1
|
Charest-Morin X, Roy C, Fernandes MJG, Marceau F. Pharmacological profile of a bifunctional ligand of the formyl peptide receptor1 fused to the myc epitope. Int Immunopharmacol 2015; 25:229-34. [PMID: 25681283 DOI: 10.1016/j.intimp.2015.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 11/24/2022]
Abstract
In human peripheral blood neutrophils or in myeloid PLB-985 cells differentiated towards a neutrophil-like phenotype, the peptide N-formyl-L-norleucyl-L-leucyl-L-phenylalanyl-L-norleucyl-L-tyrosyl-L-leucyl-fluorescein isothiocyanate (f-Nle-Leu-Phe-Nle-Tyr-Lys-FITC) binds to and activates formyl peptide receptor1 (FPR1) and is submitted to receptor-mediated endocytosis (microscopy, cytofluorometry). This peptide may be considered a C-terminally extended version of f-Met-Leu-Phe which carries a fluorescent cargo into cells. By analogy to other peptide hormones for which we have evaluated epitope-tagged agonists as carriers of antibody cargoes, we have designed and evaluated f-Nle-Leu-Phe-Nle-Tyr-Lys-myc, C-terminally extended with the 10-residue myc tag. This peptide is as potent as f-Met-Leu-Phe to compete for f-Nle-Leu-Phe-Nle-Tyr-Lys-FITC uptake by PLB-985 cells, but did not mediate (10-1000nM) the internalization of the fluorescent anti-myc monoclonal antibody 4A6 added to the extracellular fluid at ~7nM (microscopy). The nonfluorescent version of the antibody (28nM) acts as a pre-receptor antagonist of f-Nle-Leu-Phe-Nle-Tyr-Lys-myc, but not of f-Met-Leu-Phe (superoxide release assay in differentiated PLB-985 cells). A further prolonged analog, f-Nle-Leu-Phe-Nle-Tyr-Lys-(Asn-Gly)5-myc, designed to decrease the possible steric hindrance between FPR1 and the bound anti-myc antibody, has little affinity for the receptor, precluding a direct assessment of this issue. Thus, the relatively low-affinity anti-myc antibody used at a high concentration functionally behaves as a selective pre-receptor antagonist of the agonist f-Nle-Leu-Phe-Nle-Tyr-Lys-myc.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, QC, Canada, G1V 4G2
| | - Caroline Roy
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, QC, Canada, G1V 4G2
| | - Maria J G Fernandes
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, QC, Canada, G1V 4G2
| | - François Marceau
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, QC, Canada, G1V 4G2.
| |
Collapse
|
2
|
Láng J, Kőhidai L. Effects of the aquatic contaminant human pharmaceuticals and their mixtures on the proliferation and migratory responses of the bioindicator freshwater ciliate Tetrahymena. CHEMOSPHERE 2012; 89:592-601. [PMID: 22698373 DOI: 10.1016/j.chemosphere.2012.05.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/23/2012] [Accepted: 05/16/2012] [Indexed: 06/01/2023]
Abstract
An increasing attention is paid to the potential harmful effects of aquatic contaminant pharmaceuticals exerted on both biosystems and humans. In the present work the effects of 14 pharmaceuticals including NSAIDs, antibiotics, β-blockers and a frequently used X-ray contrast media on the proliferation and migratory behavior of the freshwater ciliate Tetrahymena pyriformis was investigated. Moreover, the mixture toxicity of four selected pharmaceuticals (diclofenac, ibuprofen, metoprolol and propranolol) was evaluated in binary mixtures using full factorial experimental design. Our results showed that the sensitivity of Tetrahymena to NSAIDs and β-blockers (EC(50) ranged from 4.8 mg L(-1) to 308.1 mg L(-1)) was comparable to that of algal or Daphnia bioassays. Based on these elevated EC(50) values acute toxic effects of these pharmaceuticals to T. pyriformis are unlikely. Antibiotics and the contrast agent sodium-diatrizoate had no proliferation inhibiting effect. Chemotactic response of Tetrahymena was more sensible than proliferation as significant chemorepellent action was observed in the environmentally realistic concentration range for acetylsalicylic acid, diclofenac, fenoprofen, paracetamol, metoprolol, propranolol, timolol and trimethoprim (Chemotaxis Index ranged from 63% to 88%). Mixture toxicity experiments resulted in a complex, concentration dependent interaction type pattern with antagonism being the predominant interaction type (59%) followed by additivity (37%) and synergism (4%). Hence the concept of concentration addition validated for NSAIDs in other organisms cannot be adopted for this ciliate. In summary authors suggest Tetrahymena as a sensible model of testing aquatic contaminants as well as underline the significance using more specific endpoints to understand the complex mechanisms investigated.
