiology, Meharry Medical College, Nashville, United States of America
| | - Aramandla Ramesh
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, United States of America
| | - J Shawn Goodwin
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, United States of America
| | - Emmanuel U Okoro
- Department of Physiology, Meharry Medical College, Nashville, United States of America
| | - ZhongMao Guo
- Department of Physiology, Meharry Medical College, Nashville, United States of America
| |
Collapse
|
5
|
Labitzke EM, Diani-Moore S, Rifkind AB. Mitochondrial P450-dependent arachidonic acid metabolism by TCDD-induced hepatic CYP1A5; conversion of EETs to DHETs by mitochondrial soluble epoxide hydrolase. Arch Biochem Biophys 2007; 468:70-81. [PMID: 17959137 PMCID: PMC2868376 DOI: 10.1016/j.abb.2007.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/06/2007] [Accepted: 08/13/2007] [Indexed: 01/18/2023]
Abstract
Several P450 enzymes localized in the endoplasmic reticulum and thought to be involved primarily in xenobiotic metabolism, including mouse and rat CYP1A1 and mouse CYP1A2, have also been found to translocate to mitochondria. We report here that the environmental toxin 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces enzymatically active CYP1A4/1A5, the avian orthologs of mammalian CYP1A1/1A2, in chick embryo liver mitochondria as well as in microsomes. P450 proteins and activity levels (CYP1A4-dependent 7-ethoxyresorufin-O-deethylase and CYP1A5-dependent arachidonic acid epoxygenation) in mitochondria were 23-40% of those in microsomes. DHET formation by mitochondria was twice that of microsomes and was attributable to a mitochondrial soluble epoxide hydrolase as confirmed by Western blotting with antiEPHX2, conversion by mitochondria of pure 11,12 and 14,15-EET to the corresponding DHETs and inhibition of DHET formation by the soluble epoxide hydrolase inhibitor, 12(-3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA). TCDD also suppressed formation of mitochondrial and microsomal 20-HETE. The findings newly identify mitochondria as a site of P450-dependent arachidonic acid metabolism and as a potential target for TCDD effects. They also demonstrate that mitochondria contain soluble epoxide hydrolase and underscore a role for CYP1A in endobiotic metabolism.
Collapse
Affiliation(s)
- Erin M Labitzke
- Weill Medical College of Cornell University, Department of Pharmacology, 1300 York Avenue, Room LC-401, New York, NY 10021, USA
| | | | | |
Collapse
|
6
|
Enayetallah AE, French RA, Barber M, Grant DF. Cell-specific subcellular localization of soluble epoxide hydrolase in human tissues. J Histochem Cytochem 2005; 54:329-35. [PMID: 16314446 DOI: 10.1369/jhc.5a6808.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Soluble epoxide hydrolase (sEH) is a phase-I xenobiotic metabolizing enzyme having both an N-terminal phosphatase activity and a C-terminal epoxide hydrolase activity. Endogenous hydrolase substrates include arachidonic acid epoxides, which have been involved in regulating blood pressure and inflammation. The subcellular localization of sEH has been controversial. Earlier studies using mouse and rat liver suggested that sEH may be cytosolic and/or peroxisomal. In this study we applied immunofluorescence and confocal microscopy using markers for different subcellular compartments to evaluate sEH colocalization in an array of human tissues. Results showed that sEH is both cytosolic and peroxisomal in human hepatocytes and renal proximal tubules and exclusively cytosolic in other sEH-containing tissues such as pancreatic islet cells, intestinal epithelium, anterior pituitary cells, adrenal gland, endometrium, lymphoid follicles, prostate ductal epithelium, alveolar wall, and blood vessels. sEH was not exclusively peroxisomal in any of the tissues evaluated. Our data suggest that human sEH subcellular localization is tissue dependent, and that sEH may have tissue- or cell-type-specific functionality. To our knowledge, this is the first report showing the subcellular localization of sEH in a wide array of human tissues.
Collapse
Affiliation(s)
- Ahmed E Enayetallah
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | | | | |
Collapse
|
7
|
Mullen RT, Trelease RN, Duerk H, Arand M, Hammock BD, Oesch F, Grant DF. Differential subcellular localization of endogenous and transfected soluble epoxide hydrolase in mammalian cells: evidence for isozyme variants. FEBS Lett 1999; 445:301-5. [PMID: 10094477 DOI: 10.1016/s0014-5793(99)00142-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Endogenous, constitutive soluble epoxide hydrolase in mice 3T3 cells was localized via immunofluorescence microscopy exclusively in peroxisomes, whereas transiently expressed mouse soluble epoxide hydrolase (from clofibrate-treated liver) accumulated only in the cytosol of 3T3 and HeLa cells. When the C-terminal lie of mouse soluble epoxide hydrolase was mutated to generate a prototypic putative type 1 PTS (-SKI to -SKL), the enzyme targeted to peroxisomes. The possibility that soluble epoxide hydrolase-SKI was sorted slowly to peroxiosmes from the cytosol was examined by stably expressing rat soluble epoxide hydrolase-SKI appended to the green fluorescent protein. Green fluorescent protein soluble epoxide hydrolase-SKI was strictly cytosolic, indicating that -SKI was not a temporally inefficient putative type 1 PTS. Import of soluble epoxide hydrolase-SKI into peroxisomes in plant cells revealed that the context of -SKI on soluble epoxide hydrolase was targeting permissible. These results show that the C-terminal -SKI is a non-functional putative type 1 PTS on soluble epoxide hydrolase and suggest the existence of distinct cytosolic and peroxisomal targeting variants of soluble epoxide hydrolase in mouse and rat.
Collapse
Affiliation(s)
- R T Mullen
- Department of Plant Biology, Arizona State University, Tempe 85287-1601, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Epoxide hydrolase in human and rat peroxisomes: implication for disorders of peroxisomal biogenesis. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)37644-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
9
|
Eriksson AM, Zetterqvist MA, Lundgren B, Andersson K, Beije B, DePierre JW. Studies on the intracellular distributions of soluble epoxide hydrolase and of catalase by digitonin-permeabilization of hepatocytes isolated from control and clofibrate-treated mice. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 198:471-6. [PMID: 2040306 DOI: 10.1111/j.1432-1033.1991.tb16037.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Digitonin permeabilization of hepatocytes from control and clofibrate-treated (0.5% by mass, 10 days) male C57bl/6 mice was used to study the intracellular distributions of soluble ('cytosolic') epoxide hydrolase and of catalase. The following conclusions were drawn. (1) About 60% of the total soluble epoxide hydrolase activity in control mouse hepatocytes is situated in the cytosol. (2) The rest is not mitochondrial, but probably peroxisomal. (3) Of the total catalase activity in control mouse hepatocytes, 5-10% is found in the cytosol. (4) Treatment of mice with clofibrate increases the total hepatocyte activity of soluble epoxide hydrolase 4-fold, but does not influence the relative distribution of this enzyme between cytosol and peroxisomes. (5) The total catalase activity is increased 3.5-fold by clofibrate treatment and 15-35% of this activity is shifted from the peroxisomes to the cytosol.
