1
|
Ricciardelli A, Pollio A, Costantini M, Zupo V. Harmful and beneficial properties of cyanotoxins: Two sides of the same coin. Biotechnol Adv 2023; 68:108235. [PMID: 37567398 DOI: 10.1016/j.biotechadv.2023.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Cyanotoxins are by definition "harmful agents" produced by cyanobacteria. Their toxicity has been extensively studied and reviewed over the years. Cyanotoxins have been commonly classified, based on their poisonous effects on mammals, into three main classes, neurotoxins, hepatotoxins and dermatotoxins, and, considering their chemical features, mainly identified as peptides, alkaloids and lipopolysaccharides. Here we propose a broader subdivision of cyanotoxins into eight distinct classes, taking into account their molecular structures, biosynthesis and modes of action: alkaloids, non-ribosomal peptides, polyketides, non-protein amino acids, indole alkaloids, organophosphates, lipopeptides and lipoglycans. For each class, the structures and primary mechanisms of toxicity of the main representative cyanotoxins are reported. Despite their powerful biological activities, only recently scientists have considered the biotechnological potential of cyanotoxins, and their applications both in medical and in industrial settings, even if only a few of these have reached the biotech market. In this perspective, we discuss the potential uses of cyanotoxins as anticancer, antimicrobial, and biocidal agents, as common applications for cytotoxic compounds. Furthermore, taking into account their mechanisms of action, we describe peculiar potential bioactivities for several cyanotoxin classes, such as local anaesthetics, antithrombotics, neuroplasticity promoters, immunomodulating and antifouling agents. In this review, we aim to stimulate research on the potential beneficial roles of cyanotoxins, which require interdisciplinary cooperation to facilitate the discovery of innovative biotechnologies.
Collapse
Affiliation(s)
- Annarita Ricciardelli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthìa, 80125 Naples, Italy.
| | - Antonino Pollio
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthìa, 80125 Naples, Italy.
| | - Maria Costantini
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy.
| | - Valerio Zupo
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Ischia Marine Centre, Punta San Pietro, 80077 Naples, Italy.
| |
Collapse
|
2
|
Jacinavicius FR, Valverde Campos TG, Passos LS, Pinto E, Geraldes V. A rapid LC-MS/MS method for multi-class identification and quantification of cyanotoxins. Toxicon 2023; 234:107282. [PMID: 37678578 DOI: 10.1016/j.toxicon.2023.107282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Cyanobacteria can form harmful blooms in specific environmental conditions due to certain species producing toxic metabolites known as cyanotoxins. These toxins pose significant risks to public health and the environment, making it critical to identify and quantify them in food and water sources to avoid contamination. However, current screening methods only focus on a single class of cyanotoxins, limiting their effectiveness. Thus, fast and sensitive liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed to analyze eighteen cyanotoxins simultaneously. A simplified extraction procedure using lyophilized samples of cyanobacterial biomass was also used, eliminating the need for traditional solid-phase extraction methods. This method uses multiple reaction monitoring and allows accurate determination and quantification of eighteen cyanotoxins, including anatoxin-a, homoanatoxin-a, cylindrospermopsin, deoxy-cylindrospermopsin, nodularin, guanitoxin, seven microcystins (RR, [D-Asp3] RR, LA, LR, LY, LW, and YR), and five saxitoxins (gonyautoxins - GTX-1&4, GTX-2&3, GTX-5), decarbamoylgonyautoxin (dcGTX-2&3), and N-Sulfocarbamoylgonyautoxin (C1&C2), all in a short acquisition time of 8 min. Therefore, this method provides a simple and efficient approach to identify and quantify harmful compounds produced by cyanobacteria. Hence, this represents the first method to detecting guanitoxin among cyanotoxins. By expanding the range of toxins analyzed, this method can help ensure high-quality food and drinking water and protect recreational users from exposure to cyanotoxins.
Collapse
Affiliation(s)
- Fernanda Rios Jacinavicius
- Laboratory of Toxins and Natural Algae Products, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Larissa Souza Passos
- Laboratory of Environmental Biogeochemistry, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Ernani Pinto
- Laboratory of Toxins and Natural Algae Products, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Environmental Biogeochemistry, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil; Center for Carbon Research in Tropical Agriculture (CCARBON - CEPID), University of São Paulo, São Paulo, Brazil.
| | - Vanessa Geraldes
- Laboratory of Toxins and Natural Algae Products, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Environmental Biogeochemistry, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
3
|
Confirmation Using Triple Quadrupole and High-Resolution Mass Spectrometry of a Fatal Canine Neurotoxicosis following Exposure to Anatoxins at an Inland Reservoir. Toxins (Basel) 2022; 14:toxins14110804. [PMID: 36422978 PMCID: PMC9696769 DOI: 10.3390/toxins14110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Cyanobacterial blooms are often associated with the presence of harmful natural compounds which can cause adverse health effects in both humans and animals. One family of these compounds, known as anatoxins, have been linked to the rapid deaths of cattle and dogs through neurotoxicological action. Here, we report the findings resulting from the death of a dog at a freshwater reservoir in SW England. Poisoning was rapid following exposure to material at the side of the lake. Clinical signs included neurological distress, diaphragmatic paralysis and asphyxia prior to death after 45 min of exposure. Analysis by HILIC-MS/MS of urine and stomach content samples from the dog revealed the detection of anatoxin-a and dihydroanatoxin-a in both samples with higher concentrations of the latter quantified in both matrices. Detection and quantitative accuracy was further confirmed with use of accurate mass LC-HRMS. Additional anatoxin analogues were also detected by LC-HRMS, including 4-keto anatoxin-a, 4-keto-homo anatoxin-a, expoxy anatoxin-a and epoxy homo anatoxin-a. The conclusion of neurotoxicosis was confirmed with the use of two independent analytical methods showing positive detection and significantly high quantified concentrations of these neurotoxins in clinical samples. Together with the clinical signs observed, we have confirmed that anatoxins were responsible for the rapid death of the dog in this case.
Collapse
|
4
|
Colas S, Marie B, Lance E, Quiblier C, Tricoire-Leignel H, Mattei C. Anatoxin-a: Overview on a harmful cyanobacterial neurotoxin from the environmental scale to the molecular target. ENVIRONMENTAL RESEARCH 2021; 193:110590. [PMID: 33307089 DOI: 10.1016/j.envres.2020.110590] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Anatoxin-a (ATX-a) is a neurotoxic alkaloid, produced by several freshwater planktonic and benthic cyanobacteria (CB). Such CB have posed human and animal health issues for several years, as this toxin is able to cause neurologic symptoms in humans following food poisoning and death in wild and domestic animals. Different episodes of animal intoxication have incriminated ATX-a worldwide, as confirmed by the presence of ATX-a-producing CB in the consumed water or biofilm, or the observation of neurotoxic symptoms, which match experimental toxicity in vivo. Regarding toxicity parameters, toxicokinetics knowledge is currently incomplete and needs to be improved. The toxin can passively cross biological membranes and act rapidly on nicotinic receptors, its main molecular target. In vivo and in vitro acute effects of ATX-a have been studied and make possible to draw its mode of action, highlighting its deleterious effects on the nervous systems and its effectors, namely muscles, heart and vessels, and the respiratory apparatus. However, very little is known about its putative chronic toxicity. This review updates available data on ATX-a, from the ecodynamic of the toxin to its physiological and molecular targets.
