1
|
Froyen EB, Barrantes GP. A Review of the Effects of Flavonoids on NAD(P)H Quinone Oxidoreductase 1 Expression and Activity. J Med Food 2025; 28:407-422. [PMID: 40097203 DOI: 10.1089/jmf.2023.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Cancer is a significant cause of death worldwide. It has been suggested that the consumption of flavonoids decreases the risk for cancer by increasing phase II enzymes, such as Nicotinamide Adenine Dinucleotide Phosphate Hydrogen (NAD(P)H) quinone oxidoreductase 1 (NQO1), glutathione S-transferases, and Uridine 5'-diphospho- (UDP)-glucuronosyltransferases that assist in removing carcinogens from the human body. Flavonoids are bioactive compounds found in a variety of dietary sources, including fruits, vegetables, legumes, nuts, and teas. As such, it is important to investigate which flavonoids are involved in the metabolism of carcinogens to help reduce the risk of cancer. Therefore, the objective of this narrative review was to investigate the effects of commonly consumed flavonoids on NQO1 mRNA expression, protein, and activity in human cell and murine models. PubMed was used to search for peer-reviewed journal articles, which demonstrated that selected flavonoids (e.g., quercetin, apigenin, luteolin, genistein, and daidzein) increase NQO1, and therefore, increase the excretion of carcinogens. However, more research is needed regarding the mechanisms by which flavonoids induce NQO1. Furthermore, it is suggested that future efforts focus on providing precise flavonoid recommendations to decrease the risk factors for chronic diseases.
Collapse
Affiliation(s)
- Erik B Froyen
- Department of Nutrition and Food Science, Huntley College of Agriculture, California State Polytechnic University, Pomona, California, USA
| | - Gianluis Pimentel Barrantes
- Department of Nutrition and Food Science, Huntley College of Agriculture, California State Polytechnic University, Pomona, California, USA
| |
Collapse
|
2
|
Barbosa BMG, Sfyaki A, Rafael S, José-Duran F, Pous J, Sánchez-Zarzalejo C, Perez-Lopez C, Vilanova M, Cigler M, Gay M, Vilaseca M, Winter GE, Riera A, Mayor-Ruiz C. Discovery and Mechanistic Elucidation of NQO1-Bioactivatable Small Molecules That Overcome Resistance to Degraders. Angew Chem Int Ed Engl 2024; 63:e202316730. [PMID: 38153885 DOI: 10.1002/anie.202316730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Degraders hold the promise to efficiently inactivate previously intractable disease-relevant targets. Unlike traditional inhibitors, degraders act substoichiometrically and rely on the hijacked proteolysis machinery, which can also act as an entry point for resistance. To fully harness the potential of targeted protein degradation, it is crucial to comprehend resistance mechanisms and formulate effective strategies to overcome them. We conducted a chemical screening to identify synthetic lethal vulnerabilities of cancer cells that exhibit widespread resistance to degraders. Comparative profiling followed by tailored optimization delivered the small molecule RBS-10, which shows preferential cytotoxicity against cells pan-resistant to degraders. Multiomics deconvolution of the mechanism of action revealed that RBS-10 acts as a prodrug bioactivated by the oxidoreductase enzyme NQO1, which is highly overexpressed in our resistance models. Collectively, our work informs on NQO1 as an actionable vulnerability to overcome resistance to degraders and as a biomarker to selectively exploit bioactivatable prodrugs in cancer.
Collapse
Affiliation(s)
- Bárbara M G Barbosa
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Aikaterini Sfyaki
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Sergi Rafael
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Ferran José-Duran
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Joan Pous
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Carolina Sánchez-Zarzalejo
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Carles Perez-Lopez
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Mar Vilanova
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Marko Cigler
- Research Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM), 1090, Vienna, Austria
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Georg E Winter
- Research Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM), 1090, Vienna, Austria
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Secció Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Cristina Mayor-Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| |
Collapse
|
3
|
Yuhan L, Khaleghi Ghadiri M, Gorji A. Impact of NQO1 dysregulation in CNS disorders. J Transl Med 2024; 22:4. [PMID: 38167027 PMCID: PMC10762857 DOI: 10.1186/s12967-023-04802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
NAD(P)H Quinone Dehydrogenase 1 (NQO1) plays a pivotal role in the regulation of neuronal function and synaptic plasticity, cellular adaptation to oxidative stress, neuroinflammatory and degenerative processes, and tumorigenesis in the central nervous system (CNS). Impairment of the NQO1 activity in the CNS can result in abnormal neurotransmitter release and clearance, increased oxidative stress, and aggravated cellular injury/death. Furthermore, it can cause disturbances in neural circuit function and synaptic neurotransmission. The abnormalities of NQO1 enzyme activity have been linked to the pathophysiological mechanisms of multiple neurological disorders, including Parkinson's disease, Alzheimer's disease, epilepsy, multiple sclerosis, cerebrovascular disease, traumatic brain injury, and brain malignancy. NQO1 contributes to various dimensions of tumorigenesis and treatment response in various brain tumors. The precise mechanisms through which abnormalities in NQO1 function contribute to these neurological disorders continue to be a subject of ongoing research. Building upon the existing knowledge, the present study reviews current investigations describing the role of NQO1 dysregulations in various neurological disorders. This study emphasizes the potential of NQO1 as a biomarker in diagnostic and prognostic approaches, as well as its suitability as a target for drug development strategies in neurological disorders.
Collapse
Affiliation(s)
- Li Yuhan
- Epilepsy Research Center, Münster University, Münster, Germany
- Department of Breast Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Ali Gorji
- Epilepsy Research Center, Münster University, Münster, Germany.
- Department of Neurosurgery, Münster University, Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Wang W, Cai J, Wong NK, Hong M, Deng J, Jin L, Ran Y, Zhang Y, Zhou Y, Guan BO. Visualizing nitroreductase activity in living cells and tissues under hypoxia and hepatic inflammation. Analyst 2022; 147:1449-1456. [PMID: 35266458 DOI: 10.1039/d1an01724a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Detecting nitroreductase (NTR) activity in hypoxic cells and tissues in situ represents an important step toward accurate delineation of hypoxic disease loci. However, it remains challenging to develop fluorescent probes with the necessary attributes of selectivity, sensitivity, precise targeting and aqueous solubility. Herein, two kinds of fluorescent probes (NNP and cRGD-NNP) built on a 2-nitroimidazole sensing platform were synthesized for the detection of NTR activity in cell and in vivo models of hypoxia. In the presence of NADH, NNP displayed high selectivity for NTR, a strong fluorescence enhancement (108 fold), and a low detection limit (3.6 ng mL-1). Benefiting from the hydrophilic structure and tumor-targeting properties of the cRGD cyclopeptide group, the probe cRGD-NNP efficiently detected NTR activity in MCF cancer cells under hypoxia. In addition, the liposome-encapsulated probe was successfully applied to visualize NTR during liver inflammation in mice.
Collapse
Affiliation(s)
- Wei Wang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Jiexuan Cai
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Meijing Hong
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Jianbin Deng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Long Jin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Yang Ran
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Yi Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yaqi Zhou
- Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| |
Collapse
|
5
|
Preethi S, Arthiga K, Patil AB, Spandana A, Jain V. Review on NAD(P)H dehydrogenase quinone 1 (NQO1) pathway. Mol Biol Rep 2022; 49:8907-8924. [PMID: 35347544 DOI: 10.1007/s11033-022-07369-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
Abstract
NQO1 is an enzyme present in humans which is encoded by NQO1 gene. It is a protective antioxidant agent, versatile cytoprotective agent and regulates the oxidative stresses of chromatin binding proteins for DNA damage in cancer cells. The oxidization of cellular pyridine nucleotides causes structural alterations to NQO1 and changes in its capacity to binding of proteins. A strategy based on NQO1 to have protective effect against cancer was developed by organic components to enhance NQO1 expression. The quinone derivative compounds like mitomycin C, RH1, E09 (Apaziquone) and β-lapachone causes cell death by NQO1 reduction of two electrons. It was also known to be overexpressed in various tumor cells of breast, lung, cervix, pancreas and colon when it was compared with normal cells in humans. The mechanism of NQO1 by the reduction of FAD by NADPH to form FADH2 is by two ways to inhibit cancer cell development such as suppression of carcinogenic metabolic activation and prevention of carcinogen formation. The NQO1 exhibit suppression of chemical-mediated carcinogenesis by various properties of NQO1 which includes, detoxification of quinone scavenger of superoxide anion radical, antioxidant enzyme, protein stabilizer. This review outlines the NQO1 structure, mechanism of action to inhibit the cancer cell, functions of NQO1 against oxidative stress, drugs acting on NQO1 pathways, clinical significance.
Collapse
Affiliation(s)
- S Preethi
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka, 570015, India
| | - K Arthiga
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka, 570015, India
| | - Amit B Patil
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka, 570015, India
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka, 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka, 570015, India.
| |
Collapse
|
6
|
Soliman AM, Mekkawy MH, Karam HM, Higgins M, Dinkova-Kostova AT, Ghorab MM. Novel iodinated quinazolinones bearing sulfonamide as new scaffold targeting radiation induced oxidative stress. Bioorg Med Chem Lett 2021; 42:128002. [PMID: 33811990 DOI: 10.1016/j.bmcl.2021.128002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) play an integral role in the pathogenesis of most diseases. This work presents the design and synthesis of fourteen new diiodoquinazolinone derivatives bearing benzenesulfonamide moiety with variable acetamide tail and evaluation of their ability to activate nuclear factor erythroid 2-related factor 2 (Nrf2) using its classical target NAD(P)H: quinone oxidoreductase 1 (NQO1) in Hepa1c1c7 murine hepatoma cells. The N-(2-chloropyridin-3-yl)-2-((6,8-diiodo-4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydroquinazolin-2-yl)thio) acetamide 17 was the most potent NQO1 inducer (CD = 25 µM) with free radical scavenging activity (IC50 = 28 µM) and in vivo median lethal dose (LD50) of 500 mg/Kg. The possible radioprotective activity of compound 17 was evaluated in (7 Gy) irradiated mice. Compound 17 showed a reduction in radiation induced oxidative stress as evidenced by the lower levels of ROS, malondialdehyde (MDA) and NQO1 in liver tissues. Moreover, compound 17 showed improvement in the complete blood count (CBC) of irradiated mice and decreased mortality over 30 days following irradiation. Additionally, docking studies inside the Nrf2-binding site of Kelch-like ECH associated protein 1 (Keap1), the main negative regulator of Nrf2, confirmed that 17 revealed the same interactions with the key amino acids as those of the co-crystallized ligand. This study identifies 17 as a novel antioxidant that protects against the harmful effect of radiation.
