1
|
Zhang Y, Fan C, Zhang J, Tian X, Zuo W, He K. Lipid-conjugated nucleoside monophosphate and monophosphonate prodrugs: A versatile drug delivery paradigm. Eur J Med Chem 2024; 275:116614. [PMID: 38925014 DOI: 10.1016/j.ejmech.2024.116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Integrating lipid conjugation strategies into the design of nucleoside monophosphate and monophosphonate prodrugs is a well-established approach for discovering potential therapeutics. The unique prodrug design endows nucleoside analogues with strong lipophilicity and structures resembling lysoglycerophospholipids, which improve cellular uptake, oral bioavailability and pharmacological activity. In addition, the metabolic stability, pharmacological activity, pharmacokinetic profiles and biodistribution of lipid prodrugs can be finely optimized by adding biostable caps, incorporating transporter-targeted groups, inserting stimulus-responsive bonds, adjusting chain lengths, and applying proper isosteric replacements. This review summarizes recent advances in the structural features and application fields of lipid-conjugated nucleoside monophosphate and monophosphonate prodrugs. This collection provides deep insights into the increasing repertoire of lipid prodrug development strategies and offers design inspirations for medicinal chemists for the development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Yanhua Zhang
- College of Science, Xichang University, Sichuan, 615000, China.
| | - Conghua Fan
- Xichang People's Hospital, Xichang, Sichuan, 615000, China
| | - Junjie Zhang
- College of Science, Xichang University, Sichuan, 615000, China
| | - Xin Tian
- College of Science, Xichang University, Sichuan, 615000, China
| | - Wen Zuo
- Xichang People's Hospital, Xichang, Sichuan, 615000, China
| | - Kehan He
- College of Science, Xichang University, Sichuan, 615000, China
| |
Collapse
|
2
|
Zwueste DM, Vernau KM, Vernau W, Pypendop BH, Knych HK, Rodrigues CA, Kol A, Questa M, Dickinson PJ. Oral cytarabine ocfosfate pharmacokinetics and assessment of leukocyte biomarkers in normal dogs. J Vet Intern Med 2023; 37:2429-2442. [PMID: 37670479 PMCID: PMC10658504 DOI: 10.1111/jvim.16842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Cytosine arabinoside (Ara-C) is a nucleoside analog prodrug utilized for immunomodulatory effects mediated by its active metabolite Ara-CTP. Optimal dosing protocols for immunomodulation in dogs have not been defined. Cytarabine ocfosfate (CO) is a lipophilic prodrug of Ara-C that can be administered PO and provides prolonged serum concentrations of Ara-C. OBJECTIVES Provide pharmacokinetic data for orally administered CO and determine accumulation and functional consequences of Ara-CTP within peripheral blood leukocytes. ANIMALS Three healthy female hound dogs and 1 healthy male Beagle. METHODS Prospective study. Dogs received 200 mg/m2 of CO PO q24h for 7 doses. Serum and cerebrospinal fluid (CSF) CO and Ara-C concentrations were measured by liquid chromatography-tandem mass spectroscopy (LC-MS/MS). Complete blood counts, flow cytometry, and leukocyte activation assays were done up to 21 days. Incorporation of Ara-CTP within leukocyte DNA was determined by LC-MS/MS. RESULTS Maximum serum concentration (Cmax ) for Ara-C was 456.1-724.0 ng/mL (1.88-2.98 μM) and terminal half-life was 23.3 to 29.4 hours. Cerebrospinal fluid: serum Ara-C ratios ranged from 0.54 to 1.2. Peripheral blood lymphocyte concentrations remained within the reference range, but proliferation rates poststimulation were decreased at 6 days. Incorporation of Ara-CTP was not saturated and remained >25% of peak concentration at 13 days. CONCLUSIONS AND CLINICAL IMPORTANCE Oral CO may produce prolonged serum Ara-C half-lives at concentrations sufficient to induce functional changes in peripheral leukocytes and is associated with prolonged retention of DNA-incorporated Ara-CTP. Application of functional and active metabolite assessment is feasible and may provide more relevant data to determine optimal dosing regimens for Ara-C-based treatments.