Collapse
Affiliation(s)
- Simon Colas
- UMR 7245 CNRS/MNHN "Molécules de Communication et Adaptations des Micro-organismes", Muséum National d'Histoire Naturelle, Paris, France; Mitochondrial and Cardiovascular Pathophysiology - MITOVASC, UMR CNRS 6015, INSERM U1083, UBL/Angers University, Angers, France
| | - Benjamin Marie
- UMR 7245 CNRS/MNHN "Molécules de Communication et Adaptations des Micro-organismes", Muséum National d'Histoire Naturelle, Paris, France
| | - Emilie Lance
- UMR 7245 CNRS/MNHN "Molécules de Communication et Adaptations des Micro-organismes", Muséum National d'Histoire Naturelle, Paris, France
| | - Catherine Quiblier
- UMR 7245 CNRS/MNHN "Molécules de Communication et Adaptations des Micro-organismes", Muséum National d'Histoire Naturelle, Paris, France; Université de Paris - Paris Diderot, 5 rue Thomas Mann, Paris, France
| | - Hélène Tricoire-Leignel
- Mitochondrial and Cardiovascular Pathophysiology - MITOVASC, UMR CNRS 6015, INSERM U1083, UBL/Angers University, Angers, France.
| | - César Mattei
- Mitochondrial and Cardiovascular Pathophysiology - MITOVASC, UMR CNRS 6015, INSERM U1083, UBL/Angers University, Angers, France.
| |
Collapse
|
5
|
Kust A, Méjean A, Ploux O. Biosynthesis of Anatoxins in Cyanobacteria: Identification of the Carboxy-anatoxins as the Penultimate Biosynthetic Intermediates. JOURNAL OF NATURAL PRODUCTS 2020; 83:142-151. [PMID: 31899634 DOI: 10.1021/acs.jnatprod.9b01121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Anatoxin-a, homoanatoxin-a, and dihydroanatoxin-a are potent cyanobacterial neurotoxins. They are biosynthesized in cyanobacteria from proline and acetate by a pathway involving three polyketide synthases. We report the identification of carboxy-anatoxin-a, carboxy-homoanatoxin-a, and carboxy-dihydroanatoxin-a in acidic extracts of Cuspidothrix issatschenkoi CHARLIE-1, Oscillatoria sp. PCC 6506, and Cylindrospermum stagnale PCC 7417, respectively, using liquid chromatography coupled to mass spectrometry. The structure of these carboxy derivatives was confirmed by mass spectrometry and by isotopic incorporation experiments using labeled proline and acetate. Each of these three cyanobacteria only produce one carboxy-anatoxin, suggesting that these metabolites are the product of the hydrolysis by AnaA, the type II thioesterase, of the thioesters bound to AnaG, the last polyketide synthase of the pathway. By measuring the rate of isotopic incorporation of labeled proline into carboxy-homoanatoxin-a and homoanatoxin-a produced by Oscillatoria sp. PCC 6506, we show that carboxy-homoanatoxin-a is the intracellular precursor of homoanatoxin-a, and that homoanatoxin-a is then excreted into the extracellular medium. The transformation of carboxy-homoanatoxin-a into homoanatoxin-a is a very slow two-step process, with accumulation of carboxy-homoanatoxin-a, suggesting that the decarboxylation is spontaneous and not enzymatically catalyzed. However, an unidentified and extracellular catalyst accelerates the decarboxylation when the cell extracts are prepared at neutral pH.
Collapse
Affiliation(s)
- Andreja Kust
- LIED, UMR 8236 CNRS , Université Paris Diderot , 75205 Paris Cedex 13, France
- The Czech Academy of Sciences, Biology Centre , Institute of Hydrobiology , 370 05 České Budějovice , Czech Republic
- Institute of Microbiology CAS, Center Algatech , 37981 Třeboň , Czech Republic
| | - Annick Méjean
- LIED, UMR 8236 CNRS , Université Paris Diderot , 75205 Paris Cedex 13, France
| | - Olivier Ploux
- LIED, UMR 8236 CNRS , Université Paris Diderot , 75205 Paris Cedex 13, France
- Chimie ParisTech, PSL , 75005 Paris , France
| |
Collapse
|
6
|
The Diversity of Cyanobacterial Toxins on Structural Characterization, Distribution and Identification: A Systematic Review. Toxins (Basel) 2019; 11:toxins11090530. [PMID: 31547379 PMCID: PMC6784007 DOI: 10.3390/toxins11090530] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 11/19/2022] Open
Abstract
The widespread distribution of cyanobacteria in the aquatic environment is increasing the risk of water pollution caused by cyanotoxins, which poses a serious threat to human health. However, the structural characterization, distribution and identification techniques of cyanotoxins have not been comprehensively reviewed in previous studies. This paper aims to elaborate the existing information systematically on the diversity of cyanotoxins to identify valuable research avenues. According to the chemical structure, cyanotoxins are mainly classified into cyclic peptides, alkaloids, lipopeptides, nonprotein amino acids and lipoglycans. In terms of global distribution, the amount of cyanotoxins are unbalanced in different areas. The diversity of cyanotoxins is more obviously found in many developed countries than that in undeveloped countries. Moreover, the threat of cyanotoxins has promoted the development of identification and detection technology. Many emerging methods have been developed to detect cyanotoxins in the environment. This communication provides a comprehensive review of the diversity of cyanotoxins, and the detection and identification technology was discussed. This detailed information will be a valuable resource for identifying the various types of cyanotoxins which threaten the environment of different areas. The ability to accurately identify specific cyanotoxins is an obvious and essential aspect of cyanobacterial research.
Collapse
|
7
|
Abstract
Cyanobacteria, formerly called ”blue-green algae“, are simple, primitive photosynthetic microorganism wide occurrence in fresh, brackish and salt waters. Forty different genera ofCyanobacteriaare known and many of them are producers of potent toxins responsible for a wide array of human illnesses, aquatic mammal and bird morbidity and mortality, and extensive fish kills. These cyanotoxins act as neurotoxins or hepatotoxins and are structurally and functionally diverse, and many are derived from unique biosynthetic pathways. All known cyanotoxins and their chemical and toxicological characteristics are presented in this article.
Collapse
|
8
|
Cullen A, Pearson LA, Mazmouz R, Liu T, Soeriyadi AH, Ongley SE, Neilan BA. Heterologous expression and biochemical characterisation of cyanotoxin biosynthesis pathways. Nat Prod Rep 2019; 36:1117-1136. [DOI: 10.1039/c8np00063h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses cyanotoxin biosynthetic pathways and highlights the heterologous expression and biochemical studies used to characterise them.