Collapse
Affiliation(s)
- Aiten M Soliman
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City P.O. Box 29, Cairo 11765, Egypt
| | - Mai H Mekkawy
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City P.O. Box 29, Cairo 11765, Egypt
| | - Heba M Karam
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City P.O. Box 29, Cairo 11765, Egypt
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, Scotland, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mostafa M Ghorab
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City P.O. Box 29, Cairo 11765, Egypt.
| |
Collapse
|
7
|
Liu BW, Huang PC, Wu FY. A novel light-controlled colorimetric detection assay for nitroreductase based on p-aminophenol-catalyzed and NADH-mediated synthesis of silver nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2223-2228. [PMID: 33908472 DOI: 10.1039/d1ay00231g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel and efficient light-controlled colorimetric assay for the quantification and detection of nitroreductase (NTR) was constructed based on p-aminophenol (pAP)-catalyzed and nicotinamide adenine dinucleotide (NADH)-mediated generation of AgNPs. Due to the hydrolysis of p-nitrophenol by NTR in the presence of NADH, the hydrolysis product can be used as a catalyst to catalyze the reduction of Ag+ by NADH under the light. As the concentration of NTR increases, the value of absorbance at ca. 400 nm (A400) decreases and the color of the solution turns from brown to bright yellow. A linear correlation was obtained between A400 and the NTR concentration in the range from 1-50 μg mL-1 and the limit of detection (LOD) is 0.27 μg mL-1. The detection system does not respond to other common biological molecules due to the specificity of enzymes and the effect of the nitroreductase inhibitor on the NTR activity was also tested. Finally, we applied the assay to determine NTR in human serum samples by spiking different concentrations of NTR with a recovery of 85.2%-92.5%.
Collapse
Affiliation(s)
- Bo-Wen Liu
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Peng-Cheng Huang
- College of Chemistry, Nanchang University, Nanchang 330031, China. and Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang 330031, China. and Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
8
|
Jang EH, Kim GL, Park MG, Shim MK, Kim JH. Hypoxia-responsive, organic-inorganic hybrid mesoporous silica nanoparticles for triggered drug release. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Hypoxia-responsive folic acid conjugated glycol chitosan nanoparticle for enhanced tumor targeting treatment. Int J Pharm 2020; 580:119237. [PMID: 32201251 DOI: 10.1016/j.ijpharm.2020.119237] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/21/2020] [Accepted: 03/15/2020] [Indexed: 12/19/2022]
Abstract
Hypoxia is a characteristic feature of various ischemic diseases, including cancer. This study describes the development of glycol chitosan nanoparticles, hydrophobically modified with 4-nitrobenzyl chloroformate and folic acid (FA), that can specifically release drugs under hypoxic conditions. This hypoxia-responsive glycol chitosan nanoparticle conjugated with FA (HRGF) possesses tumor-targeting properties by virtue of conjugated FA and is able to release drugs in a nitroreductase (NTR)-dependent manner because its structure is cleaved by NTR under hypoxic conditions. HRGF nanoparticles showed improved in vivo cancer-targeting ability compared with HRG nanoparticles without FA. In vitro drug release profiles revealed that doxorubicin (DOX)-loaded HRGF (D@HRGF) nanoparticles showed rapid release under hypoxia conditions than normoxic conditions. In vitro cytotoxicity tests and microscopic observations showed that D@HRGF nanoparticles were more toxic towards hypoxic cells than normoxic cells, and that the release of DOX was more effective in hypoxia than normoxia. In vivo, D@HRGF nanoparticles showed more effective antitumor activity in mice compared with D@HRG and free DOX. Collectively, these results show that HRGF nanoparticles function as an effective drug-delivery system in hypoxic conditions. Moreover, these hypoxia-responsive nanoparticles would be effective not only in cancer, but also in other ischemic diseases.
Collapse
|
10
|
Fan L, Zan Q, Lin B, Wang X, Gong X, Zhao Z, Shuang S, Dong C, Wong MS. Hypoxia imaging in living cells, tissues and zebrafish with a nitroreductase-specific fluorescent probe. Analyst 2020; 145:5657-5663. [DOI: 10.1039/d0an00378f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a nitroreductase-specific fluorescent probe (NTNO) for hypoxia imaging in living cells, tissues and zebrafish.
Collapse
Affiliation(s)
- Li Fan
- Institute of Environmental Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Qi Zan
- Institute of Environmental Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Bo Lin
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang
| | - Xiaodong Wang
- Institute of Environmental Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Xiaojuan Gong
- Institute of Environmental Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Zhonghua Zhao
- Department of Human Genetic Disease and Animal model
- Institute of Biomedical Sciences
- Shanxi University
- Taiyuan
- P. R. China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P. R. China
| | - Chuan Dong
- Institute of Environmental Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Man Shing Wong
- Department of Chemistry and Institute of Molecular Functional Materials
- Hong Kong Baptist University
- Hong Kong SAR
- P. R. China
| |
Collapse
|
11
|
Zhang QL, Li XM, Lian DD, Zhu MJ, Yim SH, Lee JH, Jiang RH, Kim CD. Tumor Suppressive Function of NQO1 in Cutaneous Squamous Cell Carcinoma (SCC) Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2076579. [PMID: 31886179 PMCID: PMC6893255 DOI: 10.1155/2019/2076579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
Abstract
Cutaneous squamous cell carcinoma (SCC) is a common cancer that significantly decreases the quality of life. It is known that external stimulus such as ultraviolet (UV) radiation induces cutaneous SCC via provoking oxidative stress. NAD(P)H dehydrogenase 1 (NQO1) is a ubiquitous flavoenzyme that functions as a guardian against oxidative stress. However, the effect of NQO1 on cutaneous SCC is not clearly elucidated. In this study, we investigated the effect of NQO1 on cutaneous SCC cells using the recombinant adenoviruses that can upregulate and/or downregulate NQO1 expression. Overexpression of NQO1 resulted in significant decrease of cell proliferation and colony forming activity of SCC lines (SCC12 and SCC13 cells). By contrast, knockdown of NQO1 increased the cell proliferation and colony forming activity. Accordingly, the levels of proliferation-related regulators, such as Cyclin D1, Cyclin E, PCNA, SOX2, and p63, were decreased by the overexpression of NQO1, while those were increased by knockdown of NQO1. In addition, NQO1 affected the invasion and migration of SCC cells in a very similar way, with the regulation of epithelial-mesenchymal transition- (EMT-) related molecules, including E-cadherin, N-cadherin, Vimentin, Snail, and Slug. Finally, the overexpression of NQO1 decreased the level of phosphorylated AKT, JNK, and p38 MAPK, while the knockdown of NQO1 increased the level of phosphorylated signaling molecules. Based on these data, NQO1 has tumor suppressive function in cutaneous SCC cells.
Collapse
Affiliation(s)
- Qing-Ling Zhang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Xue Mei Li
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - De-De Lian
- Department of Intensive Care Unit, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ming Ji Zhu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Su-Hyuk Yim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Skin Med Company, Daejeon, Republic of Korea
| | - Ri-Hua Jiang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chang-Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
12
|
Sun J, Hu Z, Wang R, Zhang S, Zhang X. A Highly Sensitive Chemiluminescent Probe for Detecting Nitroreductase and Imaging in Living Animals. Anal Chem 2018; 91:1384-1390. [DOI: 10.1021/acs.analchem.8b03955] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jinyu Sun
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Zhian Hu
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Ruihua Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Sichun Zhang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Xinrong Zhang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Xu A, Tang Y, Lin W. Endoplasmic reticulum-targeted two-photon turn-on fluorescent probe for nitroreductase in tumor cells and tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:770-776. [PMID: 30007884 DOI: 10.1016/j.saa.2018.05.092] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/18/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
Hypoxia conditions could increase the activity of intracellular nitroreductase (NTR) and lead to many malignant diseases. Therefore, monitoring the activity of NTR is of great significance to study the related diseases. Organelles play crucial roles in the metabolism of living cells. In these organelles, the endoplasmic reticulum (ER) possesses single membrane structure, and it is the largest organelle in the cell. ER performs the synthesis, processing and modification of proteins and lipid, stabilizing the intracellular Ca2+ concentration and other physiological functions in living cells. Therefore, it is of great significance to develop ER-target probes in living system. Toward this goal, a new endoplasmic reticulum-targeted two-photon fluorescence turn-on NTR probe Na-NTR-ER is designed and synthesized. Probe Na-NTR-ER has been proved to display high sensitivity (36 ng/mL) and selectivity to NTR. Particularly, probe Na-NTR-ER has been successfully applied for the monitoring of NTR in ER with a high the Pearson's colocalization coefficient as 0.90 in HeLa cells and cancerous mouse tissues up to the depth of 100 μm with significant fluorescence signals.
