1
|
Szaefer H, Licznerska B, Baer-Dubowska W. The Aryl Hydrocarbon Receptor and Its Crosstalk: A Chemopreventive Target of Naturally Occurring and Modified Phytochemicals. Molecules 2024; 29:4283. [PMID: 39339278 PMCID: PMC11433792 DOI: 10.3390/molecules29184283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an environmentally sensitive transcription factor (TF) historically associated with carcinogenesis initiation via the activation of numerous carcinogens. Nowadays, the AhR has been attributed to multiple endogenous functions to maintain cellular homeostasis. Moreover, crosstalk, often reciprocal, has been found between the AhR and several other TFs, particularly estrogen receptors (ERs) and nuclear factor erythroid 2-related factor-2 (Nrf2). Adequate modulation of these signaling pathways seems to be an attractive strategy for cancer chemoprevention. Several naturally occurring and synthetically modified AhR or ER ligands and Nrf2 modulators have been described. Sulfur-containing derivatives of glucosinolates, such as indole-3-carbinol (I3C), and stilbene derivatives are particularly interesting in this context. I3C and its condensation product, 3,3'-diindolylmethane (DIM), are classic examples of blocking agents that increase drug-metabolizing enzyme activity through activation of the AhR. Still, they also affect multiple essential signaling pathways in preventing hormone-dependent cancer. Resveratrol is a competitive antagonist of several classic AhR ligands. Its analogs, with ortho-methoxy substituents, exert stronger antiproliferative and proapoptotic activity. In addition, they modulate AhR activity and estrogen metabolism. Their activity seems related to a number of methoxy groups introduced into the stilbene structure. This review summarizes the data on the chemopreventive potential of these classes of phytochemicals, in the context of AhR and its crosstalk modulation.
Collapse
Affiliation(s)
- Hanna Szaefer
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland; (B.L.); (W.B.-D.)
| | | | | |
Collapse
|
2
|
Chen Y, Wang Y, Fu Y, Yin Y, Xu K. Modulating AHR function offers exciting therapeutic potential in gut immunity and inflammation. Cell Biosci 2023; 13:85. [PMID: 37179416 PMCID: PMC10182712 DOI: 10.1186/s13578-023-01046-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a classical exogenous synthetic ligand of AHR that has significant immunotoxic effects. Activation of AHR has beneficial effects on intestinal immune responses, but inactivation or overactivation of AHR can lead to intestinal immune dysregulation and even intestinal diseases. Sustained potent activation of AHR by TCDD results in impairment of the intestinal epithelial barrier. However, currently, AHR research has been more focused on elucidating physiologic AHR function than on dioxin toxicity. The appropriate level of AHR activation plays a role in maintaining gut health and protecting against intestinal inflammation. Therefore, AHR offers a crucial target to modulate intestinal immunity and inflammation. Herein, we summarize our current understanding of the relationship between AHR and intestinal immunity, the ways in which AHR affects intestinal immunity and inflammation, the effects of AHR activity on intestinal immunity and inflammation, and the effect of dietary habits on intestinal health through AHR. Finally, we discuss the therapeutic role of AHR in maintaining gut homeostasis and relieving inflammation.
Collapse
Affiliation(s)
- Yue Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yadong Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yawei Fu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Kang Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
3
|
An overview of aryl hydrocarbon receptor ligands in the Last two decades (2002–2022): A medicinal chemistry perspective. Eur J Med Chem 2022; 244:114845. [DOI: 10.1016/j.ejmech.2022.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/21/2022]
|
4
|
Han H, Safe S, Jayaraman A, Chapkin RS. Diet-Host-Microbiota Interactions Shape Aryl Hydrocarbon Receptor Ligand Production to Modulate Intestinal Homeostasis. Annu Rev Nutr 2021; 41:455-478. [PMID: 34633858 PMCID: PMC8667662 DOI: 10.1146/annurev-nutr-043020-090050] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated basic-helix-loop-helix transcription factor that binds structurally diverse ligands and senses cues from environmental toxicants and physiologically relevant dietary/microbiota-derived ligands. The AhR is an ancient conserved protein and is widely expressed across different tissues in vertebrates and invertebrates. AhR signaling mediates a wide range of cellular functions in a ligand-, cell type-, species-, and context-specific manner. Dysregulation of AhR signaling is linked to many developmental defects and chronic diseases. In this review, we discuss the emerging role of AhR signaling in mediating bidirectional host-microbiome interactions. We also consider evidence showing the potential for the dietary/microbial enhancement ofhealth-promoting AhR ligands to improve clinical pathway management in the context of inflammatory bowel diseases and colon tumorigenesis.