Collapse
Affiliation(s)
- Alescia Cullen
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Leanne A. Pearson
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Rabia Mazmouz
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Tianzhe Liu
- School of Biotechnology and Biomolecular Sciences
- The University of New South Wales
- Sydney 2052
- Australia
| | - Angela H. Soeriyadi
- School of Biotechnology and Biomolecular Sciences
- The University of New South Wales
- Sydney 2052
- Australia
| | - Sarah E. Ongley
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Brett A. Neilan
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| |
Collapse
|
9
|
A unified approach to the synthesis of both enantiomers of anatoxin-a and homoanatoxin-a cyanotoxins. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Shi Y, Wang Q, Gao S. Recent advances in the intramolecular Mannich reaction in natural products total synthesis. Org Chem Front 2018. [DOI: 10.1039/c7qo01079f] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review focuses on selected applications of the intramolecular Mannich reaction as a key step in the total synthesis of natural products (2000–2017).
Collapse
Affiliation(s)
- Yingbo Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- China
| | - Qiaoling Wang
- East China Normal University Library
- Shanghai 200062
- China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
| |
Collapse
|
11
|
Mello FD, Braidy N, Marçal H, Guillemin G, Nabavi SM, Neilan BA. Mechanisms and Effects Posed by Neurotoxic Products of Cyanobacteria/Microbial Eukaryotes/Dinoflagellates in Algae Blooms: a Review. Neurotox Res 2017; 33:153-167. [PMID: 28836116 DOI: 10.1007/s12640-017-9780-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Environmental toxins produced by cyanobacteria and dinoflagellates have increasingly become a public health concern due to their ability to damage several tissues in humans. In particular, emerging evidence has called attention to the neurodegenerative effects of the cyanobacterial toxin β-N-methylamino-L-alanine (BMAA). Furthermore, other toxins such as anatoxin, saxitoxin, microcystin, nodularin and ciguatoxin also have a different range of effects on human tissues, including hepatotoxicity, neurotoxicity and gastrointestinal irritation. However, the vast majority of known environmental toxins have not yet been examined in the context of neurodegenerative disease. This review aims to investigate whether neurotoxic mechanisms can be demonstrated in all aforementioned toxins, and whether there exists a link to neurodegeneration. Management of toxin exposure and potential neuroprotective compounds is also discussed. Collectively, all aforementioned microbial toxins are likely to exert some form of neuronal damage, with many of their modes of action consistent with neurodegeneration. This is important in advancing our current understanding of the cytotoxic potential of environmental toxins upon human brain function, particularly in the context of age-related neurodegenerative disease.
Collapse
Affiliation(s)
- Fiona D Mello
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Helder Marçal
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Gilles Guillemin
- Neuropharmacology group, MND and Neurodegenerative diseases Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
12
|
Rodgers KJ, Main BJ, Samardzic K. Cyanobacterial Neurotoxins: Their Occurrence and Mechanisms of Toxicity. Neurotox Res 2017; 33:168-177. [DOI: 10.1007/s12640-017-9757-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
|
13
|
Miller TR, Beversdorf LJ, Weirich CA, Bartlett SL. Cyanobacterial Toxins of the Laurentian Great Lakes, Their Toxicological Effects, and Numerical Limits in Drinking Water. Mar Drugs 2017; 15:E160. [PMID: 28574457 PMCID: PMC5484110 DOI: 10.3390/md15060160] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/22/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are ubiquitous phototrophic bacteria that inhabit diverse environments across the planet. Seasonally, they dominate many eutrophic lakes impacted by excess nitrogen (N) and phosphorus (P) forming dense accumulations of biomass known as cyanobacterial harmful algal blooms or cyanoHABs. Their dominance in eutrophic lakes is attributed to a variety of unique adaptations including N and P concentrating mechanisms, N₂ fixation, colony formation that inhibits predation, vertical movement via gas vesicles, and the production of toxic or otherwise bioactive molecules. While some of these molecules have been explored for their medicinal benefits, others are potent toxins harmful to humans, animals, and other wildlife known as cyanotoxins. In humans these cyanotoxins affect various tissues, including the liver, central and peripheral nervous system, kidneys, and reproductive organs among others. They induce acute effects at low doses in the parts-per-billion range and some are tumor promoters linked to chronic diseases such as liver and colorectal cancer. The occurrence of cyanoHABs and cyanotoxins in lakes presents challenges for maintaining safe recreational aquatic environments and the production of potable drinking water. CyanoHABs are a growing problem in the North American (Laurentian) Great Lakes basin. This review summarizes information on the occurrence of cyanoHABs in the Great Lakes, toxicological effects of cyanotoxins, and appropriate numerical limits on cyanotoxins in finished drinking water.
Collapse
Affiliation(s)
- Todd R Miller
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Lucas J Beversdorf
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Chelsea A Weirich
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Sarah L Bartlett
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| |
Collapse
|
14
|
Rodriguez I, Fraga M, Alfonso A, Guillebault D, Medlin L, Baudart J, Jacob P, Helmi K, Meyer T, Breitenbach U, Holden NM, Boots B, Spurio R, Cimarelli L, Mancini L, Marcheggiani S, Albay M, Akcaalan R, Köker L, Botana LM. Monitoring of freshwater toxins in European environmental waters by using novel multi-detection methods. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:645-654. [PMID: 27505279 DOI: 10.1002/etc.3577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/04/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
Monitoring the quality of freshwater is an important issue for public health. In the context of the European project μAqua, 150 samples were collected from several waters in France, Germany, Ireland, Italy, and Turkey for 2 yr. These samples were analyzed using 2 multitoxin detection methods previously developed: a microsphere-based method coupled to flow-cytometry, and an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. The presence of microcystins, nodularin, domoic acid, cylindrospermopsin, and several analogues of anatoxin-a (ATX-a) was monitored. No traces of cylindrospermopsin or domoic acid were found in any of the environmental samples. Microcystin-LR and microcystin-RR were detected in 2 samples from Turkey and Germany. In the case of ATX-a derivatives, 75% of samples contained mainly H2 -ATX-a and small amounts of H2 -homoanatoxin-a, whereas ATX-a and homoanatoxin-a were found in only 1 sample. These results confirm the presence and wide distribution of dihydro derivatives of ATX-a toxins in European freshwaters. Environ Toxicol Chem 2017;36:645-654. © 2016 SETAC.