Collapse
Affiliation(s)
- An Xu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Yonghe Tang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China.
| |
Collapse
|
14
|
Zhou L, Gong L, Hu S. Construction of an efficient two-photon fluorescent probe for imaging nitroreductase in live cells and tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:254-259. [PMID: 29626816 DOI: 10.1016/j.saa.2018.03.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Compared with traditional confocal microscopy, two-photon fluorescence microscopy (TPFM), which excites a two-photon (TP) fluorophore by near-infrared light, provides improved three-dimensional image resolution with increased tissue-image depth (>500μm) and an extended observation time. Therefore, the development of novel functional TP fluorophores has attracted great attention in recent years. Herein, a novel TP fluorophore CM-NH2, which have the donor-π-acceptor (D-π-A)-structure, was designed and synthesized. We further used this dye developed a new type of TP fluorescent probe CM-NO2 for detecting nitroreductase (NTR). Upon incubated with NTR for 15min, CM-NO2 displayed a ~90-fold fluorescence enhancement at 505nm and the maximal TP action cross-section value after reaction was detected and calculated to be 200 GM at 760nm. The probe exhibited excellent properties such as high sensitivity, high selectivity, low cytotoxicity, and high photostability. Moreover, the probe was utilized to image the tumor hypoxia in live HeLa cells. Finally, using the CM-NO2 to image NTR in tissues was demonstrated.
Collapse
Affiliation(s)
- Liyi Zhou
- College of Life Sciences and Chemistry, Hunan University of Technology, Hunan 412007, PR China; College of Food Science and Technology, Central South University of Forestry and Technology Changsha, Hunan 410004, PR China; State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China; Hunan Key Laboratory of Processed Food for Special Medical Purpose.
| | - Liang Gong
- College of Life Sciences and Chemistry, Hunan University of Technology, Hunan 412007, PR China
| | - Shunqin Hu
- College of Life Sciences and Chemistry, Hunan University of Technology, Hunan 412007, PR China
| |
Collapse
|
15
|
Detremmerie C, Vanhoutte PM, Leung S. Biased activity of soluble guanylyl cyclase: the Janus face of thymoquinone. Acta Pharm Sin B 2017; 7:401-408. [PMID: 28752025 PMCID: PMC5518662 DOI: 10.1016/j.apsb.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 11/28/2022] Open
Abstract
The natural compound thymoquinone, extracted from Nigella sativa (black cumin), is widely used in humans for its anti-oxidative properties. Thymoquinone is known for its acute endothelium-independent vasodilator effects in isolated rat aortae and pulmonary arteries, depending in part on activation of adenosine triphosphate-sensitive potassium channels and inhibition of voltage-dependent calcium channels. The compound also improves endothelial dysfunction in mesenteric arteries of ageing rodents and in aortae of rabbits treated with pyrogallol, by inhibiting oxidative stress. Serendipitously, thymoquinone was found to augment contractions in isolated arteries with endothelium of both rats and pigs. The endothelium-dependent augmentation it causes counterintuitively depends on biased activation of soluble guanylyl cyclase (sGC) producing inosine 3',5'-cyclic monophosphate (cyclic IMP) rather than guanosine 3',5'-cyclic monophosphate. This phenomenon shows a striking mechanistic similarity to the hypoxic augmentation previously observed in porcine coronary arteries. The cyclic IMP preferentially produced under thymoquinone exposure causes an increased contractility of arterial smooth muscle by interfering with calcium homeostasis. This brief review summarizes the vascular pharmacology of thymoquinone, focussing in particular on how the compound causes endothelium-dependent contractions by biasing the activity of sGC.
Collapse
|
16
|
Daryaei I, Jones KM, Pagel MD. Detection of DT-diaphorase Enzyme with a ParaCEST MRI Contrast Agent. Chemistry 2017; 23:6514-6517. [PMID: 28370655 DOI: 10.1002/chem.201700721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Indexed: 12/26/2022]
Abstract
A responsive magnetic resonance (MRI) contrast agent has been developed that can detect the enzyme activity of DT-diaphorase. The agent produced different chemical exchange saturation transfer (CEST) MRI signals before and after incubation with the enzyme, NADH, and GSH at different pH values whereas it showed good stability in a reducing environment without enzyme.
Collapse
Affiliation(s)
- Iman Daryaei
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Room 221, Tucson, Arizona, 85721-0041, USA
| | - Kyle M Jones
- Department of Biomedical Engineering, University of Arizona, 1127 E James E. Rogers Way P.O. Box 210020, Tucson, AZ, 85721-0020, USA
| | - Mark D Pagel
- Department of Medical Imaging, University of Arizona, 1501 N. Campbell, P.O. Box 245067, Tucson, Arizona, 85724, USA
| |
Collapse
|
17
|
Türkanoğlu Özçelik A, Can Demirdöğen B, Demirkaya Ş, Adalı O. Association of cytochrome P4502E1 and NAD(P)H:quinone oxidoreductase 1 genetic polymorphisms with susceptibility to large artery atherosclerotic ischemic stroke: a case–control study in the Turkish population. Neurol Sci 2017; 38:1077-1085. [DOI: 10.1007/s10072-017-2930-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 03/20/2017] [Indexed: 01/08/2023]
|
18
|
Ko SY, Ko HA, Shieh TM, Chi TC, Chen HI, Chen YT, Yu YH, Yang SH, Chang SS. Advanced glycation end products influence oral cancer cell survival via Bcl-xl and Nrf-2 regulation in vitro. Oncol Lett 2017; 13:3328-3334. [PMID: 28529569 DOI: 10.3892/ol.2017.5809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/06/2017] [Indexed: 12/31/2022] Open
Abstract
An irreversible non-enzymatic reaction between carbohydrates and proteins results in the formation of advanced glycation end products (AGEs). AGEs have been demonstrated to be a risk factor of complications in patients with diabetes mellitus (DM). Previous studies have suggested that patients with DM exhibit a higher rate of metastasis of oral cancer and a lower cancer-associated survival rate. The receptor for AGEs (RAGE) has been associated with angiogenesis and an increase in cancer malignancy. Previous studies have suggested that AGE-RAGE regulates cell migration via extracellular signal-regulated kinase (ERK) phosphorylation. Nuclear factor-erythroid 2-related factor 2 (Nrf-2) is associated with the regulation of tumor protein p53 (p53) and the apoptotic response of oral cancer cells. AGEs are associated with oral cancer; however, the mechanism underlying this association remains to be elucidated. The present study hypothesized that AGEs regulate Nrf-2 and downstream pathways through ERK phosphorylation. The results of the current study demonstrated that AGEs inhibit the expression of Nrf-2, p53 and Bcl-2 associated × apoptosis regulator, and increase the expression of apoptosis regulator Bcl-x protein. The effect of AGEs was inhibited through the use of the PD98059. The present study demonstrated that AGEs regulate the downstream pathways Nrf-2 and Bcl-xl via ERK phosphorylation. It is suggested that AGEs regulate the survival of oral cancer cells via Nrf-2 and Bcl-xl through p53 regulation, which explains the poor prognosis of patients with DM who have oral cancer.
Collapse
Affiliation(s)
- Shun-Yao Ko
- Graduate Institute of Medical Sciences, College of Health Science, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C.,Innovative Research Center of Medicine, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C
| | - Hshin-An Ko
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Tzong-Cherng Chi
- Graduate Institute of Medical Sciences, College of Health Science, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C.,Innovative Research Center of Medicine, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C
| | - Hong-I Chen
- Graduate Institute of Medical Sciences, College of Health Science, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C.,Innovative Research Center of Medicine, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C
| | - Yi-Ting Chen
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C
| | - Ya-Hui Yu
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C
| | - Shu-Han Yang
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C
| | - Shu-Shing Chang
- Innovative Research Center of Medicine, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C
| |
Collapse
|
19
|
Liu ZR, Tang Y, Xu A, Lin W. A new fluorescent probe with a large turn-on signal for imaging nitroreductase in tumor cells and tissues by two-photon microscopy. Biosens Bioelectron 2016; 89:853-858. [PMID: 27816580 DOI: 10.1016/j.bios.2016.09.107] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 11/28/2022]
Abstract
Hypoxia is the important characteristic of solid tumors, and it may cause the bioactivity of nitroreductase (NTR) to display an elevated level. Hence, the development of effective monitoring methods of NTR in living systems is of great importance for detecting the occurrence and progress of tumors. Toward this goal, a novel two-photon fluorescence turn-on NTR probe GCTPOC-HY, based on the two-photon platform GCTPOC and the NTR recognition site p-nitrobenzyl ether, is designed and synthesized. The probe GCTPOC-HY exhibits eminent properties such as high sensitivity and selectivity, highly stable photo-stability, and low cytotoxicity. Besides, the probe responds to 1.5μg/mL NTR with a 130-fold fluorescence enhancement, which is larger than the reported two-photon fluorescent NTR probes. Moreover, the probe GCTPOC-HY is suitable for fluorescence imaging of NTR in living cells by one- and two-photon modes. Importantly, the probe GCTPOC-HY is successfully applied to monitor NTR in the tumor tissues with a significant fluorescence signal and a penetration depth of 70µm by using two-photon microscopy.
Collapse
Affiliation(s)
- Zhan-Rong Liu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science, University of Jinan, Jinan, Shandong, 250022 PR China
| | - Yonghe Tang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science, University of Jinan, Jinan, Shandong, 250022 PR China
| | - An Xu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science, University of Jinan, Jinan, Shandong, 250022 PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science, University of Jinan, Jinan, Shandong, 250022 PR China.
| |
Collapse
|
20
|
Shi F, Li X, Pan H, Ding L. NQO1 and CYP450 reductase decrease the systemic exposure of rifampicin-quinone and mediate its redox cycle in rats. J Pharm Biomed Anal 2016; 132:17-23. [PMID: 27693756 DOI: 10.1016/j.jpba.2016.09.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/14/2016] [Accepted: 09/25/2016] [Indexed: 11/29/2022]
Abstract
Rifampicin (RIF) is used in regimens for infections caused by Mycobacteria accompanied by serious adverse reactions. Rifampicin-quinone (RIF-Q) is a major autoxidation product of RIF. It is not clear whether RIF-Q plays a role in RIF induced adverse reactions. Investigation of the systemic exposure of RIF-Q is helpful to better understand the role of RIF-Q in RIF induced adverse reactions. In this study, a simple and reproducible high performance liquid chromatography-mass spectrometry (LC-MS) method involving a procedure to prevent the RIF from oxidation for simultaneous quantification of RIF and RIF-Q in rat plasma has been developed and validated, and applied to elucidate the systemic exposure of RIF-Q in rats. The pharmacokinetics data showed that the systemic exposure of RIF-Q was very low (0.67% of RIF, AUC0-24) in rats after oral administration of RIF. However, RIF-Q may undergo the redox cycle in vivo by the evidence that the majority of RIF-Q was reduced to RIF after an oral dose of RIF-Q. Pretreatment with the NAD(P)H: quinone oxidoreductase 1 (NQO1) specific inhibitor dicoumarol and/or cytochrome P450 reductase (CPR) inhibitor diphenyleneiodonium suppressed the redox cycle and significantly increased the systemic exposure of RIF-Q. The inhibitors also attenuated the redox cycle induced reactive oxygen species formation and cytotoxicity in RIF-Q-treated HepG2 cells. These results indicate that NQO1 and CPR play an important role in redox cycle of RIF-Q and may thus contribute to RIF-induced adverse reactions.