Collapse
Affiliation(s)
- A M Eriksson
- Department of Biochemistry, University of Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
10
|
Chang C, Gill SS. Purification and characterization of an epoxide hydrolase from the peroxisomal fraction of mouse liver. Arch Biochem Biophys 1991; 285:276-84. [PMID: 1910279 DOI: 10.1016/0003-9861(91)90360-u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epoxide hydrolase (EH) activity has been reported to occur in most subcellular fractions of mouse liver. The EHs in the microsomal and cytosolic fractions have been purified and characterized; however, the nature of the EH(s) in the peroxisomal fraction is not known. Therefore an EH, pEH, was purified from the solubilized 12,000g fraction, which contain peroxisomes. Previous studies have demonstrated that the EH activity in this crude solubilized 12,000g fraction resides mostly in the peroxisomes. Thus the crude 12,000g pellet from mouse liver, free from cytosolic contamination, was sonicated to obtain a 105,000g soluble fraction containing 80% of the original EH activity in this fraction. The pEH was purified, using trans-stilbene oxide (TSO) as substrate, by a combination of affinity and hydroxyapatite chromatography. The purified pEH had a native molecular weight of 57 kDa, a molecular weight of 59 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a pI of 5.7. The purified pEH was observed to be immunologically similar to the cytosolic EH (cEH). The kinetics of hydrolysis of TSO, however, were slightly different. Lineweaver-Burk plots for the inhibition of pEH suggest a probable noncompetitive, mixed-type inhibition. The purified pEH thus appears to be very similar to the cEH. There are minor differences between the purified cEH and pEH, particularly in the kinetic parameters. However, these minor differences are insignificant. These results demonstrate that the cEH and pEH are substantially similar, if not identical.
Collapse
Affiliation(s)
- C Chang
- Department of Entomology, University of California, Riverside 92521
| | | |
Collapse
|
11
|
Qato MK, Reinmund SG, Guenthner TM. Production of monospecific antiserum to a cytosolic epoxide hydrolase from human liver. Biochem Pharmacol 1990; 39:293-300. [PMID: 2302254 DOI: 10.1016/0006-2952(90)90028-j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A method for the purification to apparent homogeneity of cytosolic trans-stilbene oxide hydrolase from human liver is presented. The method employed ion exchange and gel filtration chromatography. From 50 g of human liver, 4.9 mg of homogenous enzyme protein was obtained. Although the enzyme had lost much of its catalytic activity during purification, it was nevertheless suitable for the preparation of antibodies to the enzyme. Only one immunogenic species was present in the antigen preparation, but some antibodies that were cross-reactive to sites on catalase were present in the antiserum. These catalase-specific antibodies were removed by immunoaffinity chromatography, and an IgG fraction that is monospecific to the cytosolic epoxide hydrolase was obtained. The usefulness of antibodies to this enzyme in immunoblotting experiments, following either sodium dodecyl sulfate-polyacrylamide gel electrophoresis or isoelectric focussing, as well as in enzyme-linked immunosorbent assays, is demonstrated.
Collapse
Affiliation(s)
- M K Qato
- Department of Pharmacology, University of Illinois College of Medicine, Chicago 60612
| | | | | |
Collapse
|
12
|
Lundgren B, DePierre JW. Proliferation of peroxisomes and induction of cytosolic and microsomal epoxide hydrolases in different strains of mice and rats after dietary treatment with clofibrate. Xenobiotica 1989; 19:867-81. [PMID: 2815829 DOI: 10.3109/00498258909043147] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. The effects of dietary clofibrate (0.5%, w/w, for 10 days) on seven inbred strains of mice--C57BL/6, C57BL/B10A(5R), ATL/OLA, C3H/HE/OLA, BALB/C, CBA/CA and A/J/OLA--and three strains of rats--Sprague-Dawley, Wistar and LOU/OLA--have been investigated. Liver weight, peroxisome proliferation, catalase activity, cytosolic, microsomal and mitochondrial epoxide hydrolase activities, cytochrome oxidase activity, microsomal cytochrome P-450 content and cytosolic glutathione transferase activity in liver were determined, together with cytosolic and microsomal epoxide hydrolase and cytosolic glutathione transferase activities in the kidneys. 2. In all cases peroxisome proliferation and induction of cytosolic epoxide hydrolase were observed in livers of rodents exposed to clofibrate. Thus, no non-responsive strains were found and further evidence for a coupling between these two phenomena was provided. In many cases significant increases in the liver microsomal cytochrome P-450 content and decreases in the hepatic cytosolic glutathione transferase activity were also seen. 3. High levels of cytosolic epoxide hydrolase were found in the rat kidney. In several strains of mice and rats renal cytosolic epoxide hydrolase activity was increased by clofibrate. 4. There were often considerable strain differences. However, in general mice had higher cytosolic epoxide hydrolase and glutathione transferase activities, whereas rats had higher microsomal epoxide hydrolase activities.
Collapse
Affiliation(s)
- B Lundgren
- Department of Biochemistry, University of Stockholm, Sweden
| | | |
Collapse
|
13
|
Pasanen M, Pelkonen O. Human placental xenobiotic and steroid biotransformations catalyzed by cytochrome P450, epoxide hydrolase, and glutathione S-transferase activities and their relationships to maternal cigarette smoking. Drug Metab Rev 1989; 21:427-61. [PMID: 2701171 DOI: 10.3109/03602538909030305] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- M Pasanen
- Department of Pharmacology and Toxicology, University of Oulu, Finland
| | | |
Collapse
|
14
|
Schladt L, Thomas H, Hartmann R, Oesch F. Human liver cytosolic epoxide hydrolases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 176:715-23. [PMID: 3169021 DOI: 10.1111/j.1432-1033.1988.tb14335.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human liver epoxide hydrolases were characterized by several criteria and a cytosolic cis-stilbene oxide hydrolase (cEHCSO) was purified to apparent homogeneity. Styrene oxide and five phenylmethyloxiranes were tested as substrates for human liver epoxide hydrolases. With microsomes activity was highest with trans-2-methylstyrene oxide, followed by styrene 7,8-oxide, cis-2-methylstyrene oxide, cis-1,2-dimethylstyrene oxide, trans-1,2-dimethylstyrene oxide and 2,2-dimethylstyrene oxide. With cytosol the same order was obtained for the first three substrates, whereas activity with 2,2-dimethylstyrene oxide was higher than with cis-1,2-dimethylstyrene oxide and no hydrolysis occurred with trans-1,2-dimethylstyrene oxide. Generally, activities were lower with cytosol than with microsomes. The isoelectric point for both microsomal styrene 7,8-oxide and cis-stilbene oxide hydrolyzing activity was 7.0, whereas cEHCSO had an isoelectric point of 9.2 and cytosolic trans-stilbene oxide hydrolase (cEHTSO) of 5.7. The cytosolic epoxide hydrolases could be separated by anion-exchange chromatography and gel filtration. The latter technique revealed a higher molecular mass for cEHCSO than for cEHTSO. Both cytosolic epoxide hydrolases showed higher activities at pH 7.4 than at pH 9.0, whereas the opposite was true for microsomal epoxide hydrolase. The effects of ethanol, methanol, tetrahydrofuran, acetonitrile, acetone and dimethylsulfoxide on microsomal epoxide hydrolase depended on the substrate tested, whereas both cytosolic enzymes were not at all, or only slightly, affected by these solvents. Effects of different enzyme modulators on microsomal epoxide hydrolase also depended on the substrates used. Trichloropropene oxide and styrene 7,8-oxide strongly inhibited cEHCSO whereas cEHTSO was moderately affected by these compounds. Immunochemical investigations revealed a close relationship between cEHCSO and rat liver microsomal, but not cytosolic, epoxide hydrolase. Interestingly, cEHTSO has no immunological relationship to rat microsomal, nor to rat cytosolic epoxide hydrolase. cEHTSO from human liver differed also from its counterpart in the rat in that it was only moderately affected by tetrahydrofuran, acetonitrile and trichloropropene oxide. Five steps were necessary to purify cEHCSO. The enzyme has a molecular mass (49 kDa) identical to that of rat liver microsomal epoxide hydrolase.