Collapse
Affiliation(s)
- Ines Rodriguez
- Department of Pharmacology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain
| | - Maria Fraga
- Department of Pharmacology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain
| | | | - Linda Medlin
- Microbia Environnement, Observatoire Océanologique, France
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, Centre National de la Recherché Scientifique, Observatoire Océanologique Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Julia Baudart
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, Centre National de la Recherché Scientifique, Observatoire Océanologique Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Pauline Jacob
- Centre de Recherche de Saint Maurice, Veolia Recherche et Innovation Immeuble le Dufy, St. Maurice, France
| | - Karim Helmi
- Centre de Recherche de Saint Maurice, Veolia Recherche et Innovation Immeuble le Dufy, St. Maurice, France
| | - Thomas Meyer
- MariLim Aquatic Research, Schoenkirchen, Germany
| | | | - Nicholas M Holden
- School of Biosystems Engineering, Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Bas Boots
- School of Biosystems Engineering, Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Roberto Spurio
- Laboratory of Genetics, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Lucia Cimarelli
- Laboratory of Genetics, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Laura Mancini
- Environmental, Quality and Fishfarm Unit, Environment & Primary Prevention Department, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Marcheggiani
- Environmental, Quality and Fishfarm Unit, Environment & Primary Prevention Department, Istituto Superiore di Sanità, Rome, Italy
| | - Meric Albay
- Fisheries Faculty, Istanbul University, Istanbul, Turkey
| | | | - Latife Köker
- Fisheries Faculty, Istanbul University, Istanbul, Turkey
| | - Luis M Botana
- Department of Pharmacology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
15
|
Méjean A, Dalle K, Paci G, Bouchonnet S, Mann S, Pichon V, Ploux O. Dihydroanatoxin-a Is Biosynthesized from Proline in Cylindrospermum stagnale PCC 7417: Isotopic Incorporation Experiments and Mass Spectrometry Analysis. JOURNAL OF NATURAL PRODUCTS 2016; 79:1775-1782. [PMID: 27340731 DOI: 10.1021/acs.jnatprod.6b00189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
LC-MS and GC-MS analytical conditions have been developed to detect the cis- and trans-epimers (relative configuration of the carbon bearing the acetyl or propionyl group) of dihydroanatoxin-a and dihydrohomoanatoxin-a, in biological samples. These compounds epimerize under acidic conditions, yielding a major species that was tentatively assigned as the cis-epimer. Cylindrospermum stagnale PCC 7417 was definitively shown to produce dihydroanatoxin-a (1.2 mg/g dried cells). Oscillatoria sp. PCC 9107, Oscillatoria sp. PCC 6506, and C. stagnale PCC 7417, which produce anatoxin-a, homoanatoxin-a, and dihydroanatoxin-a, respectively, were cultivated in the presence of isotopically labeled proline, and the toxins were extracted. Interpretation of the GC-MS electron ionization mass spectra of these labeled anatoxins showed that they are all biosynthesized from proline and that the positions of the labels in these molecules are identical. These data and the fact that the ana cluster of genes is conserved in these cyanobacteria suggest that dihydroanatoxin-a is formed by the reduction of either anatoxin-a or its precursor in a specific step involving AnaK, an F420-dependent oxido-reductase whose gene is found in the ana gene cluster in C. stagnale PCC 7417. This is the first report of a cyanobacterium producing dihydroanatoxin-a, suggesting that other producers are present in the environment.
Collapse
Affiliation(s)
- Annick Méjean
- LIED, UMR 8236 CNRS, Université Paris Diderot , 75205 Paris Cedex 13, France
| | - Klervi Dalle
- LIED, UMR 8236 CNRS, Université Paris Diderot , 75205 Paris Cedex 13, France
| | - Guillaume Paci
- LIED, UMR 8236 CNRS, Université Paris Diderot , 75205 Paris Cedex 13, France
| | | | - Stéphane Mann
- MCAM, UMR 7245, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS , 75005 Paris, France
| | - Valérie Pichon
- LSABM CBI, UMR 8231 ESPCI ParisTech, CNRS, PSL Research University , 75005 Paris, France
| | - Olivier Ploux
- LIED, UMR 8236 CNRS, Université Paris Diderot , 75205 Paris Cedex 13, France
- Chimie ParisTech, ENSCP , 75005 Paris, France
| |
Collapse
|
16
|
Pearson LA, Dittmann E, Mazmouz R, Ongley SE, D'Agostino PM, Neilan BA. The genetics, biosynthesis and regulation of toxic specialized metabolites of cyanobacteria. HARMFUL ALGAE 2016; 54:98-111. [PMID: 28073484 DOI: 10.1016/j.hal.2015.11.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/06/2015] [Indexed: 05/28/2023]
Abstract
The production of toxic metabolites by cyanobacterial blooms represents a significant threat to the health of humans and ecosystems worldwide. Here we summarize the current state of the knowledge regarding the genetics, biosynthesis and regulation of well-characterized cyanotoxins, including the microcystins, nodularin, cylindrospermopsin, saxitoxins and anatoxins, as well as the lesser-known marine toxins (e.g. lyngbyatoxin, aplysiatoxin, jamaicamides, barbamide, curacin, hectochlorin and apratoxins).
Collapse
Affiliation(s)
- Leanne A Pearson
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Elke Dittmann
- Institut für Biochemie und Biologie, Mikrobiologie, Universität Potsdam, Potsdam-Golm 14476, Germany
| | - Rabia Mazmouz
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Sarah E Ongley
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Paul M D'Agostino
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Brett A Neilan
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia.
| |
Collapse
|
17
|
Testai E, Scardala S, Vichi S, Buratti FM, Funari E. Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins. Crit Rev Toxicol 2016; 46:385-419. [PMID: 26923223 DOI: 10.3109/10408444.2015.1137865] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cyanobacteria are ubiquitous photosynthetic micro-organisms forming blooms and scums in surface water; among them some species can produce cyanotoxins giving rise to some concern for human health and animal life. To date, more than 65 cyanobacterial neurotoxins have been described, of which the most studied are the groups of anatoxins and saxitoxins (STXs), comprising many different variants. In freshwaters, the hepatotoxic microcystins represent the most frequently detected cyanotoxin: on this basis, it could appear that neurotoxins are less relevant, but the low frequency of detection may partially reflect an a priori choice of target analytes, the low method sensitivity and the lack of certified standards. Cyanobacterial neurotoxins target cholinergic synapses or voltage-gated ion channels, blocking skeletal and respiratory muscles, thus leading to death by respiratory failure. This review reports and analyzes the available literature data on environmental occurrence of cyanobacterial neurotoxic alkaloids, namely anatoxins and STXs, their biosynthesis, toxicology and epidemiology, derivation of guidance values and action limits. These data are used as the basis to assess the risk posed to human health, identify critical exposure scenarios and highlight the major data gaps and research needs.
Collapse
Affiliation(s)
- Emanuela Testai
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| | - Simona Scardala
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| | - Susanna Vichi
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| | - Franca M Buratti
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| | - Enzo Funari
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
18
|
Biosynthesis of anatoxin-a and analogues (anatoxins) in cyanobacteria. Toxicon 2014; 91:15-22. [PMID: 25108149 DOI: 10.1016/j.toxicon.2014.07.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/17/2014] [Accepted: 07/29/2014] [Indexed: 11/21/2022]
Abstract
Freshwater cyanobacteria produce secondary metabolites that are toxic to humans and animals, the so-called cyanotoxins. Among them, anatoxin-a and homoanatoxin-a are potent neurotoxins that are agonists of the nicotinic acetylcholine receptor. These alkaloids provoke a rapid death if ingested at low doses. Recently, the cluster of genes responsible for the biosynthesis of these toxins, the ana cluster, has been identified in Oscillatoria sp. PCC 6506, and a biosynthetic pathway was proposed. This biosynthesis was reconstituted in vitro using purified enzymes confirming the predicted pathway. One of the enzymes, AnaB a prolyl-acyl carrier protein oxidase, was crystallized and its three dimensional structure solved confirming its reaction mechanism. Three other ana clusters have now been identified and sequenced in other cyanobacteria. These clusters show similarities and some differences suggesting a common evolutionary origin. In particular, the cluster from Cylindrospermum stagnale PCC 7417, possesses an extra gene coding for an F420-dependent oxidoreductase that is likely involved in the biosynthesis of dihydroanatoxin-a. This review summarizes all these new data and discusses them in relation to the production of anatoxins in the environment.