Collapse
Affiliation(s)
- Fuguo Shi
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563099, China.
| | - Xiaobing Li
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Hong Pan
- Department of Clinical Pharmacy, Zunyi Medical University, Zunyi 563099, China
| | - Li Ding
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
21
|
Detremmerie CM, Chen Z, Li Z, Alkharfy KM, Leung SWS, Xu A, Gao Y, Vanhoutte PM. Endothelium-Dependent Contractions of Isolated Arteries to Thymoquinone Require Biased Activity of Soluble Guanylyl Cyclase with Subsequent Cyclic IMP Production. J Pharmacol Exp Ther 2016; 358:558-68. [PMID: 27335436 DOI: 10.1124/jpet.116.234153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/15/2016] [Indexed: 11/22/2022] Open
Abstract
Preliminary experiments on isolated rat arteries demonstrated that thymoquinone, a compound widely used for its antioxidant properties and believed to facilitate endothelium-dependent relaxations, as a matter of fact caused endothelium-dependent contractions. The present experiments were designed to determine the mechanisms underlying this unexpected response. Isometric tension was measured in rings (with and without endothelium) of rat mesenteric arteries and aortae and of porcine coronary arteries. Precontracted preparations were exposed to increasing concentrations of thymoquinone, which caused concentration-dependent, sustained further increases in tension (augmentations) that were prevented by endothelium removal, Nω-nitro-L-arginine methyl ester [L-NAME; nitric oxide (NO) synthase inhibitor], and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; soluble guanylyl cyclase [sGC] inhibitor). In L-NAME-treated rings, the NO-donor diethylenetriamine NONOate restored the thymoquinone-induced augmentations; 5-[1-(phenylmethyl)-1H-indazol-3-yl]-2-furanmethanol (sGC activator) and cyclic IMP (cIMP) caused similar restorations. By contrast, in ODQ-treated preparations, the cell-permeable cGMP analog did not restore the augmentation by thymoquinone. The compound augmented the content (measured with ultra-high performance liquid chromatography-tandem mass spectrometry) of cIMP, but not that of cGMP; these increases in cIMP content were prevented by endothelium removal, L-NAME, and ODQ. The augmentation of contractions caused by thymoquinone was prevented in porcine arteries, but not in rat arteries, by 1-(5-isoquinolinylsulfonyl)homopiperazine dihydrochloride and trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride (Rho-kinase inhibitors); in the latter, but not in the former, it was reduced by 3,5-dichloro-N-[[(1α,5α,6-exo,6α)-3-(3,3-dimethylbutyl)-3-azabicyclo[3.1.0]hex-6-yl]methyl]-benzamide hydrochloride (T-type calcium channel inhibitor), demonstrating species/vascular bed differences in the impact of cIMP on calcium handling. Thymoquinone is the first pharmacological agent that causes endothelium-dependent augmentation of contractions of isolated arteries, which requires endothelium-derived NO and biased sGC activation, resulting in the augmented production of cIMP favoring the contractile process.
Collapse
Affiliation(s)
- Charlotte M Detremmerie
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Zhengju Chen
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Zhuoming Li
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Khalid M Alkharfy
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Aimin Xu
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Yuansheng Gao
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Paul M Vanhoutte
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| |
Collapse
|
22
|
Fujie T, Murakami M, Yoshida E, Tachinami T, Shinkai Y, Fujiwara Y, Yamamoto C, Kumagai Y, Naka H, Kaji T. Copper diethyldithiocarbamate as an activator of Nrf2 in cultured vascular endothelial cells. J Biol Inorg Chem 2016; 21:263-73. [PMID: 26825804 PMCID: PMC4801994 DOI: 10.1007/s00775-016-1337-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/08/2016] [Indexed: 12/21/2022]
Abstract
The interest in organic-inorganic hybrid molecules as molecular probes for biological systems has been growing rapidly. Such hybrid molecules exhibit unique biological activities. Herein, copper(II) bis(diethyldithiocarbamate) (Cu10) was found to activate the transcription factor NF-E2-related factor 2 (Nrf2), which is responsible for regulating antioxidant and phase II xenobiotic enzymes, in vascular endothelial cells. The copper complex rapidly accumulated within cells and induced nuclear translocation of Nrf2, leading to upregulation of the expression of downstream proteins without cytotoxic effects. However, while copper bis(2-hydroxyethyl)dithiocarbamate activated Nrf2, copper ion, diethyldithiocarbamate ligand with or without zinc or iron failed to exhibit this activity. Intracellular accumulation of Cu10 was higher than that of Cu(II) and Cu(I). While the accumulation of copper(II) bis(dimethyldithiocarbamate) was reduced by small interfering RNA (siRNA)-mediated knockdown of the copper transporter CTR1, the knockdown did not affect Cu10 accumulation, indicating that Cu10 rapidly enters vascular endothelial cells via CTR1-independent mechanisms. In addition, copper and iron complexes with other ligands tested could not activate Nrf2, suggesting that the intramolecular interaction between copper and dithiocarbamate ligand is important for the activation of the transcription factor. Cu10 induced the expression of heme oxygenase-1, NAD(P)H quinone oxidoreductase 1, and γ-glutamylcysteine synthetase, downstream proteins of Nrf2. It was suggested that Cu10-induced activation of Nrf2 was due to proteasome inhibition as well as binding to Kelch-like ECH-associated protein 1. Since the effects of Cu10 on vascular endothelial cells are unique and diverse, the copper complex may be a good molecular probe to analyze the functions of the cells.
Collapse
Affiliation(s)
- Tomoya Fujie
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Masaki Murakami
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Eiko Yoshida
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Tadashi Tachinami
- Graduate School of Science and Research Center for Materials Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yasuhiro Shinkai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Yasuyuki Fujiwara
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392, Japan
| | - Chika Yamamoto
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Hiroshi Naka
- Graduate School of Science and Research Center for Materials Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan.
| |
Collapse
|
23
|
Signaling Pathway in Early Brain Injury after Subarachnoid Hemorrhage: News Update. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:123-6. [PMID: 26463934 DOI: 10.1007/978-3-319-18497-5_21] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The annual incidence of subarachnoid hemorrhage (SAH) caused by intracranial aneurysm rupture is approximately 10.5/10 million people in China, making SAH the third most frequently occurring hemorrhage of the intracranial type after cerebral embolism and hypertensive intracerebral hemorrhage. SAH caused by ruptured aneurysm leads to a mortality rate as high as 67 %, and, because of the sudden onset of this disease, approximately 12-15 % of patients die before they can receive effective treatment. Early brain injury (EBI) is the brain damage occurring within the first 72 h after SAH. Two-thirds of mortality caused by SAH occurs within 48 h, mainly as a result of EBI. With the development of molecular biology and medicine microscopy techniques, various signaling pathways involved in EBI after SAH have been revealed. Understanding these signaling pathways may help clinicians treat EBI after SAH and improve long-term prognosis of SAH patients. This chapter summarizes several important signaling pathways implicated in EBI caused by SAH.
Collapse
|
24
|
Cassagnes LE, Perio P, Ferry G, Moulharat N, Antoine M, Gayon R, Boutin JA, Nepveu F, Reybier K. In cellulo monitoring of quinone reductase activity and reactive oxygen species production during the redox cycling of 1,2 and 1,4 quinones. Free Radic Biol Med 2015; 89:126-34. [PMID: 26386287 DOI: 10.1016/j.freeradbiomed.2015.07.150] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 06/01/2015] [Accepted: 07/20/2015] [Indexed: 01/26/2023]
Abstract
Quinones are highly reactive molecules that readily undergo either one- or two-electron reduction. One-electron reduction of quinones or their derivatives by enzymes such as cytochrome P450 reductase or other flavoproteins generates unstable semiquinones, which undergo redox cycling in the presence of molecular oxygen leading to the formation of highly reactive oxygen species. Quinone reductases 1 and 2 (QR1 and QR2) catalyze the two-electron reduction of quinones to form hydroquinones, which can be removed from the cell by conjugation of the hydroxyl with glucuronide or sulfate thus avoiding its autoxidation and the formation of free radicals and highly reactive oxygen species. This characteristic confers a detoxifying enzyme role to QR1 and QR2, even if this character is strongly linked to the excretion capacity of the cell. Using EPR spectroscopy and confocal microscopy we demonstrated that the amount of reactive oxygen species (ROS) produced by Chinese hamster ovary (CHO) cells overexpressing QR1 or QR2 compared to naive CHO cells was determined by the quinone structural type. Indeed, whereas the amount of ROS produced in the cell was strongly decreased with para-quinones such as menadione in the presence of quinone reductase 1 or 2, a strong increase in ROS was recorded with ortho-quinones such as adrenochrome, aminochrome, dopachrome, or 3,5-di-tert-butyl-o-benzoquinone in cells overexpressing QR, especially QR2. These differences could originate from the excretion process, which is different for para- and ortho-quinones. These results are of particular interest in the case of dopamine considering the association of QR2 with various neurological disorders such as Parkinson disease.