Collapse
Affiliation(s)
- L Schladt
- Institut für Toxikologie, Universität Mainz, Federal Republic of Germany
| | | | | | | |
Collapse
|
15
|
Magdalou J, Hammock BD. 1,2-Epoxycycloalkanes: substrates and inhibitors of microsomal and cytosolic epoxide hydrolases in mouse liver. Biochem Pharmacol 1988; 37:2717-22. [PMID: 3395352 DOI: 10.1016/0006-2952(88)90033-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Six different 1,2-epoxycycloalkanes, whose rings were constituted of 5 to 12 carbon atoms, were tested as possible inhibitors of epoxide-metabolizing enzymes and substrates for the microsomal and cytosolic epoxide hydrolases (mEH, cEH) in mouse liver. The geometric configurations and the relative steric hindrances of these epoxides were estimated from their ease of hydrolysis in acidic conditions to the corresponding diols, their abilities to react with nitrobenzylpyridine, and the chemical shifts of the groups associated with the oxirane rings measured by proton and 13C-NMR. The cyclopentene, -hexene, -heptene, -octene and -decene oxides adopted mainly a cis-configuration. By contrast, cyclododecene oxide presented a trans-configuration. Steric hindrance increased with the size of the ring and was particularly strong when cyclooctene, -decene and -dodecene oxides were considered. With the exception of cyclohexene oxide, all the compounds were weak inhibitors of EH and glutathione S-transferase (GST) activities. Cyclohexene oxide exhibited a selective inhibition of the mEH with an I50 of 4.0.10(-6) M. As the size of the ring increased, inhibitory potency was gradually lost. The cEH and the GST activities were less sensitive to the inhibitory effects of these epoxides (I50, 1 mM or above). A marked difference between the substrate selectivities of mEH and cEH for these epoxides was observed. The mEH hydrated all of the cyclic epoxides, although some of them at a very low rate; the best substrate was the cycloheptene oxide (2.3 nmol/min/mg protein). On the other hand, cyclodecene oxide was a substrate of cEH, but no diol formation was detected when cyclopentene, -hexene and -dodecene oxides were incubated with cytosolic enzyme.
Collapse
Affiliation(s)
- J Magdalou
- Department of Entomology, University of California, Davis 95616
| | | |
Collapse
|
16
|
Wetterholm A, Haeggström J, Hamberg M, Meijer J, Rådmark O. 14,15-Dihydroxy-5,8,10,12-eicosatetraenoic acid. Enzymatic formation from 14,15-leukotriene A4. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 173:531-6. [PMID: 2836192 DOI: 10.1111/j.1432-1033.1988.tb14031.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
When 14C-labeled (14S, 15S)-14,15-trans-oxido-5,8-cis-10,12-trans-eicosatetraenoic acid (14,15-leukotriene A4) was incubated with cytosolic epoxide hydrolase purified from mouse liver, one major radiolabeled product appeared. The structure was assigned as (14R, 15S)-14,15-dihydroxy-5,8-cis-10,12-trans-eicosatetraenoic acid (14,15-DHETE), based on analytical data as well as enzyme mechanistic considerations. The formation of this compound was dependent on time and enzyme concentration and was abolished after heat treatment of the enzyme. The apparent Km and Vmax values at 37 degrees C were 11 microM and 900 nmol X mg-1 X min-1 respectively. This enzymatic hydrolysis of 14,15-leukotriene A4 represents an additional mode of formation for 14,15-DHETE, a compound previously found to modulate functions of human leukocytes.
Collapse
Affiliation(s)
- A Wetterholm
- Department of Physiological Chemistry, Karolinska Instituet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
17
|
Abstract
Epoxide hydrolase activity is recovered in the high-speed supernatant fraction from the liver of all mammals so far examined, including man. For some as yet unexplained reason, the rat has a very low level of this activity, so that cytosolic epoxide hydrolase is generally studied in mice. This enzyme selectively hydrolyzes trans epoxides, thereby complementing the activity of microsomal epoxide hydrolase, for which cis epoxides are better substrates. Cytosolic epoxide hydrolase has been purified to homogeneity from the livers of mice, rabbits and humans. Certain of the physicochemical and enzymatic properties of the mouse enzyme have been thoroughly characterized. Neither the primary amino acid, cDNA nor gene sequences for this protein are yet known, but such characterization is presently in progress. Unlike microsomal epoxide hydrolase and most other enzymes involved in xenobiotic metabolism, cytosolic epoxide hydrolase is not induced by treatment of rodents with substances such as phenobarbital, 2-acetylaminofluorene, trans-stilbene oxide, or butylated hydroxyanisole. The only xenobiotics presently known to induce cytosolic epoxide hydrolase are substances which also cause peroxisome proliferation, e.g., clofibrate, nafenopin and phthalate esters. These and other observations indicate that this enzyme may actually be localized in peroxisomes in vivo and is recovered in the high-speed supernatant because of fragmentation of these fragile organelles during homogenization, i.e., recovery of this enzyme in the cytosolic fraction is an artefact. The functional significance of cytosolic epoxide hydrolase is still largely unknown. In addition to deactivating xenobiotic epoxides to which the organism is exposed directly or which are produced during xenobiotic metabolism, primarily by the cytochrome P-450 system, this enzyme may be involved in cellular defenses against oxidative stress.
Collapse
Affiliation(s)
- J Meijer
- Department of Biochemistry, Arrhenius Laboratory, University of Stockholm, Sweden
| | | |
Collapse
|
18
|
Immunoaffinity Purification and Comparison of Epoxide Hydrolases from Liver Cytosol and Peroxisomes of Untreated and Clofibrate-Treated Mice. Arch Toxicol 1988. [DOI: 10.1007/978-3-642-73113-6_47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Gill SS, Kaur S. Hepatic epoxide hydrolase activities and their induction by clofibrate and diethylhexylphthalate in various strains of mice. Biochem Pharmacol 1987; 36:4221-7. [PMID: 3318844 DOI: 10.1016/0006-2952(87)90662-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The presence of epoxide hydrolase activity in cytoplasm, microsomes and mitochondrial fraction in livers from twelve strains of mice (AKR/J, A/J, BALB/cByJ, CBA/J, C3H/HeJ, G57BL/6J, C57BL/10J, DBA/2J, NZB/B1NJ, PL/J, SEC/1ReJ and SW), and the influence of orally administered clofibrate and di(2-ethylhexyl)phthalate (DEHP) (0.5 and 2%, respectively, in diet) on epoxide hydrolase activities, were studied. Significant differences in basal cytosolic epoxide hydrolase activity, which ranged from 5.6 to 11.2 nmol diol.min-1.(mg protein)-1 using trans-stilbene oxide (TSO) as substrate, were noted among the mice. The highest and lowest enzyme levels were observed in the A/J and DBA/2J strains respectively. Similarly, microsomal epoxide hydrolase activity, monitored with cis-stilbene oxide (CSO), varied with the mouse strain, with the highest and lowest microsomal epoxide hydrolase activity being observed in A/J and SW strains respectively. Variations were also noted in the epoxide hydrolase activity in the mitochondrial fraction (monitored with TSO) with the highest and lowest levels observed in C57BL/6J and SW strains respectively. Clofibrate or DEHP treatment induced both cytosolic and microsomal epoxide hydrolases in nearly all of the strains examined. In contrast, the hydrolysis of TSO by the mitochondrial fraction in these strains was either not affected or decreased by clofibrate or DEHP treatment. The induction of cytosolic epoxide hydrolase was found to range between 1.2- and 2.8-fold, with generally a higher level of induction in mouse strains with low basal levels of cytosolic epoxide hydrolase activity. This level of cytosolic epoxide hydrolase activity, monitored with TSO as substrate, closely reflected the level of cytosolic epoxide hydrolase protein detected by immunoblot. There were also no significant differences observed in the molecular weight, immunological characteristics, pH-dependence and heat stability of hepatic cytosolic epoxide hydrolase activities of control and clofibrate-treated mice from various strains. These results suggest that clofibrate and DEHP induce both cytosolic and microsomal epoxide hydrolases but not the epoxide hydrolase in the mitochondrial fraction.