Collapse
|
19
|
Corbel S, Mougin C, Bouaïcha N. Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. CHEMOSPHERE 2014; 96:1-15. [PMID: 24012139 DOI: 10.1016/j.chemosphere.2013.07.056] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/15/2013] [Accepted: 07/23/2013] [Indexed: 05/26/2023]
Abstract
The occurrence of harmful cyanobacterial blooms in surface waters is often accompanied by the production of a variety of cyanotoxins. These toxins are designed to target in humans and animals specific organs on which they act: hepatotoxins (liver), neurotoxins (nervous system), cytotoxic alkaloids, and dermatotoxins (skin), but they often have important side effects too. When introduced into the soil ecosystem by spray irrigation of crops they may affect the same molecular pathways in plants having identical or similar target organs, tissues, cells or biomolecules. There are also several indications that terrestrial plants, including food crop plants, can bioaccumulate cyanotoxins and present, therefore, potential health hazards for human and animals. The number of publications concerned with phytotoxic effects of cyanotoxins on agricultural plants has increased recently. In this review, we first examine different cyanotoxins and their modes of actions in humans and mammals and occurrence of target biomolecules in vegetable organisms. Then we present environmental concentrations of cyanotoxins in freshwaters and their fate in aquatic and soil ecosystems. Finally, we highlight bioaccumulation of cyanotoxins in plants used for feed and food and its consequences on animals and human health. Overall, our review shows that the information on the effects of cyanotoxins on non-target organisms in the terrestrial environment is particularly scarce, and that there are still serious gaps in the knowledge about the fate in the soil ecosystems and phytotoxicity of these toxins.
Collapse
|
20
|
Sanchez JA, Otero P, Alfonso A, Ramos V, Vasconcelos V, Aráoz R, Molgó J, Vieytes MR, Botana LM. Detection of anatoxin-a and three analogs in Anabaena spp. cultures: new fluorescence polarization assay and toxin profile by LC-MS/MS. Toxins (Basel) 2014; 6:402-15. [PMID: 24469431 PMCID: PMC3942742 DOI: 10.3390/toxins6020402] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/23/2013] [Accepted: 01/09/2014] [Indexed: 11/16/2022] Open
Abstract
Anatoxin-a (ATX) is a potent neurotoxin produced by several species of Anabaena spp. Cyanobacteria blooms around the world have been increasing in recent years; therefore, it is urgent to develop sensitive techniques that unequivocally confirm the presence of these toxins in fresh water and cyanobacterial samples. In addition, the identification of different ATX analogues is essential to later determine its toxicity. In this paper we designed a fluorescent polarization (FP) method to detect ATXs in water samples. A nicotinic acetylcholine receptor (nAChR) labeled with a fluorescein derivative was used to develop this assay. Data showed a direct relationship between the amount of toxin in a sample and the changes in the polarization degree of the emitted light by the labeled nAChR, indicating an interaction between the two molecules. This method was used to measure the amount of ATX in three Anabaena spp. cultures. Results indicate that it is a good method to show ATXs presence in algal samples. In order to check the toxin profile of Anabaena cultures a LC-MS/MS method was also developed. Within this new method, ATX-a, retention time (RT) 5 min, and three other molecules with a mass m/z 180.1 eluting at 4.14 min, 5.90 min and 7.14 min with MS/MS spectra characteristic of ATX toxin group not previously identified were detected in the Anabaena spp. cultures. These ATX analogues may have an important role in the toxicity of the sample.
Collapse
Affiliation(s)
- Jon A Sanchez
- Department of Pharmacology, Veterinary School, University of Santiago de Compostela, Lugo 27002, Spain.
| | - Paz Otero
- Department of Pharmacology, Veterinary School, University of Santiago de Compostela, Lugo 27002, Spain.
| | - Amparo Alfonso
- Department of Pharmacology, Veterinary School, University of Santiago de Compostela, Lugo 27002, Spain.
| | - Vitor Ramos
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4619-007, Portugal.
| | - Vitor Vasconcelos
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4619-007, Portugal.
| | - Romulo Aráoz
- CNRS, Institut de Neurobiologie Alfred Fessard-FRC2118, Laboratoire de Neurobiologie et Développement-UPR3294, 1 Avenue de la Terrasse, Gif sur Yvette Cedex 91198, France.
| | - Jordi Molgó
- CNRS, Institut de Neurobiologie Alfred Fessard-FRC2118, Laboratoire de Neurobiologie et Développement-UPR3294, 1 Avenue de la Terrasse, Gif sur Yvette Cedex 91198, France.
| | - Mercedes R Vieytes
- Department of Physiology, Veterinary School, University of Santiago de Compostela, Lugo 27002, Spain.
| | - Luis M Botana
- Department of Pharmacology, Veterinary School, University of Santiago de Compostela, Lugo 27002, Spain.
| |
Collapse
|
21
|
|
22
|
Neurotoxic cyanobacterial toxins. Toxicon 2010; 56:813-28. [DOI: 10.1016/j.toxicon.2009.07.036] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 11/19/2022]
|
23
|
Rastogi RP, Sinha RP. Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv 2009; 27:521-39. [DOI: 10.1016/j.biotechadv.2009.04.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/13/2009] [Accepted: 04/14/2009] [Indexed: 01/22/2023]
|
24
|
Roe SJ, Stockman RA. A two-directional approach to the anatoxin alkaloids: second synthesis of homoanatoxin and efficient synthesis of anatoxin-a. Chem Commun (Camb) 2008:3432-4. [DOI: 10.1039/b804304c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Osswald J, Rellán S, Gago A, Vasconcelos V. Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-a. ENVIRONMENT INTERNATIONAL 2007; 33:1070-89. [PMID: 17673293 DOI: 10.1016/j.envint.2007.06.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 06/06/2007] [Accepted: 06/13/2007] [Indexed: 05/16/2023]
Abstract
Freshwater resources are under stress due to naturally occurring conditions and human impacts. One of the consequences is the proliferation of cyanobacteria, microphytoplankton organisms that are capable to produce toxins called cyanotoxins. Anatoxin-a is one of the main cyanotoxins. It is a very potent neurotoxin that was already responsible for some animal fatalities. In this review we endeavor to divulgate much of the internationally published information about toxicology, occurrence and detection methods of anatoxin-a. Cyanobacteria generalities, anatoxin-a occurrence and production as well as anatoxin-a toxicology and its methods of detection are the aspects focused in this review. Remediation of anatoxin-a occurrence will be addressed with a public health perspective. Final remarks call the attention for some important gaps in the knowledge about this neurotoxin and its implication to public health. Alterations of aquatic ecosystems caused by anatoxin-a is also addressed. Although anatoxin-a is not the more frequent cyanotoxin worldwide, it has to be regarded as a health risk that can be fatal to terrestrial and aquatic organisms because of its high toxicity.