Collapse
Affiliation(s)
- Huajun Han
- Program in Integrative Nutrition and Complex Diseases and Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA;
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Stephen Safe
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases and Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA;
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
5
|
Williams DE. Indoles Derived From Glucobrassicin: Cancer Chemoprevention by Indole-3-Carbinol and 3,3'-Diindolylmethane. Front Nutr 2021; 8:734334. [PMID: 34660663 PMCID: PMC8517077 DOI: 10.3389/fnut.2021.734334] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022] Open
Abstract
Hydrolysis of glucobrassicin by plant or bacterial myrosinase produces multiple indoles predominantly indole-3-carbinol (I3C). I3C and its major in vivo product, 3,3'-diindolylmethane (DIM), are effective cancer chemopreventive agents in pre-clinical models and show promise in clinical trials. The pharmacokinetics/pharmacodynamics of DIM have been studied in both rodents and humans and urinary DIM is a proposed biomarker of dietary intake of cruciferous vegetables. Recent clinical studies at Oregon State University show surprisingly robust metabolism of DIM in vivo with mono- and di-hydroxylation followed by conjugation with sulfate or glucuronic acid. DIM has multiple mechanisms of action, the most well-characterized is modulation of aryl hydrocarbon receptor (AHR) signaling. In rainbow trout dose-dependent cancer chemoprevention by dietary I3C is achieved when given prior to or concurrent with aflatoxin B1, polycyclic aromatic hydrocarbons, nitrosamines or direct acting carcinogens such as N-methyl-N'-nitro-nitrosoguanidine. Feeding pregnant mice I3C inhibits transplacental carcinogenesis. In humans much of the focus has been on chemoprevention of breast and prostate cancer. Alteration of cytochrome P450-dependent estrogen metabolism is hypothesized to be an important driver of DIM-dependent breast cancer prevention. The few studies done to date comparing glucobrassicin-rich crucifers such as Brussels sprouts with I3C/DIM supplements have shown the greater impact of the latter is due to dose. Daily ingestion of kg quantities of Brussels sprouts is required to produce in vivo levels of DIM achievable by supplementation. In clinical trials these supplement doses have elicited few if any adverse effects. Sulforaphane from glucoraphanin can act synergistically with glucobrassicin-derived DIM and this may lead to opportunities for combinatorial approaches (supplement and food-based) in the clinic.
Collapse
Affiliation(s)
- David E. Williams
- Department of Environmental and Molecular Toxicology, Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
6
|
Vermillion Maier ML, Siddens LK, Uesugi SL, Choi J, Leonard SW, Pennington JM, Tilton SC, Smith JN, Ho E, Chow HHS, Nguyen BD, Kolluri SK, Williams DE. 3,3'-Diindolylmethane Exhibits Significant Metabolism after Oral Dosing in Humans. Drug Metab Dispos 2021; 49:694-705. [PMID: 34035125 PMCID: PMC8407664 DOI: 10.1124/dmd.120.000346] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/07/2021] [Indexed: 01/07/2023] Open
Abstract
3,3'-Diindolylmethane (DIM), a major phytochemical derived from ingestion of cruciferous vegetables, is also a dietary supplement. In preclinical models, DIM is an effective cancer chemopreventive agent and has been studied in a number of clinical trials. Previous pharmacokinetic studies in preclinical and clinical models have not reported DIM metabolites in plasma or urine after oral dosing, and the pharmacological actions of DIM on target tissues is assumed to be solely via the parent compound. Seven subjects (6 males and 1 female) ranging from 26-65 years of age, on a cruciferous vegetable-restricted diet prior to and during the study, took 2 BioResponse DIM 150-mg capsules (45.3 mg DIM/capsule) every evening for one week with a final dose the morning of the first blood draw. A complete time course was performed with plasma and urine collected over 48 hours and analyzed by UPLC-MS/MS. In addition to parent DIM, two monohydroxylated metabolites and 1 dihydroxylated metabolite, along with their sulfate and glucuronide conjugates, were present in both plasma and urine. Results reported here are indicative of significant phase 1 and phase 2 metabolism and differ from previous pharmacokinetic studies in rodents and humans, which reported only parent DIM present after oral administration. 3-((1H-indole-3-yl)methyl)indolin-2-one, identified as one of the monohydroxylated products, exhibited greater potency and efficacy as an aryl hydrocarbon receptor agonist when tested in a xenobiotic response element-luciferase reporter assay using Hepa1 cells. In addition to competitive phytochemical-drug adverse reactions, additional metabolites may exhibit pharmacological activity highlighting the importance of further characterization of DIM metabolism in humans. SIGNIFICANCE STATEMENT: 3,3'-Diindolylmethane (DIM), derived from indole-3-carbinol in cruciferous vegetables, is an effective cancer chemopreventive agent in preclinical models and a popular dietary supplement currently in clinical trials. Pharmacokinetic studies to date have found little or no metabolites of DIM in plasma or urine. In marked contrast, we demonstrate rapid appearance of mono- and dihydroxylated metabolites in human plasma and urine as well as their sulfate and glucuronide conjugates. The 3-((1H-indole-3-yl)methyl)indolin-2-one metabolite exhibited significant aryl hydrocarbon receptor agonist activity, emphasizing the need for further characterization of the pharmacological properties of DIM metabolites.