Collapse
Affiliation(s)
- Danielle M. Zwueste
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Karen M. Vernau
- Department of Surgical and Radiological SciencesUniversity of California DavisDavisCaliforniaUSA
| | - William Vernau
- Department of Pathology, Microbiology and ImmunologyUniversity of California DavisDavisCaliforniaUSA
| | - Bruno H. Pypendop
- Department of Surgical and Radiological SciencesUniversity of California DavisDavisCaliforniaUSA
| | - Heather K. Knych
- K.L. Maddy Equine Analytic Chemistry LaboratoryUC DavisDavisCaliforniaUSA
| | - Carlos A. Rodrigues
- Department of Surgical and Radiological SciencesUniversity of California DavisDavisCaliforniaUSA
| | - Amir Kol
- Department of Pathology, Microbiology and ImmunologyUniversity of California DavisDavisCaliforniaUSA
| | - Maria Questa
- Department of Pathology, Microbiology and ImmunologyUniversity of California DavisDavisCaliforniaUSA
| | - Peter J. Dickinson
- Department of Surgical and Radiological SciencesUniversity of California DavisDavisCaliforniaUSA
| |
Collapse
|
3
|
Lipka E, Chadderdon AM, Harteg CC, Doherty MK, Simon ES, Domagala JM, Reyna DM, Hutchings KM, Gan X, White AD, Hartline CB, Harden EA, Keith KA, Prichard MN, James SH, Cardin RD, Bernstein DI, Spencer JF, Tollefson AE, Wold WSM, Toth K. NPP-669, a Novel Broad-Spectrum Antiviral Therapeutic with Excellent Cellular Uptake, Antiviral Potency, Oral Bioavailability, Preclinical Efficacy, and a Promising Safety Margin. Mol Pharm 2023; 20:370-382. [PMID: 36484496 PMCID: PMC9811456 DOI: 10.1021/acs.molpharmaceut.2c00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
DNA viruses are responsible for many diseases in humans. Current treatments are often limited by toxicity, as in the case of cidofovir (CDV, Vistide), a compound used against cytomegalovirus (CMV) and adenovirus (AdV) infections. CDV is a polar molecule with poor bioavailability, and its overall clinical utility is limited by the high occurrence of acute nephrotoxicity. To circumvent these disadvantages, we designed nine CDV prodrug analogues. The prodrugs modulate the polarity of CDV with a long sulfonyl alkyl chain attached to one of the phosphono oxygens. We added capping groups to the end of the alkyl chain to minimize β-oxidation and focus the metabolism on the phosphoester hydrolysis, thereby tuning the rate of this reaction by altering the alkyl chain length. With these modifications, the prodrugs have excellent aqueous solubility, optimized metabolic stability, increased cellular permeability, and rapid intracellular conversion to the pharmacologically active diphosphate form (CDV-PP). The prodrugs exhibited significantly enhanced antiviral potency against a wide range of DNA viruses in infected human foreskin fibroblasts. Single-dose intravenous and oral pharmacokinetic experiments showed that the compounds maintained plasma and target tissue levels of CDV well above the EC50 for 24 h. These experiments identified a novel lead candidate, NPP-669. NPP-669 demonstrated efficacy against CMV infections in mice and AdV infections in hamsters following oral (p.o.) dosing at a dose of 1 mg/kg BID and 0.1 mg/kg QD, respectively. We further showed that NPP-669 at 30 mg/kg QD did not exhibit histological signs of toxicity in mice or hamsters. These data suggest that NPP-669 is a promising lead candidate for a broad-spectrum antiviral compound.