Collapse
Affiliation(s)
- Joana Osswald
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Rua dos Bragas, 289, 4050-123 Porto, Portugal.
| | | | | | | |
Collapse
|
26
|
Van Wagoner RM, Drummond AK, Wright JLC. Biogenetic Diversity of Cyanobacterial Metabolites. ADVANCES IN APPLIED MICROBIOLOGY 2007; 61:89-217. [PMID: 17448789 DOI: 10.1016/s0065-2164(06)61004-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ryan M Van Wagoner
- Center for Marine Science, University of North Carolina at Wilmington, Wilmington, NC 28409, USA
| | | | | |
Collapse
|
27
|
The Chemistry and Pharmacology of Anatoxin-a and Related Homotropanes with respect to Nicotinic Acetylcholine Receptors. Mar Drugs 2006. [DOI: 10.3390/md403228] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Daly JW. Nicotinic agonists, antagonists, and modulators from natural sources. Cell Mol Neurobiol 2005; 25:513-52. [PMID: 16075378 DOI: 10.1007/s10571-005-3968-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 04/14/2004] [Indexed: 10/25/2022]
Abstract
1. Acetylcholine receptors were initially defined as nicotinic or muscarinic, based on selective activation by two natural products, nicotine and muscarine. Several further nicotinic agonists have been discovered from natural sources, including cytisine, anatoxin, ferruginine, anabaseine, epibatidine, and epiquinamide. These have provided lead structures for the design of a wide range of synthetic agents. 2. Natural sources have also provided competitive nicotinic antagonists, such as the Erythrina alkaloids, the tubocurarines, and methyllycaconitine. Noncompetitive antagonists, such as the histrionicotoxins, various izidines, decahydroquinolines, spiropyrrolizidine oximes, pseudophrynamines, ibogaine, strychnine, cocaine, and sparteine have come from natural sources. Finally, galanthamine, codeine, and ivermectin represent positive modulators of nicotinic function, derived from natural sources. 3. Clearly, research on acetylcholine receptors and functions has been dependent on key natural products and the synthetic agents that they inspired.
Collapse
Affiliation(s)
- John W Daly
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892, USA.
| |
Collapse
|
29
|
Wiegand C, Pflugmacher S. Ecotoxicological effects of selected cyanobacterial secondary metabolites: a short review. Toxicol Appl Pharmacol 2005; 203:201-18. [PMID: 15737675 DOI: 10.1016/j.taap.2004.11.002] [Citation(s) in RCA: 342] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 11/02/2004] [Indexed: 11/27/2022]
Abstract
Cyanobacteria are one of the most diverse groups of gram-negative photosynthetic prokaryotes. Many of them are able to produce a wide range of toxic secondary metabolites. These cyanobacterial toxins can be classified in five different groups: hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins (lipopolysaccharides). Cyanobacterial blooms are hazardous due to this production of secondary metabolites and endotoxins, which could be toxic to animals and plants. Many of the freshwater cyanobacterial blooms include species of the toxigenic genera Microcystis, Anabaena, or Plankthotrix. These compounds differ in mechanisms of uptake, affected organs, and molecular mode of action. In this review, the main focus is the aquatic environment and the effects of these toxins to the organisms living there. Some basic toxic mechanisms will be discussed in comparison to the mammalian system.
Collapse
Affiliation(s)
- C Wiegand
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany.
| | | |
Collapse
|
30
|
Furey A, Crowley J, Shuilleabhain AN, Skulberg OM, James KJ. The first identification of the rare cyanobacterial toxin, homoanatoxin-a, in Ireland. Toxicon 2003; 41:297-303. [PMID: 12565752 DOI: 10.1016/s0041-0101(02)00291-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The first identification of the rare cyanobacterial neurotoxin, homoanatoxin-a, in Ireland is reported. A sensitive fluorimetric liquid chromatographic (LC) method was applied to the analysis of homoanatoxin-a in the low microg/l range. The analysis of the anatoxins in water samples required weak cation exchange solid phase extraction, fluorimetric derivatisation with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), and isocratic reversed-phase LC. Confirmation of toxin identity was made using LC with electrospray mass spectrometry (MS) of the NBD-derivatised homoanatoxin-a as well as LC-MS/MS of the free toxin. Application of the fluorimetric LC protocol to examine cyanotoxins in 20 Irish lakes resulted in the detection of homoanatoxin-a at four locations, Lough Sillan (24 microg/l), Inniscarra Reservoir (34 microg/l), Lough Key (12 microg/l), Caragh Lake (1.4 microg/l). An improved procedure for the isolation of homoanatoxin-a from cyanobacteria was also developed and confirmation of homoanatoxin-a was achieved by chromatographic and mass spectral comparison with authentic toxin isolated from a laboratory clone culture of Planktothrix (formerly Oscillatoria) formosa.
Collapse
Affiliation(s)
- Ambrose Furey
- PROTEOBIO, Department of Chemistry, Mass Spectrometry Centre for Proteomics and Biotoxin Research, Cork Institute of Technology, Cork, Bishopstown, Ireland
| | | | | | | | | |
Collapse
|
31
|
Pita R, Anadón A, Martínez-Larrañaga MR. Neurotoxinas con actividad anticolinesterásica y su posible uso como agentes de guerra. Med Clin (Barc) 2003; 121:511-7. [PMID: 14588195 DOI: 10.1016/s0025-7753(03)74002-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Anatoxin-a(s), onchidal and fasciculins are neurotoxins with anticholinesterase activity. An intoxication by these neurotoxins is characterized by cholinergic syndromes similar to organophosphate insecticide and nerve agent intoxications. Anticholinesterase neurotoxins, as well as other toxins, have some disadvantages if used as weapons of mass destruction. Drawbacks include difficulties to produce them in big quantities and their dissemination in form of aerosols. However, other properties such as high toxicity, improbable identification with common commercial portable detectors for chemical warfare agents and toxic industrial chemicals, as well as the lack of effectiveness of antidotal treatments with oximes may make them attractive in order to be used in military operations or terrorist attacks. For these reasons, it should be necessary to control these neurotoxins through international treaties which have real verification measures such as the Chemical Weapons Convention.