Collapse
Affiliation(s)
- Júlia Láng
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, H-1445 Budapest, Hungary.
| | | |
Collapse
|
3
|
Alper Y, Sprecher E, Bergman R, Birnbaum RF. Sweet's syndrome–like neutrophilic dermatosis resulting from exposure to a radiocontrast agent. J Am Acad Dermatol 2008; 58:488-9. [DOI: 10.1016/j.jaad.2006.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Dalpiaz A, Ferretti ME, Vertuani G, Traniello S, Scatturin A, Spisani S. C- and N-terminal residue effect on peptide derivatives' antagonism toward the formyl-peptide receptor. Eur J Pharmacol 2002; 436:187-96. [PMID: 11858798 DOI: 10.1016/s0014-2999(01)01627-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The biological action of several X-Phe-D-Leu-Phe-D-Leu-Z (X=3',5'-dimethylphenyl-ureido; Z=Phe, Lys, Glu, Tyr) analogues was analysed on human neutrophils to evaluate their ability to antagonize formyl-peptide receptors. X-Phe-D-Leu-Phe-D-Leu-Phe analogues obtained as C-terminal olo or amido derivatives and T-Phe-D-Leu-Phe-D-Leu-Phe analogues (T=thiazolyl-ureido) were also analysed. The activities of pentapeptide derivatives were compared with those of X-Phe-D-Leu-Phe-D-Leu-Phe chosen as reference antagonist. Our results demonstrate that X-Phe-D-Leu-Phe-D-Leu-Phe-olo, X-Phe-D-Leu-Phe-D-Leu-Glu and X-Phe-D-Leu-Phe-D-Leu-Tyr are more active antagonists than X-Phe-D-Leu-Phe-D-Leu-Phe. The presence of Lys (X-Phe-D-Leu-Phe-D-Leu-Lys) seems, instead, to inhibit the formyl-peptide receptor antagonist properties. The presence of the N-terminal thiazolyl-ureido group seems to considerably contribute to the receptor antagonist properties of T-Phe-D-Leu-Phe-D-Leu-Phe-OH. The introduction of the C-terminal methyl ester (T-Phe-D-Leu-Phe-D-Leu-Phe-OMe) or amido group (X-Phe-D-Leu-Phe-D-Leu-Phe-NH2) appears detrimental for the affinity and formyl-peptide receptor antagonist properties of the Phe-D-Leu-Phe-D-Leu-Phe derivatives. The examined peptides inhibit superoxide anion production and lysozyme release more efficaciously than neutrophil chemotaxis.
Collapse
Affiliation(s)
- Alessandro Dalpiaz
- Department of Pharmaceutical Sciences, Ferrara University, via Fossato di Mortara 19, 44100 Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Mizejewski GJ. Peptides as receptor ligand drugs and their relationship to G-coupled signal transduction. Expert Opin Investig Drugs 2001; 10:1063-73. [PMID: 11772235 DOI: 10.1517/13543784.10.6.1063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Peptides act as effector agents that regulate and/or mediate physiological processes, serving as hormones, neurotransmitters and signal transducing factors. The low molecular weight peptides affect receptor-mediated events, which influence cardiovascular, gastrointestinal and neurocranial systems. While some peptides have been marketed as drugs, many have served as leads or templates for the development of non-peptide drugs that mimic peptide actions. This review presents the advantages and disadvantages of using peptides as drugs that bind as ligands to cell-surface receptors and considers their applications in such events. The value of both the peptides and their mimics is based on their participation in the biomodulation of physiological processes, which frequently employ scaffolding proteins acting in a cascading sequence of protein-to-protein interactions. The peptides bind to G-coupled surface receptors to initiate a signal that is transduced to the interior of the cell through multiple layers of phosphorylating enzymes and binding proteins. Peptides have been further employed to identify the molecular targets of signal transduction, the uncoupling of which might provide a means for various disease therapies. The exploitation of such peptide-mediated signal pathways, which are of primary importance to tumour cells, may provide an attractive strategy for anticancer therapy in the future.
Collapse
Affiliation(s)
- G J Mizejewski
- Wadsworth Center, New York State Dept. of Health, Empire State Plaza, Albany, NY 12201, USA.