Collapse
Affiliation(s)
- Elke Lipka
- TSRL,
Inc., 540 Avis Dr., Suite
A, Ann Arbor, Michigan 48108, United States
| | | | - Cheryl C. Harteg
- TSRL,
Inc., 540 Avis Dr., Suite
A, Ann Arbor, Michigan 48108, United States
| | - Matthew K. Doherty
- TSRL,
Inc., 540 Avis Dr., Suite
A, Ann Arbor, Michigan 48108, United States
| | - Eric S. Simon
- TSRL,
Inc., 540 Avis Dr., Suite
A, Ann Arbor, Michigan 48108, United States
| | - John M. Domagala
- TSRL,
Inc., 540 Avis Dr., Suite
A, Ann Arbor, Michigan 48108, United States
| | - Dawn M. Reyna
- TSRL,
Inc., 540 Avis Dr., Suite
A, Ann Arbor, Michigan 48108, United States
| | - Kim M. Hutchings
- College
of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xinmin Gan
- College
of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew D. White
- College
of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Caroll B. Hartline
- Department
of Pediatrics, University of Alabama School
of Medicine, Birmingham, Alabama 35233, United
States
| | - Emma A. Harden
- Department
of Pediatrics, University of Alabama School
of Medicine, Birmingham, Alabama 35233, United
States
| | - Kathy A. Keith
- Department
of Pediatrics, University of Alabama School
of Medicine, Birmingham, Alabama 35233, United
States
| | - Mark N. Prichard
- Department
of Pediatrics, University of Alabama School
of Medicine, Birmingham, Alabama 35233, United
States
| | - Scott H. James
- Department
of Pediatrics, University of Alabama School
of Medicine, Birmingham, Alabama 35233, United
States
| | - Rhonda D. Cardin
- School
of Veterinary Medicine, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - David I. Bernstein
- Cincinnati
Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, United States
| | | | - Ann E. Tollefson
- Saint Louis
University School of Medicine, St. Louis, Missouri 63104, United States
| | - William S. M. Wold
- Saint Louis
University School of Medicine, St. Louis, Missouri 63104, United States
| | - Karoly Toth
- Saint Louis
University School of Medicine, St. Louis, Missouri 63104, United States
| |
Collapse
|
4
|
Schwede F, Rentsch A, Genieser HG. Medicinal Chemistry of the Noncanonical Cyclic Nucleotides cCMP and cUMP. Handb Exp Pharmacol 2017; 238:307-337. [PMID: 27896476 DOI: 10.1007/164_2015_41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
After decades of intensive research on adenosine-3',5'-cyclic monophosphate (cAMP)- and guanosine-3',5'-cyclic monophosphate (cGMP)-related second messenger systems, also the noncanonical congeners cyclic cytidine-3',5'-monophosphate (cCMP) and cyclic uridine-3',5'-monophosphate (cUMP) gained more and more interest. Until the late 1980s, only a small number of cCMP and cUMP analogs with sometimes undefined purities had been described. Moreover, most of these compounds had been rather synthesized as precursors of antitumor and antiviral nucleoside-5'-monophosphates and hence had not been tested for any second messenger activity. Along with the recurring interest in cCMP- and cUMP-related signaling in the early 2000s, it became evident that well-characterized small molecule analogs with reliable purities would serve as highly valuable tools for the evaluation of a putative second messenger role of cyclic pyrimidine nucleotides. Meanwhile, for this purpose new cCMP and cUMP derivatives have been developed, and already known analogs have been resynthesized and highly purified. This chapter summarizes early medicinal chemistry work on cCMP and cUMP and analogs thereof, followed by a description of recent synthetic developments and an outlook on potential future directions.
Collapse
Affiliation(s)
- Frank Schwede
- BIOLOG Life Science Institute, Forschungslabor und Biochemica-Vertrieb GmbH, Flughafendamm 9a, 28199, Bremen, Germany.
| | - Andreas Rentsch
- BIOLOG Life Science Institute, Forschungslabor und Biochemica-Vertrieb GmbH, Flughafendamm 9a, 28199, Bremen, Germany
| | - Hans-Gottfried Genieser
- BIOLOG Life Science Institute, Forschungslabor und Biochemica-Vertrieb GmbH, Flughafendamm 9a, 28199, Bremen, Germany
| |
Collapse
|
5
|
Lismont C, Nordgren M, Van Veldhoven PP, Fransen M. Redox interplay between mitochondria and peroxisomes. Front Cell Dev Biol 2015; 3:35. [PMID: 26075204 PMCID: PMC4444963 DOI: 10.3389/fcell.2015.00035] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/09/2015] [Indexed: 12/14/2022] Open
Abstract
Reduction-oxidation or “redox” reactions are an integral part of a broad range of cellular processes such as gene expression, energy metabolism, protein import and folding, and autophagy. As many of these processes are intimately linked with cell fate decisions, transient or chronic changes in cellular redox equilibrium are likely to contribute to the initiation and progression of a plethora of human diseases. Since a long time, it is known that mitochondria are major players in redox regulation and signaling. More recently, it has become clear that also peroxisomes have the capacity to impact redox-linked physiological processes. To serve this function, peroxisomes cooperate with other organelles, including mitochondria. This review provides a comprehensive picture of what is currently known about the redox interplay between mitochondria and peroxisomes in mammals. We first outline the pro- and antioxidant systems of both organelles and how they may function as redox signaling nodes. Next, we critically review and discuss emerging evidence that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. Key issues include possible physiological roles, messengers, and mechanisms. We also provide examples of how data mining of publicly-available datasets from “omics” technologies can be a powerful means to gain additional insights into potential redox signaling pathways between peroxisomes and mitochondria. Finally, we highlight the need for more studies that seek to clarify the mechanisms of how mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress. The outcome of such studies may open up exciting new avenues for the community of researchers working on cellular responses to organelle-derived oxidative stress, a research field in which the role of peroxisomes is currently highly underestimated and an issue of discussion.