Collapse
Affiliation(s)
- Laure-Estelle Cassagnes
- Université de Toulouse, UPS, UMR 152 PHARMA-DEV, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France
| | - Pierre Perio
- Université de Toulouse, UPS, UMR 152 PHARMA-DEV, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France
| | - Gilles Ferry
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, 78290 Croissy sur Seine, France
| | - Natacha Moulharat
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, 78290 Croissy sur Seine, France
| | - Mathias Antoine
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, 78290 Croissy sur Seine, France
| | - Régis Gayon
- Vectalys SAS, Canal Biotech 2, 31400 Toulouse, France
| | - Jean A Boutin
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, 78290 Croissy sur Seine, France
| | - Françoise Nepveu
- Université de Toulouse, UPS, UMR 152 PHARMA-DEV, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France
| | - Karine Reybier
- Université de Toulouse, UPS, UMR 152 PHARMA-DEV, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France.
| |
Collapse
|
25
|
Zhang J, Liu HW, Hu XX, Li J, Liang LH, Zhang XB, Tan W. Efficient Two-Photon Fluorescent Probe for Nitroreductase Detection and Hypoxia Imaging in Tumor Cells and Tissues. Anal Chem 2015; 87:11832-9. [PMID: 26514276 DOI: 10.1021/acs.analchem.5b03336] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypoxia plays an important role in tumor progression, and the development of efficient methods for monitoring hypoxic degree in living systems is of great biomedical importance. In the solid tumors, the nitroreductase level is directly corresponded with the hypoxic status. Many one-photon excited fluorescent probes have been developed for hypoxia imaging in tumor cells via the detection of nitroreductase level. However, two-photon excited probes are more suitable for bioimaging. In this work, a two-photon probe 1 for nitroreductase detection and hypoxic status monitoring in living tumor cells and tissues was reported for the first time. The detection is based on the fact that the nitro-group of probe 1 could be selectively reduced to an amino-group by nitroreductase in the presence of reduced NADH, following by a 1,6-rearrangement-elimination to release the fluorophore, resulting in the enhancement of fluorescence. The probe exhibited both one-photon and two-photon excited remarkable fluorescence enhancement (∼70-fold) for nitroreductase, which afforded a high sensitivity for nitroreductase, with a detection limit of 20 ng/mL observed. Moreover, the applications of the probe for fluorescent bioimaging of hypoxia in living cells and two-photon bioimaging in tissues were carried out, with tissue-imaging depths of 70-160 μm observed, which demonstrates its practical application in complex biosystems.
Collapse
Affiliation(s)
- Jing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Xiao-Xiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Jin Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Li-Hui Liang
- Hunan Provincial People's Hospital , Changsha, 410002, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| |
Collapse
|
26
|
Carmona-Aparicio L, Pérez-Cruz C, Zavala-Tecuapetla C, Granados-Rojas L, Rivera-Espinosa L, Montesinos-Correa H, Hernández-Damián J, Pedraza-Chaverri J, Sampieri AIII, Coballase-Urrutia E, Cárdenas-Rodríguez N. Overview of Nrf2 as Therapeutic Target in Epilepsy. Int J Mol Sci 2015; 16:18348-67. [PMID: 26262608 PMCID: PMC4581249 DOI: 10.3390/ijms160818348] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a biochemical state of imbalance in the production of reactive oxygen and nitrogen species and antioxidant defenses. It is involved in the physiopathology of degenerative and chronic neuronal disorders, such as epilepsy. Experimental evidence in humans and animals support the involvement of oxidative stress before and after seizures. In the past few years, research has increasingly focused on the molecular pathways of this process, such as that involving transcription factor nuclear factor E2-related factor 2 (Nrf2), which plays a central role in the regulation of antioxidant response elements (ARE) and modulates cellular redox status. The aim of this review is to present experimental evidence on the role of Nrf2 in this neurological disorder and to further determine the therapeutic impact of Nrf2 in epilepsy.
Collapse
Affiliation(s)
- Liliana Carmona-Aparicio
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| | - Claudia Pérez-Cruz
- Laboratory of Neuroplasticity and Neurodegeneration, Cinvestav, D.F. 07360, Mexico; E-Mail:
| | - Cecilia Zavala-Tecuapetla
- Laboratory of Physiology of the Reticular Formation, National Institute of Neurology and Neurosurgery-MVS, D.F. 14269, Mexico; E-Mail:
| | - Leticia Granados-Rojas
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| | | | | | - Jacqueline Hernández-Damián
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, D.F. 04150, Mexico; E-Mails: (J.H.-D.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, D.F. 04150, Mexico; E-Mails: (J.H.-D.); (J.P.-C.)
| | - Aristides III Sampieri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, D.F. 04150, Mexico; E-Mails: (J.H.-D.); (J.P.-C.)
| | - Elvia Coballase-Urrutia
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| | - Noemí Cárdenas-Rodríguez
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| |
Collapse
|
27
|
Ko SY, Chang SS, Lin IH, Chen HI. Suppression of antioxidant Nrf-2 and downstream pathway in H9c2 cells by advanced glycation end products (AGEs) via ERK phosphorylation. Biochimie 2015. [PMID: 26212730 DOI: 10.1016/j.biochi.2015.07.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diabetic cardiomyopathy is related to oxidative stress and correlated with the presence of advanced glycation end products (AGEs). In a clinical setting, AGEs can be detected in patients presenting diabetic cardiomyopathy; however, the underlying mechanism has yet to be elucidated. In our previous study, AGEs increase cell hypertrophy via ERK phosphorylation in a process closely related to ROS production. Thus, we propose that AGEs regulate the antioxidant gene nuclear factor-erythroid 2-related factor (Nrf-2). In H9c2 cells treated with AGEs, the expression of Nrf-2 was reduced; however, ERK phosphorylation was shown to increase. Treatment with H2O2 was also shown to increase Nrf-2 and ERK phosphorylation. In cells pretreatment with ROS scavenger NAC, the effects of H2O2 were reduced; however, the effects of the AGEs remained largely unchanged. Conversely, when cells were pretreated with PD98059 (ERK inhibitor), the expression of Nrf-2 was recovered following treatment with AGEs. Our results suggest that AGEs inhibit Nrf-2 via the ERK pathway; however, this influence is partly associated with ROS. Our finding further indicated that AGEs possess both ROS-dependent and ROS-independent pathways, resulting in a reduction in Nrf-2. This report reveals an important mechanism underlying the regulation of diabetic cardiomyopathy progression by AGEs.
Collapse
Affiliation(s)
- Shun-Yao Ko
- Graduate Institute of Medical Sciences, Collage of Health Science, Tainan, Taiwan; Innovate Research Center of Medicine, Chang Jung Christian University, Tainan, Taiwan.
| | - Shu-Shing Chang
- Innovate Research Center of Medicine, Chang Jung Christian University, Tainan, Taiwan
| | - I-Hsuan Lin
- Innovate Research Center of Medicine, Chang Jung Christian University, Tainan, Taiwan
| | - Hong-I Chen
- Graduate Institute of Medical Sciences, Collage of Health Science, Tainan, Taiwan; Innovate Research Center of Medicine, Chang Jung Christian University, Tainan, Taiwan
| |
Collapse
|
28
|
Ashour AE, Abd-Allah AR, Korashy HM, Attia SM, Alzahrani AZ, Saquib Q, Bakheet SA, Abdel-Hamied HE, Jamal S, Rishi AK. Thymoquinone suppression of the human hepatocellular carcinoma cell growth involves inhibition of IL-8 expression, elevated levels of TRAIL receptors, oxidative stress and apoptosis. Mol Cell Biochem 2014; 389:85-98. [PMID: 24399465 DOI: 10.1007/s11010-013-1930-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 12/18/2013] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common solid tumor worldwide. The chemokine interleukin-8 (IL-8) is overexpressed in HCC and is a potential target for therapy. Although the transcription factor NF-κB regulates IL-8 expression, and while thymoquinone (TQ; the most bioactive constituent of black seed oil) inhibits NF-κB activity, the precise mechanisms by which TQ regulates IL-8 and cancer cell growth remain to be clarified. Here, we report that TQ inhibited growth of HCC cells in a dose- and time-dependent manner, caused G2M cell cycle arrest, and stimulated apoptosis. Apoptosis was substantiated by activation of caspase-3 and -9, as well as cleavage of poly(ADP-ribose)polymerase. TQ treatments inhibited expression of NF-κB and suppressed IL-8 and its receptors. TQ treatments caused increased levels of reactive oxygen species (ROS) and mRNAs of oxidative stress-related genes, NQO1 and HO-1. Pretreatment of HepG2 cells with N-acetylcysteine, a scavenger of ROS, prevented TQ-induced cell death. TQ treatment stimulated mRNA expression of pro-apoptotic Bcl-xS and TRAIL death receptors, and inhibited expression of the anti-apoptotic gene Bcl-2. TQ enhanced TRAIL-induced death of HepG2 cells, in part by up-regulating TRAIL death receptors, inhibiting NF-κB and IL-8 and stimulating apoptosis. Altogether, these findings provide insights into the pleiotropic molecular mechanisms of TQ-dependent suppression of HCC cell growth and underscore potential of this compound as anti-HCC drug.