Collapse
Affiliation(s)
- S S Gill
- Department of Entomology, University of California, Riverside 92521
| | | |
Collapse
|
20
|
Meijer J, Lundqvist G, DePierre JW. Comparison of the sex and subcellular distributions, catalytic and immunochemical reactivities of hepatic epoxide hydrolases in seven mammalian species. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 167:269-79. [PMID: 3113952 DOI: 10.1111/j.1432-1033.1987.tb13333.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sex and species differences in hepatic epoxide hydrolase activities towards cis- and trans-stilbene oxide were examined in common laboratory animals, as well as in monkey and man. In general trans-stilbene oxide was found to be a good substrate for epoxide hydrolase activity in cytosolic fractions, whereas the cis isomer was selectively hydrated by the microsomal fraction (with the exception of man, where the cytosol also hydrated this isomer efficiently). The specific cytosolic epoxide hydrolase activity was highest in mouse, followed by hamster and rabbit. Epoxide hydrolase activity in the crude 'mitochondrial' fraction towards trans-stilbene oxide was also highest in mouse and low in all other species examined. Microsomal epoxide hydrolase activity was highest in monkey, followed by guinea pig, human and rabbit, which all had similar activities. Sex differences were generally small, but where significant, male animals had higher catalytic activities than females of the same species in most cases. Antibodies raised against microsomal epoxide hydrolase purified from rat liver reacted with microsomes from all species investigated, indicating structural conservation of this protein. Antibodies directed towards cytosolic epoxide hydrolase purified from mouse liver reacted only with liver cytosol from mouse and hamster and with the 'mitochondrial' fraction from mouse in immunodiffusion experiments. Immunoblotting also revealed reaction with rat liver cytosol. The cytosolic and 'mitochondrial' epoxide hydrolases in all three mouse strains and in both sexes for each strain were immunochemically identical. The anomalies in human liver epoxide hydrolase activities observed here indicate that no single common laboratory animal is a good model for man with regard to these activities.
Collapse
|
21
|
Meijer J, Bergstrand A, DePierre JW. Preparation and characterization of subcellular fractions from the liver of C57B1/6 mice, with special emphasis on their suitability for use in studies of epoxide hydrolase activities. Biochem Pharmacol 1987; 36:1139-51. [PMID: 3566808 DOI: 10.1016/0006-2952(87)90425-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The present study was designed to prepare and characterize subcellular fractions from the liver of male C57B1/6 mice, with special emphasis on their suitability for use in studies of epoxide hydrolase isozymes. The effects of different washing and pelleting procedures on the mitochondrial, microsomal and cytosolic fractions were studied. It was found that 133,000 gav for 60 min (i.e. more extensive force than the usual 105,000 gav for 60 min) was necessary to obtain a membrane-free cytosolic fraction, while one wash for microsomes and two washes for mitochondria yielded reasonably pure fractions. The purity of the different fractions obtained by differential centrifugation was then determined using established enzyme markers and morphological examination with the electron microscope. Several enzymes involved in drug metabolism were also measured in these fractions. The subcellular distributions obtained here for marker enzymes closely resemble those reported for rat liver. Starvation had no significant effect on the epoxide hydrolase activities nor did the addition of mouse bile or rat liver cytosol, which might contain inhibitors. The change in epoxide hydrolase activities with time after preparation of the subcellular fractions was studied, as well as the effect of freeze-thawing. The subfractions prepared here are suitable for the further characterization of the different forms of epoxide hydrolase present in mouse liver, as well as for other studies requiring well-characterized subfractions.
Collapse
|
22
|
Meijer J, DePierre JW. Hepatic levels of cytosolic, microsomal and 'mitochondrial' epoxide hydrolases and other drug-metabolizing enzymes after treatment of mice with various xenobiotics and endogenous compounds. Chem Biol Interact 1987; 62:249-69. [PMID: 3621371 DOI: 10.1016/0009-2797(87)90026-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study was performed in order to study the response of epoxide hydrolases in different subcellular compartments of mouse liver to treatment with various compounds. Male C57BL/6 mice were treated with 31 different compounds--including traditional inducers of xenobiotic-metabolizing systems, liver carcinogens, stilbene derivatives, endogenous compounds and various other drugs and xenobiotics. The effects on liver somatic index; protein contents in 'mitochondria', microsomes and cytosol prepared from the liver; epoxide hydrolase activity towards trans- or cis-stilbene oxide in these three fractions; microsomal cytochrome P-450 content; cytosolic and 'mitochondrial' glutathione transferase activity and cytosolic DT-diaphorase activity were then determined. Cytosolic epoxide hydrolase activity was induced by chlorinated paraffins, di(2-ethylhexyl)phthalate and clofibrate and depressed by alpha-naphthylisothiocyanate, 3-methylcholanthrene, benzil and quercitin. Radial immunodiffusion revealed similar changes in the amount of enzyme protein present, except for two cases, where the increase in amount was larger; and the enzyme seems to be inhibited by benzil. Microsomal epoxide hydrolase activity was induced by these same compounds and several others as well, including dibenzoylmethane, butylated hydroxyanisole and polychlorinated biphenyls. 'Mitochondrial' epoxide hydrolase activity towards trans-stilbene oxide was not affected by those compounds which induced the cytosolic enzyme, but increased about two-fold after treatment with 2-acetylaminofluorene, DL-ethionine, aflatoxin B1 and phenobarbital. There does not seem to be any co-regulation of different forms of epoxide hydrolase in mouse liver. In general small effects were observed on liver weight and protein contents in the different subcellular fractions. Polychlorinated biphenyls were the most potent of the 8 compounds which induced cytochrome P-450, while butylated hydroxyanisole induced cytosolic glutathione transferase activity to the highest extent. 'Mitochondrial' glutathione transferase activity was most induced by certain of the stilbene derivatives. The most potent inducers of DT-diaphorase activity were 3-methylcholanthrene, polychlorinated biphenyls and dinitrotoluene.
Collapse
|
23
|
Guenthner TM, Karnezis TA. Immunochemical characterization of human lung epoxide hydrolases. JOURNAL OF BIOCHEMICAL TOXICOLOGY 1986; 1:67-81. [PMID: 3271885 DOI: 10.1002/jbt.2570010407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Immunochemical techniques were used to investigate the biochemical properties of human lung epoxide hydrolases. Two epoxide hydrolases with different immunoreactive properties were identified. These two epoxide hydrolases were found in both cytosolic and microsomal cell fractions. Immunotitration of enzyme activity showed that enzymes that catalyze the hydration of benzo(a)pyrene 4,5-oxide react with antiserum to rat microsomal epoxide hydrolase; those that hydrate trans-stilbene oxide do not. Immunotitration and Western blot experiments showed that microsomal and cytosolic benzo(a)pyrene 4,5-oxide hydrolases have significant structural homology. Immunohistochemical staining of human lung benzo(a)pyrene 4,5-oxide hydrolase showed that the enzyme is localized primarily in the bronchial epithelium. No cell type-specific localization was observed. An enzyme-linked immunosorbent assay was developed which allows direct quantitation of benzo(a)pyrene 4,5-oxide hydrolase protein. Levels of enzyme protein detected by this assay correlated well with enzyme levels determined by substrate conversion assays.