Collapse
Affiliation(s)
- René Pita
- Escuela Militar de Defensa NBQ. Ministerio de Defensa. Hoyo de Manzanares. Madrid. España.
| | | | | |
Collapse
|
32
|
Furey A, Crowley J, Lehane M, James KJ. Liquid chromatography with electrospray ion-trap mass spectrometry for the determination of anatoxins in cyanobacteria and drinking water. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:583-588. [PMID: 12621621 DOI: 10.1002/rcm.932] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Anatoxin-a (AN) and homoanatoxin-a (HMAN) are potent neurotoxins produced by a number of cyanobacterial species. A new, sensitive liquid chromatography/multiple tandem mass spectrometry (LC/MS(n)) method has been developed for the determination of these neurotoxins. The LC system was coupled, via an electrospray ionisation (ESI) source, to an ion-trap mass spectrometer in positive ion mode. The [M+H](+) ions at m/z 166 (anatoxin-a) and m/z 180 (homoanatoxin-a) were used as the precursor ions for multiple MS experiments. MS(2)bond;MS(4) spectra displayed major fragment ions at m/z 149 (AN), 163 (HMAN), assigned to [Mbond;NH(3)+H](+); m/z 131 (AN), 145 (HMAN), assigned to [Mbond;NH(3)bond;H(2)O+H](+), and m/z 91 [C(7)H(7)](+). Although the chromatographic separation of these neurotoxins is problematic, reversed-phase LC, using a C(18) Luna column, proved successful. Calibration data for anatoxin-a using spiked water samples (10 mL) in LC/MS(n) modes were: LC/MS (25-1000 microg/L), r(2) = 0.998; LC/MS(2) (5-1000(microg/L), r(2) = 0.9993; LC/MS(3) (2.5-1000 microg/L), r(2) = 0.9997. Reproducibility data (% RSD, N = 3) for each LC/MS(n) mode ranged between 2.0 at 500 microg/L and 7.0 at 10 microg/L. The detection limit (S/N = 3) for AN was better than 0.03 ng (on-column) for LC/MS(3) which corresponded to 0.6 microg/L.
Collapse
Affiliation(s)
- Ambrose Furey
- PROTEOBIO, Mass Spectrometry Centre for Proteomics and Biotoxin Research, Department of Chemistry, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | | | | | | |
Collapse
|
33
|
Ruge Holte H, Eriksen S, Skulberg O, Aas P. The effect of water soluble cyanotoxin(s) produced by two species of Anabaena on the release of acetylcholine from the peripheral cholinergic nervous system of the rat airway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 1998; 5:51-59. [PMID: 21781850 DOI: 10.1016/s1382-6689(97)10007-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/1997] [Revised: 08/20/1997] [Accepted: 09/03/1997] [Indexed: 05/31/2023]
Abstract
A water extract of the lyophilised fresh-water alga Anabaena flos-aquae enhanced substantially the release of [(3)H]acetylcholine ([(3)H]acetylcholine and [(3)H]choline) from cholinergic nerves of rat bronchi. Parallel experiments performed with the related species Anabaena lemmermannii did not demonstrate this effect. The effect on the release of [(3)H]acetylcholine by A. flos-aquae extract was concentration dependent. The A. flos-aquae induced [(3)H]acetylcholine release was not reduced by exposure to a low concentration of Ca(2+), but ω-conotoxin GVIA (1.0 μM), a blocker of N-type Ca(2+) channels reduced the release of [(3)H]acetylcholine induced by the A. flos-aquae extract. Addition of verapamil in a concentration (1.0 μM) specific for inhibition of L-type Ca(2+) channels had no effect on the neurotransmitter release. A reduction in the release was, moreover, observed with the intracellular Ca(2+) chelator BAPTA/AM (30 μM) and with the Na(+) channel blocker tetrodotoxin (3.0 μM). During patch-clamp studies of GH(4)C(1) neuronal cells, which have L- and T-type Ca(2+) channels, but no Na(+) channels, it was shown that a water extract of A. flos-aquae depolarised these cells and reduced, rather than enhanced, the influx of Ca(2+). Such an effect was not seen following exposure of GH(4)C(1) cells to water extracts of A. lemmermannii. In addition to its presynaptic activity, the water extract of A. flos-aquae showed an antimuscarinic effect by displacing [(3)H]QNB binding from muscarinic receptors in homogenates of rat bronchi. A similar but more potent effect was observed during experiments with water extract of A. lemmermannii. None of the respective water extracts showed any effects on cholinesterase activities in rat bronchial smooth muscle. The present observations suggest, therefore, that water extracts of A. flos-aquae may depolarise cells by activation of mono and divalent cation channels in cholinergic nerve cells. These channels are probably Na(+) channels and N-type, but not L- or T-type Ca(2+) channels. L- and T-type Ca(2+) channels were blocked in experiments with GH(4)C(1) cells and high concentrations of Ca(2+) channel blockers were necessary to reduce the effects of A. flos-aquae extract in cholinergic nerves in the airways. Furthermore, A. flos-aquae extract may also mobilise Ca(2+) from intracellular compartments. A. lemmermannii, on the other hand, does not contain components which alter mono and divalent cation-fluxes across cell membranes, but may rather have substances with more potent antagonistic effects on muscarinic cholinergic receptors than what is observed in experiments with A. flos-aquae.
Collapse
Affiliation(s)
- H Ruge Holte
- Norwegian Defence Research Establishment, Division for Environmental Toxicology, P.O. Box 25, N-2007 Kjeller, Norway
| | | | | | | |
Collapse
|
34
|
Lilleheil G, Andersen RA, Skulberg OM, Alexander J. Effects of a homoanatoxin-a-containing extract from Oscillatoria formosa (Cyanophyceae/cyanobacteria) on neuromuscular transmission. Toxicon 1997; 35:1275-89. [PMID: 9278976 DOI: 10.1016/s0041-0101(97)00013-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Experimental investigations were carried out with cultured and lyophilized material of the toxigenic strain Oscillatoria NIVA-CYA 92. This organism is classified as Phormidium formosum (Boryex Gom.) Anagnet kom. Aqueous extracts of the algal material, containing the bioactive secondary amine alkaloid 2-(propan-1-oxo-1-yl)-9-azabicyclo(4,2,1)non-2ene (homoanatoxin-a) in an amount of 2.57 micrograms/mg lyophilized material, were tested for acute in vivo toxicity in mice, and for toxicity on neuromuscular transmission by means of electrophysiological methods on the isolated phrenic-nerve hemidiaphragm from rat and in the frog rectus abdominis assay. Acute toxic effects in mice were observed by i.p. and oral (by gavage) administration. Lethal doses were in the range 112-225 and 1125-2250 mg of freeze-dried algal material per kg body weight (i.e. 288-578 and 2890-5780 micrograms homoanatoxin-a/ kg body weight), respectively. The nerve-initiated muscle contractions in the rat diaphragm were blocked by about 0.125 mg cyanophyte material per ml bath solution (i.e. 0.32 microgram homoanatoxin-a/ml or 1.8 microM), but muscle contractions, although slightly reduced, could still be elicited by direct electrical stimulation of the muscle. The compound action potentials recorded from the main phrenic-nerve trunk were not affected. An additive blocking effect on partly curarized preparations was observed and cholinesterase inhibition by physostigmine (eserine) transiently augmented the muscle twitch contraction in preparations partly blocked by the extract. Intracellular recordings from single muscle fibers of homoanatoxin-a-treated rat hemidiaphragm disclosed a partial depolarization and a decrease in the endplate potential to subthreshold level simultaneously with a decrease and then complete disappearance of the miniature endplate potentials. The neuromuscular transmission block was reversed by washing. The extract produced muscle contractions in the frog rectus abdominis assay. Homoanatoxin-a in the algal material was readily absorbed from the gastrointestinal tract in mice. Blockade of the neuromuscular transmission of the respiratory muscle may partly explain the acute toxic effects observed in mice. Thus, the main target of the homoanatoxin-a action at the mammalian neuromuscular junction was traced to the postsynaptic nicotinic acetylcholine receptor channel complex, where it reduced the sensitivity to the transmitter substance.