Collapse
Affiliation(s)
- Celien Lismont
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| | - Marcus Nordgren
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| | - Paul P Van Veldhoven
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| | - Marc Fransen
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| |
Collapse
|
6
|
Chhikara BS, Parang K. Development of cytarabine prodrugs and delivery systems for leukemia treatment. Expert Opin Drug Deliv 2010; 7:1399-414. [PMID: 20964588 DOI: 10.1517/17425247.2010.527330] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Yamaguchi Y, Touchi A, Baba T, Matsubara T. Species differences in β-oxidative metabolism of a thromboxane A2-receptor antagonist [(+)-S-145] in rat, dog and monkey. Xenobiotica 2010. [DOI: 10.1080/0049825011004350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Affiliation(s)
- Scott J. Hecker
- Metabasis Therapeutics, Inc., 11119 North Torrey Pines Road, La Jolla, California 92037
| | - Mark D. Erion
- Metabasis Therapeutics, Inc., 11119 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
9
|
Rosti G, Bonifazi F, Trabacchi E, De Vivo A, Bassi S, Martinelli G, Testoni N, Russo D, Baccarani M. A phase II study of alpha-interferon and oral arabinosyl cytosine (YNK01) in chronic myeloid leukemia. Leukemia 2003; 17:554-9. [PMID: 12646944 DOI: 10.1038/sj.leu.2402850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
YNK01 (Starasid) is a prodrug that is adsorbed in the gut and is transformed in the liver in arabinosyl cytosine (AC). Low-dose AC (LDAC) is useful for the treatment of Philadelphia positive (Ph+) chronic myeloid leukemia (CML), especially in combination with alpha-interferon (alphaIFN). The use of YNK01 can avoid the daily s.c. injection of conventional AC. To assess the safety and the efficacy of alphaIFN and YNK01, we enrolled 86 consecutive previously untreated chronic phase Ph+ CML patients in a phase II study of alphaIFN (Intron-A) 5 MIU/m(2) daily and YNK01 600 mg daily 14 days a month. The 6-month complete hematologic response and the 12-month major cytogenetic response rates were 78 and 28%, respectively. In a prior study of alphaIFN and conventional LDAC, they were 62 and 22%, respectively. However, the compliance to the treatment was poor, with 25% of cases discontinuing the treatment within the first year. This was not because of the severity of the side effects but because of the frequency, duration and repetition of the side effects, for an overall frequency of 13.17 adverse events, mostly grade 1 and 2, per patient per year. Therefore, the study of this effective combination is being pursued, testing lower doses of alphaIFN and YNK01.
Collapse
Affiliation(s)
- G Rosti
- Institute of Hematology and Clinical Oncology L. and A. Seràgnolí, University of Bologna, S. Orsola Hospital, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Suga T. Drug Metabolism in Peroxisomes: Involvement of Peroxisomal β-Oxidation System in the Oxidative Chain-shortening of Xenobiotic Acyl Compounds. Drug Metab Pharmacokinet 2003; 18:155-62. [PMID: 15618731 DOI: 10.2133/dmpk.18.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There are two kinds of beta-oxidation systems of fatty acids in mitochondria and peroxisomes in animal liver cells. These beta-oxidation systems may play different physiological roles in the cell. Peroxisomal beta-oxidation system has been demonstrated to participate in the catabolism of intarcellular acyl compounds such as very long chain fatty acids, long chain dicarboxylic acids and bile acid precursors in addition to fatty acids. The difference of functions between mitochondrial and peroxisomal beta-oxidation systems is mainly due to the difference of characteristics of enzymes participating in the beta-oxidation in both organella. We have studied the beta-oxidation of xenobiotic acyl compounds and found that the peroxisomal beta-oxidation is involved in the chain-shortening of acyl side chains of several compounds. In the present review, the author describes the comparison between peroxisomal and mitochondrial beta-oxidation of phenylfatty acids (PFAs), oxidative chain shortening of N-(alpha-methylbenzyl)azelaamic acid (C(9)) as a specific substrate for the peroxisomal beta-oxidation system, application of C(9) which is a specific substrate for peroxisomal beta-oxidation system for diagnosis of peroxisome disorders and participation of peroxisomal beta-oxidation system in the metabolic activation of prodrugs, YNK-01, by peroxisomal beta-oxidation system.