Collapse
Affiliation(s)
- T M Guenthner
- Department of Pharmacology, University of Illinois College of Medicine, Chicago 60612
| | | |
Collapse
|
24
|
Guenthner TM. Characterization of multiple epoxide hydrolase activities in mouse liver nuclear envelope. Biochem Pharmacol 1986; 35:3261-6. [PMID: 3768020 DOI: 10.1016/0006-2952(86)90422-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A nuclear envelope-associated epoxide hydrolase in mouse liver that hydrates trans-stilbene oxide has been identified and characterized. This epoxide hydrolase is distinct from the enzyme in nuclear envelopes that hydrates benzo[a]pyrene 4,5-oxide and other arene oxides. This distinction was demonstrated by the criteria of pH optima, response to specific inhibitors in vitro, and precipitation by specific antibodies. The new epoxide hydrolase had a pH optimum of 6.8, was poorly inhibited by trichloropropene oxide, was potently inhibited by 4-phenylchalcone oxide, and did not bind to antiserum against benzo[a]pyrene 4,5-oxide hydrolase. This nuclear enzyme is similar in many of its properties to cytosolic and microsomal trans-stilbene oxide hydrolases and may be nuclear envelope-bound form of these other epoxide hydrolases. It differed from these other trans-stilbene oxide hydrolases in that its affinities for both trans-stilbene oxide (measured as apparent Km) and 4-phenylchalcone oxide (measured as I50) were 4- to 20-fold lower than those of either the cytosolic or microsomal forms.
Collapse
|
25
|
Schladt L, Wörner W, Setiabudi F, Oesch F. Distribution and inducibility of cytosolic epoxide hydrolase in male Sprague-Dawley rats. Biochem Pharmacol 1986; 35:3309-16. [PMID: 3768023 DOI: 10.1016/0006-2952(86)90428-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytosolic epoxide hydrolase (cEH) activity has been determined in liver and various extrahepatic tissues of male Sprague-Dawley rats using trans-stilbene oxide (TSO) and trans-ethylstyrene oxide (TESO) as substrates. Large interindividual differences in the specific activity of cytosolic epoxide hydrolase in the liver from more than 80 individual rats were observed varying by a factor of 38. In a randomly selected group of five animals liver cEH varied by a factor of 3.9 and kidney cEH by a factor of 2.7, whereas liver microsomal epoxide hydrolase and lactate dehydrogenase showed only very low variations (1.4- and 1.1-fold, respectively). The individual relative activity of kidney cEH was related to that of the liver. Cytosolic epoxide hydrolase activity was present in all of six extrahepatic rat tissues investigated. Interestingly specific activities were very high in the heart and kidney (higher than in liver), followed by liver greater than brain greater than lung greater than testis greater than spleen. TSO and TESO hydrolases in subcellular fractions of rat liver were present at highest specific activities in the cytosolic and the heavy mitochondrial fraction. As indicated by the marker enzymes, catalase, urate oxidase and cytochrome oxidase, this organelle-bound epoxide hydrolase activity may be of peroxisomal and/or mitochondrial origin. In the microsomal fraction, TSO and TESO hydrolase activity is very low, whereas STO hydrolase activity is highest in this fraction and very low in cytosol. In kidney, subcellular distribution is similar to that observed in liver. None of the commonly used inducers of xenobiotic metabolizing enzymes caused significant changes in the specific activities of rat hepatic cEH (trans-stilbene oxide, alpha-pregnenolone carbonitrile, 3-methylcholanthrene, beta-naphthoflavone, isosafrole, butylated hydroxytoluene, 2,3,7,8-tetrachlorodibenzo-p-dioxin, dibenzo[a,h]anthracene, phenobarbitone). However, clofibrate, a hypolipidemic agent, very strongly induced rat liver cEH (about 5-fold), whereas microsomal epoxide hydrolase activity was not affected. Specific activity of kidney cEH was increased about 2-fold.
Collapse
|
26
|
Seidegård J, DePierre JW, Guenthner TM, Oesch F. The effects of metyrapone, chalcone epoxide, benzil, clotrimazole and related compounds on the activity of microsomal epoxide hydrolase in situ, in purified form and in reconstituted systems towards different substrates. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 159:415-23. [PMID: 3758069 DOI: 10.1111/j.1432-1033.1986.tb09884.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The influence of metyrapone, chalcone epoxide, benzil and clotrimazole on the activity of microsomal epoxide hydrolase towards styrene oxide, benzo[a]pyrene 4,5-oxide, estroxide and androstene oxide was investigated. The studies were performed using liver microsomes from rats, rabbits, mice and humans; epoxide hydrolase purified from rat liver microsomes to apparent homogeneity; and the purified enzyme incorporated into liposomes composed of egg-yolk phosphatidylcholine or total rat liver microsomal lipids. All four effectors were found to activate the hydrolysis of styrene oxide by epoxide hydrolase in situ in rat liver microsomal membranes, in agreement with earlier findings. Epoxide hydrolase activity towards styrene oxide in liver microsomes from mouse, rabbit and man was also increased by all four effectors. The most striking effect was a 680% activation by clotrimazole in rat liver microsomes. However, none of the effectors activated microsomal epoxide hydrolase more than 50% when benzo[a]pyrene 4,5-oxide, estroxide or androstene oxide was used as substrate. Indeed, clotrimazole was found to inhibit microsomal epoxide hydrolase activity towards estroxide 30-50% and towards androstene oxide 60-90%. The effects of these four compounds were found to be virtually identical in the preparations from rats, rabbits, mice and humans. The effects of metyrapone, chalcone epoxide, benzil and clotrimazole on purified epoxide hydrolase were qualitatively the same as those on epoxide hydrolase in intact microsomes, but much smaller in magnitude. These effects were increased in magnitude only slightly by incorporation of the purified enzyme into liposomes made from egg-yolk phosphatidylcholine. However, when incorporation into liposomes composed of total microsomal lipids was performed, the effects seen were essentially of the same magnitude as with intact microsomes. When the extent of activation was plotted against effector concentration, three different patterns were found with different effectors. Activation of epoxide hydrolase activity towards styrene oxide by clotrimazole was found to be uncompetitive with the substrate and highly structure specific. On the other hand, inhibition of epoxide hydrolase activity towards androstene oxide by clotrimazole was found to be competitive in microsomes. It is concluded that the marked effects of these four modulators on microsomal epoxide hydrolase activity are due to an interaction with the enzyme protein itself, but that the presence of total microsomal phospholipids allows the maximal expression leading to similar degrees of modulation as those observed in intact microsomes.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
27
|
Jansen M, Baars AJ, Breimer DD. Microsomal and cytosolic epoxide hydrolase in Drosophila melanogaster. Biochem Pharmacol 1986; 35:2229-32. [PMID: 3089226 DOI: 10.1016/0006-2952(86)90596-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Subcellular fractions from Drosophila melanogaster and rat liver were investigated on their epoxide hydrolase activity. Both microsomes and the post-microsomal supernatant of Drosophila appeared to contain epoxide hydrolase activity using styrene-7,8-oxide as the substrate. Based on body weight, these activities were in the same order of magnitude. Rat liver cytosol was able to catalyze the hydrolysis of styrene oxide only if the glutathione S-transferase activity was blocked.