| |
Collapse
|
6
|
Dianzani C, Parrini M, Ferrara C, Fantozzi R. Effect of 4-hydroxynonenal on superoxide anion production from primed human neutrophils. Cell Biochem Funct 1996; 14:193-200. [PMID: 8888573 DOI: 10.1002/cbf.683] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
HNE (4-hydroxy-2,3-trans-nonenal), and aldehydic product of lipid peroxidation, has been reported to modulate different functional parameters of human and rat neutrophils (PMNs), such as chemiluminescence, migration and some enzymatic activities, thus exerting effects that varied according to the concentration tested. Experiments were done to evaluate the effects of HNE on superoxide anion (O2-) production from human PMNs, isolated from healthy volunteers. After having tested that HNE by itself was not able to activate the cells, comparisons were made between its effects on PMNs, stimulated by either a single stimulus, N-formyl-methionyl-leucyl-phenylalanine (FMLP), or a combination of stimuli, such as FMLP and the neuropeptide substance P (SP; primed PMNs). In the concentration range tested (10(-12) - 10(-4) M), HNE inhibited FMLP-evoked O2- production with an IC50 of 11.6 +/- 1.5 x 10(-6) M; at concentrations < or = 10(-6) M, HNE enhanced O2- production elicited by FMLP + SP, while higher concentrations were inhibitory. There was a bell-shaped dose-response curve to the enhancing effects of HNE, depending on the incubation time being recorded after only short periods (< or = 5 min) of the exposure of the cells to HNE; this was not shown by structurally-related aldehydes, such as 2-nonenal and nonanal. These results suggest that low concentrations of HNE may participate in the evolution of the inflammatory process, by contributing to the activation of PMNs. The effects of high concentrations of the aldehyde may represent a mechanism which contributes to the regulation of the extent of the inflammatory response.
Collapse
Affiliation(s)
- C Dianzani
- Institute of Pharmacology and Pharmacognosy, University of Turin, Italy
| | | | | | | |
Collapse
|
7
|
Drapeau G, Brochu S, Godin D, Levesque L, Rioux F, Marceau F. Synthetic C5a receptor agonists. Pharmacology, metabolism and in vivo cardiovascular and hematologic effects. Biochem Pharmacol 1993; 45:1289-99. [PMID: 8466549 DOI: 10.1016/0006-2952(93)90282-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recent investigations have produced novel compounds that act on the receptor for anaphylatoxin C5a. These products are C-terminal analogues of C5a, some of which are modified extensively. We have measured the receptor affinities of such analogues in a binding assay on human neutrophils (PMNs). We have also characterized their pharmacological profiles in vitro on the isolated rabbit portal vein and pulmonary artery, on superoxide release by PMNs as well as in vivo in the anesthetized rabbit (acute hypotensive and neutropenic effects). The metabolic resistance of these analogues was also evaluated in the presence of different peptidases. One of these compounds, MePhe-Lys-Pro-D-Cha-Phe-D-Arg, behaved as an antagonist on the release of superoxide by neutrophils while exerting agonist activity in all other assays. Its partial agonist status was documented in a receptor down-regulation experiment on PMNs where its activity was compared with those of recombinant C5a and of protamine which behaves as a competitive antagonist on these cells. Degradation studies indicated that the discrepancy between the affinity of certain analogues in vitro and their potency in vivo was probably linked to their metabolic stability.
Collapse
Affiliation(s)
- G Drapeau
- Centre de recherche (Université Laval), Hôtel-Dieu de Québec, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Valentino M, Monaco F, Pizzichini MA, Governa M. The Use of the Vitality and Chemotaxis of Human Polymorphonuclear Leukocytes for the In Vitro Estimation of the Acute Toxicity of the First Ten Chemicals from the MEIC List. Altern Lab Anim 1993. [DOI: 10.1177/026119299302100112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The acute cytotoxicity of the first ten MEIC chemicals has been estimated by others in various cell lines. In the present investigation, isolated human polymorphonuclear leukocytes (PMN) from ten healthy non-smoking laboratory personnel were used to assess in vitro toxicity of the same chemicals. The cells were treated with different concentrations of the respective chemicals for three hours and their vitality and chemotaxis were tested. Vitality was measured by fluorescence microscopy after the addition of fluorescein diacetate and ethidium bromide. Living cells which took up and hydrolysed fluorescein diacetate, and dead cells, stained by ethidium bromide, were counted and the percentage of live cells was calculated. Locomotion stimulated by the chemotactic peptide formyl-methionyl-leucyl-phenylalanine (F-MLP), was measured in blind-well Boyden chambers and a chemotactic index was calculated. The results were mathematically transformed to produce a linear curve, and then fitted by the linear least squares procedure, from which LC50 and IC50 values were obtained by interpolation. All the chemicals decreased the vitality and inhibited the chemotaxis of the PMN. Obviously the chemotactic test was more sensitive than the vitality one. A correlation (r = 0.933) was found between vitality and chemotaxis inhibition. Spearman rank correlation analysis revealed significant correlations between our results and those from in vitro experiments conducted in other laboratories, as well as with data concerning mouse, rat and human lethal doses.
Collapse
Affiliation(s)
- Matteo Valentino
- Institute of Occupational Medicine, University of Ancona, Torrette Hospital, 60020 Torrette di Ancona, Italy
| | - Francesca Monaco
- Institute of Occupational Medicine, University of Ancona, Torrette Hospital, 60020 Torrette di Ancona, Italy
| | - Maria Antonietta Pizzichini
- Institute of Occupational Medicine, University of Ancona, Torrette Hospital, 60020 Torrette di Ancona, Italy
| | - Mario Governa
- Institute of Occupational Medicine, University of Ancona, Torrette Hospital, 60020 Torrette di Ancona, Italy
| |
Collapse
|