Collapse
Affiliation(s)
- Tetsuya Suga
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Japan.
| |
Collapse
|
11
|
Kühr T, Eisterer W, Apfelbeck U, Linkesch W, Bechter O, Zabernigg A, Geissler K, Barbieri G, Duba C, Gastl G, Thaler J. Treatment of patients with advanced chronic myelogenous leukemia with interferon-alpha-2b and continuous oral cytarabine ocfosfate (YNK01): a pilot study. Leuk Res 2000; 24:583-7. [PMID: 10867132 DOI: 10.1016/s0145-2126(00)00036-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The efficacy of continuous oral cytarabine ocfosfate (YNK01) (300 mg/day) in combination with interferon alpha (IFNalpha, 5x10(6) IU/day) was evaluated in patients with advanced chronic myelogenous leukemia, who previously failed to respond to IFNalpha-based therapies. Dose escalations up to 900 mg YNK01 were allowed in patients who failed to respond. In view of our results, four patients developed a complete hematological response after YNK01 was started. Among those who initially responded to YNK01, one complete cytogenetic response was achieved 18 months later. Although the data are preliminary, this is the first study showing that continuous administration of YNK01 along with IFNalpha is effective in patients with advanced chronic myelogenous leukemia.
Collapse
Affiliation(s)
- T Kühr
- Department of Internal Medicine, University Hospital, Anichstrasse 35, 6020, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Peroxisomes were long believed to play only a minor role in cellular metabolism but it is now clear that they catalyze a number of important functions. The importance of peroxisomes in humans is stressed by the existence of a group of genetic diseases in man in which one or more peroxisomal functions are impaired. Most of the functions known to take place in peroxisomes have to do with lipids. Indeed, peroxisomes are capable of 1. fatty acid beta-oxidation 2. fatty acid alpha-oxidation 3. synthesis of cholesterol and other isoprenoids 4. ether-phospholipid synthesis and 5. biosynthesis of polyunsaturated fatty acids. In Chapters 2-6 we will discuss the functional organization and enzymology of these pathways in detail. Furthermore, attention is paid to the permeability properties of peroxisomes with special emphasis on recent studies which suggest that peroxisomes are closed structures containing specific membrane proteins for transport of metabolites. Finally, the disorders of peroxisomal lipid metabolism will be discussed.
Collapse
Affiliation(s)
- R J Wanders
- Department of Clinical Chemistry, University of Amsterdam, The Netherlands
| | | |
Collapse
|
13
|
Yamaguchi Y, Norikura R, Nakanishi M, Touchi A, Yoshimori T, Murakami T, Baba T, Mizojiri K, Matsubara T. Sex differences in the metabolism of (+)-S-145, a novel thromboxane A2 receptor antagonist in rat. Xenobiotica 1996; 26:613-26. [PMID: 8810032 DOI: 10.3109/00498259609046737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
1. After the oral administration of 5 mg/kg S-1452 to rat, the plasma levels of (+)-S-145 were similar between the male and female, but there were sex differences in the profiles of its beta-oxidized and hydroxylated metabolites in plasma. 2. beta-Oxidation of (+)-S-145 determined in vitro was slightly higher in the female than in the male, and agreed with the plasma levels of the beta-oxidized metabolites. 3. 5-Hydroxylation activities of (+)-S-145 and beta-oxidized metabolites by rat liver microsomes were significantly higher in the male than in the female, but marked sex differences were not observed in 6-hydroxylation activities. These results revealed that differences in monooxygenase activities directly account for the sex differences in the plasma level of 5-hydroxylated metabolites, and that the peroxisomal beta-oxidation enzyme system also affected the plasma level of 6-hydroxylated metabolites. 4. Biliary excretion was higher in the male than in the female, and quantitative identification of metabolites in bile indicated that this was based on the prominent excretion of taurine conjugates in the male rat. This conclusion was supported by the fact that taurine conjugation activity was higher in male liver homogenates than in the female.