Collapse
|
28
|
Brown S, Chalmers DE. Microsomal epoxide hydrolase activity in human x mouse hybrid cells. Biochem Biophys Res Commun 1986; 137:775-80. [PMID: 3502687 DOI: 10.1016/0006-291x(86)91146-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microsomal epoxide hydrolase (E.C.3.3.2.3) activity has been measured in human x mouse hybrid cells prepared from human cells expressing 6-7 x the activity of the mouse cells. Rabbit antihuman and antimouse antisera raised against purified enzymes were used to discriminate between human and mouse enzymes. All twenty five clones examined did not express human enzyme and this correlated with the loss of human chromosome 6 from each cell line. Four hybrids expressed 2-3 x the activity expressed by the mouse cell parent and these all retained more human chromosomes, specifically chromosome 19, than those with low activity. It is concluded that the human gene for epoxide hydrolase may be on chromosome 6 and that other gene products can affect the level of activity expressed by a cell.
Collapse
|
29
|
Haeggström J, Meijer J, Rådmark O. Leukotriene A4. Enzymatic conversion into 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acid by mouse liver cytosolic epoxide hydrolase. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)84567-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Kaur S, Gill SS. Distribution and nature of epoxide hydrolase activity in subcellular organelles of mouse liver. Biochem Pharmacol 1986; 35:1299-308. [PMID: 3083822 DOI: 10.1016/0006-2952(86)90275-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mouse liver light and heavy mitochondrial fractions contain significant epoxide hydrolase activity in addition to that present in the cytosol and microsomes. As the mitochondrial fraction itself contains a number of subfractions, experiments were designed to determine the localization of the epoxide hydrolase activity in these subfractions. Subcellular fractions were prepared using livers from 6- to 8-week-old Swiss-Webster male mice. Using trans-stilbene oxide (TSO) as substrate, the highest activity was localized in the cytosolic fraction, followed by the light mitochondrial fraction. Subfractionation of the light mitochondrial fraction by isopycnic sucrose density gradient resulted in the separation of mitochondria from peroxisomes as monitored by marker enzymes. The separation of these two subcellular organelles was also confirmed by the electron microscopic studies. Distribution of TSO-hydrolase activity in the sucrose density gradient fractions closely resembled the activity distribution of the peroxisomal markers catalase and urate oxidase, but significant activity was also found in mitochondria. Treatment of mice with clofibrate selectively induced TSO-hydrolase in the cytosol without affecting this enzyme activity in the peroxisomal fraction. There was no difference in the distribution pattern of TSO-hydrolase and marker enzymes in sucrose density gradients of mitochondrial fractions from clofibrate-treated and control mice. The epoxide hydrolase activity in the peroxisomes is immunologically similar to, and also has the same molecular weight as, the cytosolic epoxide hydrolase.
Collapse
|
31
|
Guenthner TM. Selective inhibition and selective induction of multiple microsomal epoxide hydrolases. Biochem Pharmacol 1986; 35:839-45. [PMID: 3954789 DOI: 10.1016/0006-2952(86)90253-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The inhibition in vitro and induction in vivo of microsomal trans-stilbene oxide hydrolase have been studied. This microsomal epoxide hydrolase activity is distinguishable from the previously well-defined microsomal arene oxide hydrolase by a number of catalytic criteria. Two substituted chalcone oxides, 4-phenylchalcone oxide and 4'-phenylchalcone oxide, are potent inhibitors of microsomal trans-stilbene oxide hydrolase, but have no apparent activity against benzo[a]pyrene 4,5-oxide hydrolase. Conversely, compounds that are potent inhibitors of benzo[a]pyrene 4,5-oxide hydrolase, including styrene oxide, cyclohexene oxide, and trichloropropene oxide, inhibit microsomal trans-stilbene oxide hydrolase only at very high (millimolar) concentrations. The chalcone oxides inhibit microsomal trans-stilbene oxide hydrolase noncompetitively, and have micromolar or nanomolar affinity constants for the enzyme. Attempts were made to induce microsomal trans-stilbene oxide hydrolase in vivo. Compounds that induced microsomal benzo[a]pyrene 4,5-oxide hydrolase levels in mice did not simultaneously induce trans-stilbene oxide hydrolase levels. Clofibrate was an exception; it induced levels of both enzymes to a small but statistically significant degree. The two microsomal hydrolase activities have, therefore, very different catalytic sites and appear to be under separate genetic control. 4-Phenylchalcone oxide and 4'-phenylchalcone oxide are selective inhibitors of microsomal trans-stilbene oxide hydrolase and may prove to be very useful in assessing the involvement of this enzyme in the metabolism of endogenous or xenobiotic epoxides.
Collapse
|
32
|
Sevanian A, McLeod LL. Catalytic properties and inhibition of hepatic cholesterol-epoxide hydrolase. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)42429-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
33
|
Abstract
The concentration of cytosolic epoxide hydrolase in untreated and clofibrate-treated mouse liver extracts was estimated by immunoblotting. Clofibrate treatment of mice was found to increase liver cytosolic epoxide hydrolase concentration by two fold, showing that the increase in cytosolic epoxide hydrolase in mouse liver after clofibrate treatment is primarily due to induction. The induced and uninduced cytosolic epoxide hydrolase, and epoxide hydrolase in the cytosolic and mitochondrial fractions were compared and found to be identical or very similar. Cytosolic epoxide hydrolases in kidney and liver were similar in molecular weight and antigenic properties.
Collapse
|
34
|
Moody DE, Loury DN, Hammock BD. Epoxide metabolism in the liver of mice treated with clofibrate (ethyl-alpha-(p-chlorophenoxyisobutyrate)), a peroxisome proliferator. Toxicol Appl Pharmacol 1985; 78:351-62. [PMID: 4049385 DOI: 10.1016/0041-008x(85)90240-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An increase in cytosolic epoxide hydrolase (cEH) activity occurs in the livers of mice treated with peroxisome proliferating-hypolipidemic-nongenotoxic carcinogens. As increases in activity of epoxide metabolizing enzymes may reflect the carcinogenic mechanism, a detailed comparison of the response of cEH, microsomal epoxide hydrolase (mEH), and cytosolic glutathione S-transferase (cGST) activities using the geometrical isomers trans- and cis-stilbene oxide as substrates has been performed in livers from mice treated with clofibrate (ethyl-alpha-(p-chlorophenoxyisobutyrate]. The maximal increase of cEH activity occurred at lower dietary doses of clofibrate (0.5%) and within a shorter time (5 days) than mEH and cGST (2%, 14 days) activity. After 14 days at 0.5% clofibrate, cEH, mEH, and cGST activities were 250, 175, and 165% and 290, 220, and 75% of control values in male and female mice, respectively. Withdrawal of clofibrate from the diet resulted in a reversion of activities to control values within 7 days. Clofibrate treatment shifted the apparent subcellular compartmentation of all three enzymatic activities with an increase in the ratio of soluble to particulate activity. In particular, the relative specific activity of all three enzymes decreased in the light mitochondrial (peroxisomal) cell fraction, and an increase of a mEH-like activity (benzo[a]pyrene-4,5-oxide and cis-stilbene oxide hydrolysis) in the cytosol occurred. Both the increase of cEH activity and the appearance of mEH-like activity in the cytosol are novel responses of epoxide metabolizing enzymes, which may be related to the novel cellular responses that follow clofibrate treatment, peroxisome proliferation, hypolipidemia, and nongenotoxic carcinogenesis.