Collapse
Affiliation(s)
- Abdelkader E Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chung BY, Noh TK, Yang SH, Kim IH, Lee MW, Yoon TJ, Chang SE. Gene Expression Profiling in Melasma in Korean Women. Dermatology 2014; 229:333-42. [DOI: 10.1159/000365080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/30/2014] [Indexed: 11/19/2022] Open
|
30
|
Lin L, Qin Y, Jin T, Liu S, Zhang S, Shen X, Lin Z. Significance of NQO1 overexpression for prognostic evaluation of gastric adenocarcinoma. Exp Mol Pathol 2013; 96:200-5. [PMID: 24384455 DOI: 10.1016/j.yexmp.2013.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/03/2013] [Indexed: 12/15/2022]
Abstract
NQO1 (NAD(P)H: quinone oxidoreductase, also known as DT-diaphorase) plays a prominent role in maintaining cellular homeostasis. NQO1 is abnormally elevated in many solid cancer types, including those of the adrenal gland, breast, colon, lung, ovary, and thyroid. However, little is known about the status of NQO1 in gastric adenocarcinoma (GAC). To investigate the clinicopathological significance of NQO1 expression in GAC, and thus evaluate its role as a potential prognostic marker, 203 cases of primary GAC, 31 of gastric dysplasia, and 53 of adjacent non-tumor tissues were selected for immunohistochemical staining of NQO1 protein. Correlations between NQO1 overexpression and clinicopathological characteristics were evaluated by χ(2) test and Fisher's exact test, while survival rates were calculated by Kaplan-Meier method. The relationship between prognostic factors and patient survival was analyzed by Cox proportional hazards model. Through these analyses it was found that the strongly positive rate of NQO1 protein in GAC was significantly higher than that in gastric dysplasia and adjacent non-tumor tissues. Analysis by qRT-PCR also confirmed that NQO1 mRNA levels were increased in GAC compared with those detected in either adjacent non-tumor tissues or normal gastric mucosa. Additionally, the NQO1 expression rate was positively correlated with tumor size, serosal invasion, tumor stage, and both disease-free survival and 5-year survival rates. Further analysis showed that although NQO1 was not an independent predictor of GAC, elevated expression of NQO1 could predict lower disease-free survival and 5-year survival times in late-stage patients. In conclusion, NQO1 plays an important role in the progression of GAC, and might be a potential, but not an independent, poor prognostic biomarker and therapeutic target of GAC.
Collapse
Affiliation(s)
- Lijuan Lin
- Department of Pathology, Yanbian University Medical College, Yanji 133002, China; Department of Medical Imaging, College of Medicine, Eastern Liaoning University, Dandong 118003, China.
| | - Yunzhi Qin
- Department of Anesthesiology, Yanbian University Hospital, Yanji 133000, China.
| | - Tiefeng Jin
- Department of Pathology, Yanbian University Medical College, Yanji 133002, China.
| | - Shuangping Liu
- Department of Pathology, Yanbian University Medical College, Yanji 133002, China.
| | - Songnan Zhang
- Department of Oncology, Yanbian University Hospital, Yanji 133000, China.
| | - Xionghu Shen
- Department of Oncology, Yanbian University Hospital, Yanji 133000, China.
| | - Zhenhua Lin
- Department of Pathology, Yanbian University Medical College, Yanji 133002, China.
| |
Collapse
|
31
|
Franchi LP, Guimarães NN, De Andrade LR, De Andrade HHR, Lehmann M, Dihl RR, Cunha KS. Antimutagenic and antirecombinagenic activities of noni fruit juice in somatic cells of Drosophila melanogaster. AN ACAD BRAS CIENC 2013; 85:585-94. [PMID: 23828338 DOI: 10.1590/s0001-37652013000200008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/05/2011] [Indexed: 11/21/2022] Open
Abstract
Noni, a Hawaiian name for the fruit of Morinda citrifolia L., is a traditional medicinal plant from Polynesia widely used for the treatment of many diseases including arthritis, diabetes, asthma, hypertension and cancer. Here, a commercial noni juice (TNJ) was evaluated for its protective activities against the lesions induced by mitomycin C (MMC) and doxorrubicin (DXR) using the Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster. Three-day-old larvae, trans-heterozygous for two genetic markers (mwh and flr3 ), were co-treated with TNJ plus MMC or DXR. We have observed a reduction in genotoxic effects of MMC and DXR caused by the juice. TNJ provoked a marked decrease in all kinds of MMC- and DXR-induced mutant spots, mainly due to its antirecombinagenic activity. The TNJ protective effects were concentration-dependent, indicating a dose-response correlation, that can be attributed to a powerful antioxidant and/or free radical scavenger ability of TNJ.
Collapse
Affiliation(s)
- Leonardo P Franchi
- Laboratório de Genética Toxicológica, Departamento de Bioquímica e Biologia Molecular, ICB, Universidade Federal de Goiás/UFG, Goiânia, GO, Brasil
| | | | | | | | | | | | | |
Collapse
|
32
|
Garside H, Marcoe KF, Chesnut-Speelman J, Foster AJ, Muthas D, Kenna JG, Warrior U, Bowes J, Baumgartner J. Evaluation of the use of imaging parameters for the detection of compound-induced hepatotoxicity in 384-well cultures of HepG2 cells and cryopreserved primary human hepatocytes. Toxicol In Vitro 2013; 28:171-81. [PMID: 24189122 DOI: 10.1016/j.tiv.2013.10.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/11/2013] [Accepted: 10/23/2013] [Indexed: 11/28/2022]
Abstract
Drug-induced liver injury (DILI) is a major cause of failed drug development, withdrawal and restricted usage. Therefore screening assays which aid selection of candidate drugs with reduced propensity to cause DILI are required. We have investigated the toxicity of 144 drugs, 108 of which caused DILI, using assays identified in the literature as having some predictivity for hepatotoxicity. The validated assays utilised either HepG2 cells, HepG2 cells in the presence of rat S9 fraction or isolated human hepatocytes. All parameters were quantified by multiplexed and automated high content fluorescence microscopy, at appropriate time points after compound administration (4, 24 or 48h). The individual endpoint which identified drugs that caused DILI with greatest precision was maximal fold induction in CM-H2DFFDA staining in hepatocytes after 24h (41% sensitivity, 86% specificity). However, hierarchical clustering analysis of all endpoints provided the most sensitive identification of drugs which caused DILI (58% sensitivity, 75% specificity). We conclude that multi-parametric high content cell toxicity assays can enable in vitro detection of drugs that have high propensity to cause DILI in vivo but that many DILI compounds exhibit few in vitro signals when evaluated using these assays.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Muthas
- AstraZeneca, Drug Safety and Metabolism, R&D, SE, Sweden
| | | | | | - Joanne Bowes
- AstraZeneca, Drug Safety and Metabolism, R&D, UK
| | | |
Collapse
|
33
|
Giller K, Huebbe P, Hennig S, Dose J, Pallauf K, Doering F, Rimbach G. Beneficial effects of a 6-month dietary restriction are time-dependently abolished within 2 weeks or 6 months of refeeding-genome-wide transcriptome analysis in mouse liver. Free Radic Biol Med 2013; 61:170-8. [PMID: 23563226 DOI: 10.1016/j.freeradbiomed.2013.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/19/2013] [Accepted: 03/27/2013] [Indexed: 01/20/2023]
Abstract
Dietary restriction (DR) has been shown to exert a number of beneficial effects including the prolongation of life span. One of the mechanisms by which DR leads to these advantages seems to be the induction of endogenous antioxidant defense and stress response mechanisms. However, little is known about the persistence of DR benefits after return to an ad libitum diet. In this study, male C57BL/6 mice were fed 75% of a normal diet for 6 months (DR) followed by 6 months of ad libitum refeeding (RF) and compared to a continuously ad libitum fed control group. To study the impact of DR and RF on the liver transcriptome, a global gene expression profile was generated using microarray technology. In comparison, the DR group showed lower body weight, lower triglyceride and cholesterol levels, reduced lipid peroxidation, and a changed hepatic fatty acid pattern. mRNA transcription and activity of antioxidant and phase II enzymes, as well as metallothionein 1 gene expression, were increased and autophagy was induced. Shifting from long-term DR to RF abolished 96% of the DR-mediated changes in differential gene expression within 2 weeks, and after 6 months of refeeding all of the previously differentially expressed genes were similar in both groups. These results indicate that DR has to be maintained continuously to keep its beneficial effects.
Collapse
Affiliation(s)
- K Giller
- Institute of Human Nutrition and Food Science, Division of Food Science, Christian-Albrechts-University, 24118 Kiel, Germany
| | - P Huebbe
- Institute of Human Nutrition and Food Science, Division of Food Science, Christian-Albrechts-University, 24118 Kiel, Germany
| | - S Hennig
- ImaGenes GmbH, 13125 Berlin, Germany
| | - J Dose
- Institute of Human Nutrition and Food Science, Division of Food Science, Christian-Albrechts-University, 24118 Kiel, Germany
| | - K Pallauf
- Institute of Human Nutrition and Food Science, Division of Food Science, Christian-Albrechts-University, 24118 Kiel, Germany
| | - F Doering
- Institute of Human Nutrition and Food Science, Division of Molecular Prevention, Christian-Albrechts-University, 24118 Kiel, Germany
| | - G Rimbach
- Institute of Human Nutrition and Food Science, Division of Food Science, Christian-Albrechts-University, 24118 Kiel, Germany.