Collapse
Affiliation(s)
- Y Yamaguchi
- Department of Drug Metabolism and Disposition, Shionogi & Co., Ltd, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ramsauer B, Braess J, Unterhalt M, Kaufmann CC, Hiddemann W, Schleyer E. Highly sensitive high-performance liquid chromatographic assay for 1-beta-D-arabinofuranosylcytosine-5'-stearyl phosphate (cytarabine-ocfosfate). JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1995; 665:183-92. [PMID: 7795790 DOI: 10.1016/0378-4347(94)00523-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An ion-pair HPLC method for the determination of 1-beta-D-arabinofuranosylcytosine-5'-stearyl phosphate (cytarabine-ocfosfate I) was developed, using a phenyl-bonded column under reversed-phase conditions with a mobile phase of acetonitrile-buffered water (pH 6.8) (50:50) for isocratic elution. A reproducible sample clean-up was achieved by solid-phase extraction. In order to reach the low limit of detection of 2 ng/ml, an enrichment switching system was used. The present validation leads to a limit of quantification of 5 ng/ml with a coefficient of variation (C.V.) of 10%. The total time of measurement was shortened by a back-flush procedure to restore the conditions after each run. UV detection at 275 nm was applied. The recoveries for plasma samples ranged from 56.4 to 64.1%, regardless of drug concentrations. The intra-assay C.V. was about 4% (40 measurements at four different concentrations). The inter-assay recovery (ten measurements over ten days) at a plasma concentration of 50 ng/ml was 57% with a C.V. of 8.25%. Based on this HPLC method, the pharmacokinetics of I were measured during a clinical phase I/II study.
Collapse
Affiliation(s)
- B Ramsauer
- Department of Hematology and Oncology, University of Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
This article summarizes our current knowledge of the metabolic pathways present in mammalian peroxisomes. Emphasis is placed on those aspects that are not covered by other articles in this issue: peroxisomal enzyme content and topology; the peroxisomal beta-oxidation system; substrates of peroxisomal beta-oxidation such as very-long-chain fatty acids, branched fatty acids, dicarboxylic fatty acids, prostaglandins and xenobiotics; the role of peroxisomes in the metabolism of purines, polyamines, amino acids, glyoxylate and reactive oxygen products such as hydrogen peroxide, superoxide anions and epoxides.
Collapse
Affiliation(s)
- G P Mannaerts
- Afdeling Farmacologie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
16
|
Affiliation(s)
- G P Mannaerts
- Department of Pharmacology, Faculty of Medicine, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
17
|
Suzuki H, Yamada J, Watanabe T, Suga T. A specific method for determination of peroxisomal beta-oxidation activity in cultured human skin fibroblasts using a specific substrate, C9: a possible application for screening of peroxisomal disorders. Clin Chim Acta 1992; 207:19-29. [PMID: 1591864 DOI: 10.1016/0009-8981(92)90147-i] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We developed a specific method for direct determination of peroxisomal beta-oxidation activity in cultured human skin fibroblasts. When control fibroblasts were incubated with N-(alpha-methylbenzyl)azelaamic acid (C9), a specific peroxisomal substrate, C5 and C7, the chain-shortened products, were detected with cell concentration and incubation time dependencies and no other products including C3 were detected. In glutaric aciduria type I and type II fibroblasts, the formation rates of C2 units liberated from C9 were almost similar to that in control cells. In contrast to these cell types, the fibroblasts from patient of Zellweger syndrome, in which peroxisomal beta-oxidation was impaired, showed no conversion of C9 to C5 and C7. The lack of the C2 units liberation in Zellweger fibroblasts was not due to an impairment of mitochondrial beta-oxidation and/or activation of C9 to C9-CoA derivative for subsequent beta-oxidation reaction, but rather, appeared to be due to the specific defect of peroxisomal beta-oxidation system. These results indicate that C9 is a useful substrate for the estimation of peroxisomal beta-oxidation activity in cultured human skin fibroblasts.
Collapse
Affiliation(s)
- H Suzuki
- Department of Clinical Biochemistry, Tokyo College of Pharmacy, Japan
| | | | | | | |
Collapse
|