Collapse
|
35
|
Razzouk C, McManus ME, Hayashi S, Schwartz D, Thorgeirsson SS. Induction of epoxide hydrolase in cultured rat hepatocytes and hepatoma cell lines. Biochem Pharmacol 1985; 34:1537-42. [PMID: 3994764 DOI: 10.1016/0006-2952(85)90696-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The expression of epoxide hydrolases was studied in cultured rat hepatocytes and hepatoma cell lines. Styrene 7,8-oxide and benzo[a]pyrene 4,5-oxide were used as substrates for microsomal epoxide hydrolase and trans-stilbene oxide for the cytosolic form of this enzyme. In freshly isolated hepatocytes from control rats, microsomal epoxide hydrolase activity was 7.7 and 10.8 nmoles/mg cellular protein/min with benzo[a]pyrene 4,5-oxide and styrene 7,8-oxide as substrates respectively. This enzyme activity increased by more than 2-fold in hepatocytes after 24 hr in culture and remained elevated throughout 96 hr using both substrates. In cultured hepatocytes from rats pretreated in vivo with phenobarbital, trans-stilbene oxide, 2-acetylaminofluorene and N-hydroxy-2-acetylaminofluorene, both benzo[a]pyrene 4,5-oxide and styrene 7,8-oxide hydrolase activities were increased greater than 1.8 relative to controls. Hepatocytes from 2-acetylaminofluorene-pretreated animals at 24 hr in culture had approximately 9-fold higher activities than control hepatocytes. In marked contrast to microsomal epoxide hydrolase activity, the cytosolic enzyme showed an initial activity of 191 pmoles/mg cellular protein/min in freshly isolated hepatocytes, decreased by 75% after 24 hr in culture, and was barely detectable at 96 hr. A similar trend was apparent in hepatocytes from the pretreated animals. In vitro treatment of hepatocytes with trans-stilbene oxide and phenobarbital increased microsomal epoxide hydrolase, while this activity was refractory to 2-acetylaminofluorene treatment. Styrene 7,8-oxide hydrolase activity was increased in the McA-RH-7777 rat hepatoma cell line by phenobarbital, trans-stilbene oxide and 2-acetylaminofluorene treatment. Similarly, benzo[a]pyrene 4,5-oxide hydrolase activity was also increased in this cell line by treatment with phenobarbital and trans-stilbene oxide but not by 2-acetylaminofluorene. Microsomal epoxide hydrolase activity in rat H4-II-E hepatoma cells was refractory to induction, except by trans-stilbene oxide treatment, which caused a 70% increase in benzo[a]pyrene 4,5-oxide hydrolase activity.
Collapse
|
36
|
Prestwich GD, Hammock BD. Rapid purification of cytosolic epoxide hydrolase from normal and clofibrate-treated animals by affinity chromatography. Proc Natl Acad Sci U S A 1985; 82:1663-7. [PMID: 3856846 PMCID: PMC397332 DOI: 10.1073/pnas.82.6.1663] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Epoxide hydrolase from liver cytosol (cEH) of both normal and clofibrate-treated mice can be bioselectively adsorbed onto an affinity column prepared from epoxy-activated Sepharose and 7-methoxycitronellyl thiol. The free ligand is a modest inhibitor of cEH (I50, approximately equal to 3 X 10(-4) M) and lacks the epoxide function necessary for it to be turned over as a substrate. This study demonstrates that a methoxy group can be used to mimic an oxirane in a vertebrate system. Bioselective elution of cEH can be accomplished with several chalcone oxides, which are selective potent inhibitors (I50, 1-50 X 10(-7) M), and activity can be recovered by dialysis. This procedure thus enhances the purification by offering independent opportunities for selective binding and selective elution. Conservatively, a 40%-80% recovery of partially inhibited enzyme activity can be achieved in 4-48 hr with a 30- to 90-fold purification. The purified cEH from clofibrate-induced animals was essentially homogeneous by NaDodSO4/PAGE and had an apparent subunit molecular weight of 58,000. The cEHs from normal and clofibrate-induced animals appeared identical by NaDodSO4/PAGE. Since the cEH activity in normal and clofibrate-treated animals is due to the same enzyme, the increase in cEH activity caused by selected hypolipidemic agents appears to be true induction.
Collapse
|
37
|
Hammock BD, Moody DE, Sevanian A. Epoxide hydrolases in the catabolism of sterols and isoprenoids. Methods Enzymol 1985; 111:303-11. [PMID: 3897774 DOI: 10.1016/s0076-6879(85)11018-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Gill SS. Immunological similarity of epoxide hydrolase activity in the mitochondrial and cytosolic fractions of mouse liver. Biochem Biophys Res Commun 1984; 122:1434-40. [PMID: 6206855 DOI: 10.1016/0006-291x(84)91251-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The light and heavy mitochondrial fractions of mouse liver have relatively high levels of epoxide hydrolase (EH) activity when monitored with trans-stilbene oxide as substrate. Using double diffusion analysis and immunoprecipitation experiments it was shown that EH activity in the mitochondrial fractions is immunologically similar to cytosolic EH, but immunologically dissimilar from microsomal EH. The EHs in the mitochondrial and cytosolic fractions also have a similar pI.
Collapse
|
39
|
Mullin CA, Croft BA. Trans-epoxide hydrolase: A key indicator enzyme for herbivory in arthropods. ACTA ACUST UNITED AC 1984. [DOI: 10.1007/bf01963586] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Waechter F, Bieri F, Stäubli W, Bentley P. Induction of cytosolic and microsomal epoxide hydrolases by the hypolipidaemic compound nafenopin in the mouse liver. Biochem Pharmacol 1984; 33:31-4. [PMID: 6704141 DOI: 10.1016/0006-2952(84)90366-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The repeated oral administration of nafenopin, a hypolipidaemic compound, at a dose of 100 mg/kg to male C57BL/6, DBA/2, Balb c and C3H mice caused an increase in the specific activity of liver cytosolic epoxide hydrolase, the activity of microsomal epoxide hydrolase was also increased in all except the C3H mice. The dose dependence and the specificity of this induction was investigated in male DBA/2 mice. In the range of 10-200 mg/kg nafenopin the induction of the two hydrolase activities was found to increase with increasing doses of the test compound. Two other cytosolic enzyme activities, lactate dehydrogenase and glutathione S-transferase, remained essentially unchanged within the dose range investigated.
Collapse
|
41
|
Seidegård J, DePierre JW. Microsomal epoxide hydrolase. Properties, regulation and function. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 695:251-70. [PMID: 6418203 DOI: 10.1016/0304-419x(83)90014-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Pacifici GM, Colizzi C, Giuliani L, Rane A. Cytosolic epoxide hydrolase in fetal and adult human liver. Arch Toxicol 1983; 54:331-41. [PMID: 6667124 DOI: 10.1007/bf01234486] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The epoxide hydrolase and glutathione S-transferase activity towards styrene oxide as substrate were investigated and compared in fetal and adult human liver cytosols. The rate of formation of styrene glycol from styrene oxide (nmole/min/mg protein) was 0.23 +/- 0.02 (means +/- SE; n = 10) in fetal and 0.83 +/- 0.05 (means +/- SE; n = 14) in adult liver specimens. The enzyme followed Michealis-Menten kinetics in the fetal liver. In adult liver specimens the enzyme showed biphasic kinetics. For comparative purposes, the cytosolic glutathione S-transferase activity was investigated in the cytosolic fractions from the same liver specimens. The fetal activity was 40% of the adult activity 3.9 +/- 0.50 (means +/- SE; n = 10) versus 9.94 +/- 1.75 (means +/- SE; n = 14) nmoles/min/mg protein.