| |
Collapse
|
34
|
Ahn KJ, Lee HS, Bai SK, Song CW. Enhancement of radiation effect using beta-lapachone and underlying mechanism. Radiat Oncol J 2013; 31:57-65. [PMID: 23865001 PMCID: PMC3712174 DOI: 10.3857/roj.2013.31.2.57] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/26/2013] [Accepted: 06/04/2013] [Indexed: 01/29/2023] Open
Abstract
Beta-lapachone (β-Lap; 3,4-dihydro-2, 2-dimethyl-2H-naphthol[1, 2-b]pyran-5,6-dione) is a novel anti-cancer drug under phase I/II clinical trials. β-Lap has been demonstrated to cause apoptotic and necrotic death in a variety of human cancer cells in vitro and in vivo. The mechanisms underlying the β-Lap toxicity against cancer cells has been controversial. The most recent view is that β-Lap, which is a quinone compound, undergoes two-electron reduction to hydroquinone form utilizing NAD(P)H or NADH as electron source. This two-electron reduction of β-Lap is mediated by NAD(P)H:quinone oxidoreductase (NQO1), which is known to mediate the reduction of many quinone compounds. The hydroquinone forms of β-Lap then spontaneously oxidizes back to the original oxidized β-Lap, creating futile cycling between the oxidized and reduced forms of β-Lap. It is proposed that the futile recycling between oxidized and reduced forms of β-Lap leads to two distinct cell death pathways. First one is that the two-electron reduced β-Lap is converted first to one-electron reduced β-Lap, i.e., semiquinone β-Lap (SQ)(·-) causing production of reactive oxygen species (ROS), which then causes apoptotic cell death. The second mechanism is that severe depletion of NAD(P)H and NADH as a result of futile cycling between the quinone and hydroquinone forms of β-Lap causes severe disturbance in cellular metabolism leading to apoptosis and necrosis. The relative importance of the aforementioned two mechanisms, i.e., generation of ROS or depletion of NAD(P)H/NADH, may vary depending on cell type and environment. Importantly, the NQO1 level in cancer cells has been found to be higher than that in normal cells indicating that β-Lap may be preferentially toxic to cancer cells relative to non-cancer cells. The cellular level of NQO1 has been found to be significantly increased by divergent physical and chemical stresses including ionizing radiation. Recent reports clearly demonstrated that β-Lap and ionizing radiation kill cancer cells in a synergistic manner. Indications are that irradiation of cancer cells causes long-lasting elevation of NQO1, thereby sensitizing the cells to β-Lap. In addition, β-Lap has been shown to inhibit the repair of sublethal radiation damage. Treating experimental tumors growing in the legs of mice with irradiation and intraperitoneal injection of β-Lap suppressed the growth of the tumors in a manner more than additive. Collectively, β-Lap is a potentially useful anti-cancer drug, particularly in combination with radiotherapy.
Collapse
Affiliation(s)
- Ki Jung Ahn
- Department of Radiation Oncology, Inje University College of Medicine, Busan, Korea
| | | | | | | |
Collapse
|
35
|
Singh M, Kumar D, Yusuf MA, Sardar M, Sarin NB. Effects of wild-type and α-tocopherol-enriched transgenic Brassica juncea on the components of xenobiotic metabolism, antioxidant status, and oxidative stress in the liver of mice. Transgenic Res 2013; 22:813-22. [PMID: 23378163 DOI: 10.1007/s11248-013-9689-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/16/2013] [Indexed: 12/31/2022]
Abstract
Alpha (α)-tocopherol is the most biologically active and preferentially retained form of vitamin E in the human body and is known for its antioxidant and gene regulatory functions. Its increased intake is implicated in protection against diseases that involve an oxidative stress component. We have evaluated the chemopreventive potential of a diet supplemented with natural α-tocopherol-enriched transgenic (TR) Brassica juncea seeds. The modulation of phase I and phase II xenobiotic metabolism and of antioxidative enzymes was compared in the livers of mice fed on a control diet or on a diet supplemented with 2, 4, and 6 % (w/w) of wild-type (WT) or TR seeds. A dose-dependent increase in the specific activities of these enzymes was observed in those animals fed on diet supplemented with TR seeds. In comparison, an increase in the specific activities of antioxidative enzymes was substantial only at higher doses of WT seeds. Consequently, oxidative stress measured in terms of lipid peroxidation and lactate dehydrogenase activity was found to be lower in the case of mice fed with the supplemented diet. However, the chemopreventive potential of TR seeds was more pronounced than that of WT seeds. This study demonstrates the feasibility of fortifying diets with natural α-tocopherol for chemopreventive benefits by means of transgenic manipulation of a commonly used oilseed crop.
Collapse
Affiliation(s)
- Manju Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
36
|
The metabolism of 9-chloro-β-lapachone and its effects in isolated hepatocytes. The involvement of NAD(P)H:quinone oxidoreductase 1 (NQO1). Chem Biol Interact 2012; 200:84-91. [DOI: 10.1016/j.cbi.2012.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/31/2012] [Accepted: 09/19/2012] [Indexed: 11/21/2022]
|
37
|
Su XL, Yan MR, Yang L, Qimuge-Suyila. NQO1 C609T polymorphism correlated to colon cancer risk in farmers from western region of Inner Mongolia. Chin J Cancer Res 2012; 24:317-322. [DOI: 10.1007/s11670-012-0270-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
38
|
Su XL, Yan MR, Yang L. NQO1 C609T polymorphism correlated to colon cancer risk in farmers from western region of Inner Mongolia. Chin J Cancer Res 2012; 24:317-322. [PMID: 23358185 PMCID: PMC3551316 DOI: 10.3978/j.issn.1000-9604.2012.08.01] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 02/08/2012] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE To investigate the relationship between NAD(P)H:quinone oxidoreductase 1 (NQO1) C609T polymorphism and colon cancer risk in farmers from western region of Inner Mongolia. METHODS Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to analyze NQO1 C609T polymorphism from 160 healthy controls and 76 colon cancer patients. RESULTS Among the colon cancer patients, the incidence of NQO1 T allele (53.29%) was significantly higher than it in control group (33.75%, P<0.001). The individuals with NQO1 T allele had higher risk [2.239 (95% CI:
1.510-3.321) times] to develop colon cancer than individuals with NQO1 C allele. The incidence of NQO1
(T/T) (34.21%) in colon cancer patients was higher than that in control group (15.62%, P<0.001). Odds ratios (OR) analysis suggested that NQO1 (T/T) and NQO1 (T/C) genotype carriers had 3.813 (95% CI: 1.836-7.920) times and 2.080 (1.026-4.219) times risk compared with wild-type NQO1 (C/C) gene carriers in developing colon cancer. Individuals with NQO1 (T/T) genotype had 2.541 (95% CI: 0.990-6.552) times, 3.713 (95% CI: 1.542-8.935) times, and 3.471 (95% CI: 1.356-8.886) times risk than individuals with NQO1 (T/C) or NQO1 (C/C) genotype in well-differentiated, moderately-differentiated, and poorly-differentiated colon cancer patients, respectively. CONCLUSIONS NQO1 gene C609T could be one of risk factors of colon cancer in farmers from western region of Inner Mongolia.
Collapse
Affiliation(s)
- Xiu-Lan Su
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical College, Hohhot 010050, China
| | | | | |
Collapse
|
39
|
Kim J, Lee S, Shim J, Kim HW, Kim J, Jang YJ, Yang H, Park J, Choi SH, Yoon JH, Lee KW, Lee HJ. Caffeinated coffee, decaffeinated coffee, and the phenolic phytochemical chlorogenic acid up-regulate NQO1 expression and prevent H₂O₂-induced apoptosis in primary cortical neurons. Neurochem Int 2012; 60:466-74. [PMID: 22353630 DOI: 10.1016/j.neuint.2012.02.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 01/28/2012] [Accepted: 02/04/2012] [Indexed: 11/26/2022]
Abstract
Neurodegenerative disorders are strongly associated with oxidative stress, which is induced by reactive oxygen species including hydrogen peroxide (H₂O₂). Epidemiological studies have suggested that coffee may be neuroprotective, but the molecular mechanisms underlying this effect have not been clarified. In this study, we investigated the protective effects of caffeinated coffee, decaffeinated coffee, and the phenolic phytochemical chlorogenic acid (5-O-caffeoylquinic acid), which is present in both caffeinated and decaffeinated coffee, against oxidative neuronal death. H₂O₂-induced apoptotic nuclear condensation in neuronal cells was strongly inhibited by pretreatment with caffeinated coffee, decaffeinated coffee, or chlorogenic acid. Pretreatment with caffeinated coffee, decaffeinated coffee, or chlorogenic acid inhibited the H₂O₂-induced down-regulation of anti-apoptotic proteins Bcl-2 and Bcl-X(L) while blocking H₂O₂-induced pro-apoptotic cleavage of caspase-3 and pro-poly(ADP-ribose) polymerase. We also found that caffeinated coffee, decaffeinated coffee, and chlorogenic acid induced the expression of NADPH:quinine oxidoreductase 1 (NQO1) in neuronal cells, suggesting that these substances protect neurons from H₂O₂-induced apoptosis by up-regulation of this antioxidant enzyme. The neuroprotective efficacy of caffeinated coffee was similar to that of decaffeinated coffee, indicating that active compounds present in both caffeinated and decaffeinated coffee, such as chlorogenic acid, may drive the effects.
Collapse
Affiliation(s)
- Jiyoung Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Burke PJ, Chun Wong L, Jenkins TC, Knox RJ, Stanforth SP. The synthesis of 2-nitroaryl-1,2,3,4-tetrahydroisoquinolines, nitro-substituted 5,6-dihydrobenzimidazo[2,1-a]isoquinoline N-oxides and related heterocycles as potential bioreducible substrates for the enzymes NAD(P)H: quinone oxidoreductase 1 and E. coli nitroreductase. Bioorg Med Chem Lett 2011; 21:7447-50. [DOI: 10.1016/j.bmcl.2011.10.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/30/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
|
41
|
Reybier K, Perio P, Ferry G, Bouajila J, Delagrange P, Boutin JA, Nepveu F. Insights into the redox cycle of human quinone reductase 2. Free Radic Res 2011; 45:1184-95. [DOI: 10.3109/10715762.2011.605788] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Stiborová M, Mareš J, Frei E, Arlt VM, Martínek V, Schmeiser HH. The human carcinogen aristolochic acid i is activated to form DNA adducts by human NAD(P)H:quinone oxidoreductase without the contribution of acetyltransferases or sulfotransferases. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:448-459. [PMID: 21370283 DOI: 10.1002/em.20642] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/17/2010] [Indexed: 05/30/2023]
Abstract
Ingestion of aristolochic acid (AA) is associated with development of urothelial tumors linked with AA nephropathy and is implicated in the development of Balkan endemic nephropathy-associated urothelial tumors. We investigated the efficiency of human NAD(P)H:quinone oxidoreductase (NQO1) to activate aristolochic acid I (AAI) and used in silico docking, using soft-soft (flexible) docking procedure, to study the interactions of AAI with the active site of human NQO1. AAI binds to the active site of NQO1 indicating that the binding orientation allows for direct hydride transfer (i.e., two electron reductions) to the nitro group of AAI. NQO1 activated AAI, generating DNA adduct patterns reproducing those found in urothelial tissues from humans exposed to AA. Because reduced aromatic nitro-compounds are often further activated by sulfotransferases (SULTs) or N,O-acetlytransferases (NATs), their roles in AAI activation were investigated. Our results indicate that phase II reactions do not play a major role in AAI bioactivation; neither native enzymes present in human hepatic or renal cytosols nor human SULT1A1, -1A2, -1A3, -1E, or -2A nor NAT1 or NAT2 further enhanced DNA adduct formation by AAI. Instead under the in vitro conditions used, DNA adducts arise by enzymatic reduction of AAI through the formation of a cyclic hydroxamic acid (N-hydroxyaristolactam I) favored by the carboxy group in peri position to the nitro group without additional conjugation. These results emphasize the major importance of NQO1 in the metabolic activation of AAI and provide the first evidence that initial nitroreduction is the rate limiting step in AAI activation.