Collapse
Affiliation(s)
- G Lilleheil
- National Institute of Public Health, Oslo, Norway
| | | | | | | |
Collapse
|
35
|
Aas P, Eriksen S, Kolderup J, Lundy P, Haugen JE, Skulberg OM, Fonnum F. Enhancement of acetylcholine release by homoanatoxin-a from Oscillatoria formosa. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 1996; 2:223-232. [PMID: 21781731 DOI: 10.1016/s1382-6689(96)00059-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/1996] [Revised: 06/13/1996] [Accepted: 06/28/1996] [Indexed: 05/31/2023]
Abstract
The strain NIVA-CYA 92 of Oscillatoria formosa Bory ex Gormont produces phycotoxins with neurotoxic properties. Chemical analysis by gas chromatography/mass spectrometry of a water extract of lyophilized material of the organism showed the presence of only homoanatoxin-a. The mechanism of action of homoanatoxin-a on peripheral cholinergic nerves is so far not known. The neurotoxicity of O. formosa containing homoanatoxin-a was investigated in rat bronchi, rat brain synaptosomes and in GH(4)C(1) cells. The water extract of lyophilized material of the organism produced a concentration-dependent reversible increase in the release of [(3)H]acetylcholine from both K(+) (51 mM) depolarised and non-depolarised cholinergic nerves of the rat bronchial smooth muscle. The K(+)-evoked release of [(3)H]acetylcholine was enhanced by about 75% by a water extract from 15-20 mg/ml of lyophilized algal material. The enhanced release of [(3)H]acetylcholine was substantially reduced by the L-type Ca(2+)-channel blocker verapamil (100 μM) and not by the N-type Ca(2+)-channel blocker ω-conotoxin GVIA (1.0 μM) or the P-type Ca(2+)-channel blocker ω-agatoxin IV-A (0.2 μM). Chelation of intra-cellular Ca(2+) by 1,2-bis-(aminofenoxi)etan-N,N,N',N'-tetraacidic acid/acetoxymethyl (BAPTA/AM) (30 μM) had no effect on the phycotoxin-induced release of [(3)H]acetylcholine, indicating that an extracellular pool of Ca(2+) was important for the action of the phycotoxin on the release of [(3)H]acetylcholine from peripheral cholinergic nerves. In rat brain synaptosomes the algal extract enhanced the influx of (45)Ca(2+) in a tetrodotoxin (1.0 μM) and ω-conotoxin MVIIC (blocker of N-, P- and Q-type Ca(2+) channels) (1.0 μM) insensitive manner. Patch-clamp studies showed that the phycotoxin opened endogenous voltage dependent L-type Ca(2+) channels in neuronal GH(4)C(1) cells. These Ca(2+) channels and the effect of the toxin on the channels were blocked by the L-type Ca(2+)-channel antagonist gallopamil (200 μM). The present results suggest, therefore, that the investigated strain of O. formosa contains homoanatoxin-a, which enhances the release of acetylcholine from peripheral cholinergic nerves through opening of endogenous voltage dependent neuronal L-type Ca(2-) channels.
Collapse
Affiliation(s)
- P Aas
- Norwegian Defence Research Establishment, Division for Environmental Toxicology, P.O. Box 25, N-2007 Kjeller, Norway
| | | | | | | | | | | | | |
Collapse
|
36
|
Holladay MW, Lebold SA, Lin NH. Structure - activity relationships of nicotinic acetylcholine receptor agonists as potential treatments for dementia. Drug Dev Res 1995. [DOI: 10.1002/ddr.430350402] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Manallack DT, Ellis DD, Thompson PE, Gallagher T, Livingstone DJ. Quantitative Structure-activity Relationships Of (+)-anatoxin-a Derivatives. ACTA ACUST UNITED AC 1994. [DOI: 10.1080/10575639408044923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Thomas P, Brough PA, Gallagher T, Wonnacott S. Alkyl-modified side chain variants of anatoxin-a: A series of potent nicotinic agonists. Drug Dev Res 1994. [DOI: 10.1002/ddr.430310210] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Sanderson EM, Drasdo AL, McCrea K, Wonnacott S. Upregulation of nicotinic receptors following continuous infusion of nicotine is brain-region-specific. Brain Res 1993; 617:349-52. [PMID: 8402163 DOI: 10.1016/0006-8993(93)91104-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rats receiving 4 mg nicotine/kg/day via implanted minipumps sustained plasma nicotine concentrations of 40 ng/ml throughout two weeks of nicotine infusion. Numbers of brain [3H]nicotine binding sites were increased by about 50% in cortex and hippocampus whereas numbers of [3H]nicotine binding sites in striatum were unaffected by nicotine treatment at either of the timepoints examined (7, 14 days). Cortical [125I] alpha-bungarotoxin and [3H]QNB binding sites were also unchanged. The regional selectivity of nicotinic receptor modulation may reflect the low dose of nicotine used and the mode of administration. The changes observed may be pertinent to the continuous administration of nicotine in man, via transdermal nicotine patches.
Collapse
|
40
|
Thomas P, Stephens M, Wilkie G, Amar M, Lunt GG, Whiting P, Gallagher T, Pereira E, Alkondon M, Albuquerque EX. (+)-Anatoxin-a is a potent agonist at neuronal nicotinic acetylcholine receptors. J Neurochem 1993; 60:2308-11. [PMID: 8492133 DOI: 10.1111/j.1471-4159.1993.tb03519.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of the nicotinic agonist (+)-anatoxin-a have been examined in four different preparations, representing at least two classes of neuronal nicotinic receptors. (+)-Anatoxin-a was most potent (EC50 = 48 nM) in stimulating 86Rb+ influx into M10 cells, which express the nicotinic receptor subtype comprising alpha 4 and beta 2 subunits. A presynaptic nicotinic receptor mediating acetylcholine release from hippocampal synaptosomes was similarly sensitive to (+)-anatoxin-a (EC50 = 140 nM). alpha-Bungarotoxin-sensitive neuronal nicotinic receptors, studied using patch-clamp recording techniques, required slightly higher concentrations of this alkaloid for activation: Nicotinic currents in hippocampal neurons were activated by (+)-anatoxin-a with an EC50 of 3.9 microM, whereas alpha 7 homooligomers reconstituted in Xenopus oocytes yielded an EC50 value of 0.58 microM for (+)-anatoxin-a. In these diverse preparations, (+)-anatoxin-a was between three and 50 times more potent than (-)-nicotine and approximately 20 times more potent than acetylcholine, making it the most efficacious nicotinic agonist thus far described.
Collapse
Affiliation(s)
- P Thomas
- Department of Biochemistry, University of Bath, England
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zotou A, Jefferies TM, Brough PA, Gallagher T. Determination of anatoxin-a and homoanatoxin in blue—green algal extracts by high-performance liquid chromatography and gas chromatography—mass spectrometry. Analyst 1993. [DOI: 10.1039/an9931800753] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|