Collapse
|
43
|
|
44
|
Hammock BD, Ota K. Differential induction of cytosolic epoxide hydrolase, microsomal epoxide hydrolase, and glutathione S-transferase activities. Toxicol Appl Pharmacol 1983; 71:254-65. [PMID: 6636190 DOI: 10.1016/0041-008x(83)90342-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Three major enzyme systems have been shown to metabolize epoxidized xenobiotics in vertebrate tissues, and this study demonstrates that these enzyme systems can be differentially induced. The cytosolic epoxide hydrolase activity was routinely monitored with trans-beta-ethylstyrene oxide, the microsomal epoxide hydrolase activity with benzo(a)pyrene, 4,5-oxide, and the glutathione S-transferase activity with 2,4-dichloro-4-nitrobenzene. Commonly used inducers of microsomal mixed-function oxidase, microsomal epoxide hydrolase, and cytosolic glutathione S-transferase activities failed to cause significant induction of the cytosolic epoxide hydrolase while leading to the expected induction of the other epoxide metabolizing enzymes. The compounds tested by ip injection into male Swiss-Webster mice included phenobarbital, 3-methylcholanthrene, Aroclor 1254, trans- and cis-stilbene oxides, pregnenolone-16 alpha-carbonitrile, chalcone, and 4-bromochalcone. To determine if there were strain, sex, or species differences, the enzymes were monitored in male C57BL/6 mice, female Swiss-Webster mice, and male Sprague-Dawley rats following ip injection of phenobarbital, 3-methylcholanthrene, and/or pregnenolone-16 alpha-carbonitrile. The time dependence of enzyme induction was followed in Sprague-Dawley rats following trans-stilbene oxide administration. Male Swiss-Webster mice were additionally exposed to dietary alpha-naphthoflavone and 2(3)-tert-butyl-4-hydroxyanisole while male Sprague-Dawley rats were fed 2,6-di-tert-butyl-4-methylphenol. In no case was significant induction of cytosolic epoxide hydrolase activity observed. Dietary di-(2-ethylhexyl)phthalate, 2-ethyl-l-hexanol, and clofibrate proved to be potent inducers of the cytosolic epoxide hydrolase in male Swiss-Webster mice while probucol (a nonperoxisome proliferating hypolipidemic drug) failed to cause significant induction. Data from isoelectric focusing experiments and other data are consistent with the epoxide hydrolase activities induced by 2-ethyl-l-hexanol and clofibrate being due to the same protein that is present in control animals. The lack of induction of the cytosolic epoxide hydrolase by a variety of compounds which were selected to demonstrate induction of other xenobiotic metabolizing enzymes, may indicate that the cytosolic epoxide hydrolase has a constitutive role whereas its induction by clofibrate could be related to some of the pharmacological and/or carcinogenic actions of this drug.
Collapse
|
45
|
Waechter F, Bentley P, Bieri F, Stäubli W, Völkl A, Fahimi HD. Epoxide hydrolase activity in isolated peroxisomes of mouse liver. FEBS Lett 1983; 158:225-8. [PMID: 6873276 DOI: 10.1016/0014-5793(83)80583-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Using trans-stilbene oxide as substrate, the subcellular distribution of epoxide hydrolase was investigated in livers from DBA/2 mice. The highest specific activities were found in cytosolic and light mitochondrial fractions. Isopycnic subfractionation of the light mitochondrial fraction showed that the organelle-bound trans-stilbene oxide hydrolase is localized in peroxisomes.
Collapse
|
46
|
Gill SS, Ota K, Ruebner B, Hammock BD. Microsomal and cytosolic epoxide hydrolases in rhesus monkey liver, and in normal and neoplastic human liver. Life Sci 1983; 32:2693-700. [PMID: 6855465 DOI: 10.1016/0024-3205(83)90362-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cytosolic epoxide hydrolase (EH-LC) was observed in rhesus monkey liver cytosol, and in both normal and neoplastic human liver. Microsomal epoxide hydrolase (EH-LM) was detected not only in the microsomes of normal and neoplastic human liver and normal rhesus monkey liver, but also in the cytosol of these tissues. No apparent differences were observed between the EH-LM in liver cytosol and that in microsomes. No major differences were observed between the levels of EH-LM in the cytosol of normal and that in neoplastic human liver.
Collapse
|
47
|
Gill SS, Ota K, Hammock BD. Radiometric assays for mammalian epoxide hydrolases and glutathione S-transferase. Anal Biochem 1983; 131:273-82. [PMID: 6614459 DOI: 10.1016/0003-2697(83)90166-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A number of epoxides, including cis- and trans-stilbene oxides, were assayed as substrates for epoxide hydrolases (EHs) by gas-liquid chromatography. Radiolabeled stilbene oxides were prepared by sodium borotritide reduction of desyl chloride followed by ring closure with base treatment. Rapid radiometric assays for EHs were performed by differential partitioning of the epoxide into dodecane, while the product diol remained in the aqueous phase. Glutathione (GSH) transferase was similarly assayed by partitioning the epoxide and diol, if formed metabolically, into 1-hexanol, while the GSH conjugate was retained in the aqueous phase. The cytosolic EH rapidly hydrates the trans isomer while the cis is very poorly hydrated. In contrast, the cis is a better substrate for the microsomal EH than the trans. GSH transferase utilized both epoxides as substrates, but conjugation is faster with the cis isomer. Cytosolic EH activity is high in mouse but very low in rat and guinea pig. Microsomal EH activity, in contrast, is highest in guinea pig, intermediate in rat, and the lowest in mouse. GSH transferase activity, which is high in all three species, can be inhibited by chalcone, with an I50 of 3.1 X 10(-5) M. These assays facilitate the rapid evaluation and direct comparison of epoxide-metabolizing systems in cell homogenates used in short-term mutagenicity assays, cell or organ culture, and possibly in vivo.
Collapse
|
48
|
Abstract
Cytosolic epoxide hydrolase was purified from male Swiss mouse liver cytosol by passing it sequentially through CM-cellulose, DEAE-cellulose, phenylsepharose, DEAE-cellulose, and hydroxyapatite. The overall yield was ca. 10% with a 180-fold purification, and a final specific activity of 1.5 mumol/min/mg protein as monitored with trans-stilbene oxide. The purified epoxide hydrolase was apparently homogenous as determined by SDS-PAGE and it appears to exist as a dimer in its native form as evidenced by a monomeric molecular weight of 59,000 by SDS-PAGE and a reported native molecular weight of 130,000 by gel filtration.
Collapse
|
49
|
Hammock BD, Hasagawa LS. Differential substrate selectivity of murine hepatic cytosolic and microsomal epoxide hydrolases. Biochem Pharmacol 1983; 32:1155-64. [PMID: 6847708 DOI: 10.1016/0006-2952(83)90264-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The initial rates of hydration of sixteen epoxides in the presence of cytosolic and microsomal fractions of mouse liver were determined. 1,2-Disubstituted trans-epoxides were found to be excellent, selective substrates for the cytosolic epoxide hydrolase, while 1,2-cis-epoxides were poorly hydrated when one or more substituents was a phenyl moiety. Epoxides of cyclic systems including benzo[alpha]pyrene 4,5-oxide, and two cyclodiene analogs were hydrated almost exclusively by the microsomal epoxide hydrolase while monosubstituted epoxides were hydrated by both systems. Some epoxides which were mediocre substrates proved to be reasonable inhibitors of the cytosolic epoxide hydrolase, indicating that the structural requirements for substrate binding and turnover are different. Some reagents known to interact with sulfhydryl groups, including styrene oxide, proved to be good inhibitors. This work facilitates the design of radiochemical and spectrophotometric assays for both major forms of epoxide hydrolase as well as prediction of potential intrinsic substrates. Also such data may be meaningful in assessing the risk involved in human exposure to epoxidized xenobiotics.
Collapse
|
50
|
Mullin CA, Hammock BD. Chalcone oxides--potent selective inhibitors of cytosolic epoxide hydrolase. Arch Biochem Biophys 1982; 216:423-39. [PMID: 7114846 DOI: 10.1016/0003-9861(82)90231-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|