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Charles University, Albertov, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
43
|
Chen M, Gong L, Qi X, Xing G, Luan Y, Wu Y, Xiao Y, Yao J, Li Y, Xue X, Pan G, Ren J. Inhibition of Renal NQO1 Activity by Dicoumarol Suppresses Nitroreduction of Aristolochic Acid I and Attenuates its Nephrotoxicity. Toxicol Sci 2011; 122:288-96. [DOI: 10.1093/toxsci/kfr138] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Singh S, Vrishni S, Singh BK, Rahman I, Kakkar P. Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases. Free Radic Res 2011; 44:1267-88. [PMID: 20815789 DOI: 10.3109/10715762.2010.507670] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nrf2, a redox sensitive transcription factor, plays a pivotal role in redox homeostasis during oxidative stress. Nrf2 is sequestered in cytosol by an inhibitory protein Keap1 which causes its proteasomal degradation. In response to electrophilic and oxidative stress, Nrf2 is activated, translocates to nucleus, binds to antioxidant response element (ARE), thus upregulates a battery of antioxidant and detoxifying genes. This function of Nrf2 can be significant in the treatment of diseases, such as cancer, neurodegenerative, cardiovascular and pulmonary complications, where oxidative stress causes Nrf2 derangement. Nrf2 upregulating potential of phytochemicals has been explored, in facilitating cure for various ailments while, in cancer cells, Nrf2 upregulation causes chemoresistance. Therefore, Nrf2 emerges as a key regulator in oxidative stress-mediated diseases and Nrf2 silencing can open avenues in cancer treatment. This review summarizes Nrf2-ARE stress response mechanism and its role as a control point in oxidative stress-induced cellular dysfunctions including chronic inflammatory diseases.
Collapse
Affiliation(s)
- Shruti Singh
- Herbal Research Section, Indian Institute of Toxicology Research, CSIR, PO Box-80, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
45
|
Shah MD, Iqbal M. Diazinon-induced oxidative stress and renal dysfunction in rats. Food Chem Toxicol 2010; 48:3345-53. [DOI: 10.1016/j.fct.2010.09.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 08/04/2010] [Accepted: 09/01/2010] [Indexed: 11/30/2022]
|
46
|
Gan N, Mi L, Sun X, Dai G, Chung FL, Song L. Sulforaphane protects Microcystin-LR-induced toxicity through activation of the Nrf2-mediated defensive response. Toxicol Appl Pharmacol 2010; 247:129-37. [PMID: 20600217 PMCID: PMC3577422 DOI: 10.1016/j.taap.2010.06.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 06/07/2010] [Accepted: 06/09/2010] [Indexed: 01/07/2023]
Abstract
Microcystins (MCs), a cyclic heptapeptide hepatotoxins, are mainly produced by the bloom-forming cyanobacerium Microcystis, which has become an environmental hazard worldwide. Long term consumption of MC-contaminated water may induce liver damage, liver cancer, and even human death. Therefore, in addition to removal of MCs in drinking water, novel strategies that prevent health damages are urgently needed. Sulforaphane (SFN), a natural-occurring isothiocyanate from cruciferous vegetables, has been reported to reduce and eliminate toxicities from xenobiotics and carcinogens. The purpose of the present study was to provide mechanistic insights into the SFN-induced antioxidative defense system against MC-LR-induced cytotoxicity. We performed cell viability assays, including MTS assay, colony formation assay and apoptotic cell sorting, to study MC-LR-induced cellular damage and the protective effects by SFN. The results showed that SFN protected MC-LR-induced damages at a nontoxic and physiological relevant dose in HepG2, BRL-3A and NIH 3T3 cells. The protection was Nrf2-mediated as evident by transactivation of Nrf2 and activation of its downstream genes, including NQO1 and HO-1, and elevated intracellular GSH level. Results of our studies indicate that pretreatment of cells with 10muM SFN for 12h significantly protected cells from MC-LR-induced damage. SFN-induced protective response was mediated through Nrf2 pathway.
Collapse
Affiliation(s)
- Nanqin Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, CAS, People’s Republic of China
| | - Lixin Mi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Xiaoyun Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, CAS, People’s Republic of China
| | - Guofei Dai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, CAS, People’s Republic of China
| | - Fung-Lung Chung
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, CAS, People’s Republic of China
| |
Collapse
|
47
|
Gan N, Sun X, Song L. Activation of Nrf2 by Microcystin-LR Provides Advantages for Liver Cancer Cell Growth. Chem Res Toxicol 2010; 23:1477-84. [DOI: 10.1021/tx1001628] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nanqin Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, CAS, Wuhan 430072, People’s Republic of China
| | - Xiaoyun Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, CAS, Wuhan 430072, People’s Republic of China
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, CAS, Wuhan 430072, People’s Republic of China
| |
Collapse
|
48
|
An unexpected ring contraction of two nitroaryl pro-drugs: conversion of N-(nitroaryl)-3-chloropiperidine derivatives into N-(nitroaryl)-2-chloromethylpyrrolidines. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.05.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Soane L, Li Dai W, Fiskum G, Bambrick LL. Sulforaphane protects immature hippocampal neurons against death caused by exposure to hemin or to oxygen and glucose deprivation. J Neurosci Res 2010; 88:1355-63. [PMID: 19998483 DOI: 10.1002/jnr.22307] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative stress is a mediator of cell death following cerebral ischemia/reperfusion and heme toxicity, which can be an important pathogenic factor in acute brain injury. Induced expression of phase II detoxification enzymes through activation of the antioxidant response element (ARE)/Nrf2 pathway has emerged as a promising approach for neuroprotection. Little is known, however, about the neuroprotective potential of this strategy against injury in immature brain cells. In this study, we tested the hypothesis that sulforaphane (SFP), a naturally occurring isothiocyanate that is also a known activator of the ARE/Nrf2 antioxidant pathway, can protect immature neurons from oxidative stress-induced death. The hypothesis was tested with primary mouse hippocampal neurons exposed to either O(2) and glucose deprivation (OGD) or hemin. Treatment of immature neurons with SFP immediately after the OGD during reoxygenation was effective in protecting immature neurons from delayed cell death. Exposure of immature hippocampal neurons to hemin induced significant cell death, and both pre- and cotreatment with SFP were remarkably effective in blocking cytotoxicity. RT-PCR analysis indicated that several Nrf2-dependent cytoprotective genes, including NAD(P)H quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO1), and glutamate-cysteine ligase modifier subunit (GCLM), which is involved in glutathione biosynthesis, were up-regulated following SFP treatment both in control neurons and following exposure to OGD and hemin. These results indicate that SFP activates the ARE/Nrf2 pathway of antioxidant defense and protects immature neurons from death caused by stress paradigms relevant to those associated with ischemic and traumatic injury to the immature brain.
Collapse
Affiliation(s)
- Lucian Soane
- Department of Anesthesiology, Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
50
|
Seng S, Avraham HK, Birrane G, Jiang S, Avraham S. Nuclear matrix protein (NRP/B) modulates the nuclear factor (Erythroid-derived 2)-related 2 (NRF2)-dependent oxidative stress response. J Biol Chem 2010; 285:26190-8. [PMID: 20511222 DOI: 10.1074/jbc.m109.095786] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Reactive molecules have diverse effects on cells and contribute to several pathological conditions. Cells have evolved complex protective systems to neutralize these molecules and restore redox homeostasis. Previously, we showed that association of nuclear factor (NF)-erythroid-derived 2 (E2)-related factor 2 (NRF2) with the nuclear matrix protein NRP/B was essential for the transcriptional activity of NRF2 target genes in tumor cells. The present study demonstrates the molecular mechanism by which NRP/B, via NRF2, modulates the transcriptional activity of antioxidant response element (ARE)-driven genes. NRP/B is localized in the nucleus of primary brain tissue and human neuroblastoma (SH-SY5Y) cells. Treatment with hydrogen peroxide (H(2)O(2)) enhances the nuclear colocalization of NRF2 and NRP/B and induces heme oxygenase 1 (HO1). Treatment of NRP/B or NRF2 knockdowns with H(2)O(2) induced apoptosis. Co-expression of NRF2 with members of the Kelch protein family, NRP/B, MAYVEN, or MAYVEN-related protein 2 (MRP2), revealed that the NRF2-NRP/B complex is important for the transcriptional activity of ARE-driven genes HO1 and NAD(P)H:quinine oxidoreductase 1 (NQO1). NRP/B interaction with Nrf2 was mapped to NRF2 ECH homology 4 (Neh4)/Neh5 regions of NRF2. NRP/B mutations that resulted in low binding affinity to NRF2 were unable to activate NRF2-modulated transcriptional activity of the ARE-driven genes, HO1 and NQO1. Thus, the interaction of NRP/B with the Neh4/Neh5 domains of NRF2 is indispensable for activation of NRF2-mediated ARE-driven antioxidant and detoxifying genes that confer cellular defense against oxidative stress-induced damage.
Collapse
Affiliation(s)
- Seyha Seng
- Division of Experimental Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|