Collapse
Affiliation(s)
- Monica L Vermillion Maier
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Lisbeth K Siddens
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Sandra L Uesugi
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Jaewoo Choi
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Scott W Leonard
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Jamie M Pennington
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Susan C Tilton
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Jordan N Smith
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Emily Ho
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - H H Sherry Chow
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Bach D Nguyen
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Siva K Kolluri
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - David E Williams
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| |
Collapse
|
7
|
Regulation of carcinogenesis and mediation through Wnt/β-catenin signaling by 3,3'-diindolylmethane in an enzalutamide-resistant prostate cancer cell line. Sci Rep 2021; 11:1239. [PMID: 33441906 PMCID: PMC7806813 DOI: 10.1038/s41598-020-80519-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/18/2020] [Indexed: 12/09/2022] Open
Abstract
Enzalutamide (ENZ) is an important drug used to treat castration-resistant prostate cancer (CRPC), which inhibits androgen receptor (AR) signaling. Previous study showed that 3,3′-diindolylmethane (DIM) is an AR antagonist that also inhibits Wnt signaling and epithelial-mesenchymal transition (EMT). To investigate whether combined treatment with ENZ and DIM can overcome ENZ resistance by regulating Wnt signaling to inhibit AR signaling and EMT in ENZ-resistant prostate cancer cells, 22Rv1 cells were cultured in normal medium and treated with ENZ, DIM, and DIM with ENZ. Exposure of ENZ-resistant cells to both DIM and ENZ significantly inhibited cell proliferation without cytotoxicity and invasion in comparison with the control. DIM significantly increased the E-cadherin expression and inhibited the expressions of Vimentin and Fibronectin, subsequently inhibiting EMT. Co-treatment with ENZ and DIM significantly increased the expressions of GSK3β and APC and decreased the β-catenin protein expression, causing inhibition of Wnt signaling and AR expression, it also significantly decreased the AR-v7 expression and down-regulated AR signaling. Via suppression of Wnt and AR signaling, co-treatment increased the E-cadherin and decreased the Vimentin and Fibronectin RNA and protein expressions, then inhibited EMT. Co-treatment with DIM and ENZ regulated Wnt signaling to reduce not only the AR expression, but also the AR-v7 expression, indicating suppression of EMT that inhibits cancer cell proliferation, invasion and migration to ameliorate ENZ resistance.
Collapse
|
8
|
Choudhary M, Malek G. The Aryl Hydrocarbon Receptor: A Mediator and Potential Therapeutic Target for Ocular and Non-Ocular Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21186777. [PMID: 32947781 PMCID: PMC7555571 DOI: 10.3390/ijms21186777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which senses environmental, dietary or metabolic signals to mount a transcriptional response, vital in health and disease. As environmental stimuli and metabolic products have been shown to impact the central nervous system (CNS), a burgeoning area of research has been on the role of the AHR in ocular and non-ocular neurodegenerative diseases. Herein, we summarize our current knowledge, of AHR-controlled cellular processes and their impact on regulating pathobiology of select ocular and neurodegenerative diseases. We catalogue animal models generated to study the role of the AHR in tissue homeostasis and disease pathogenesis. Finally, we discuss the potential of targeting the AHR pathway as a therapeutic strategy, in the context of the maladies of the eye and brain.
Collapse
Affiliation(s)
- Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, P.O. Box 3802, Durham, NC 27705, USA
- Correspondence: (M.C.); (G.M.)
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, P.O. Box 3802, Durham, NC 27705, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27705, USA
- Correspondence: (M.C.); (G.M.)
| |
Collapse
|
9
|
Amare DE, Bovee TF, Mulder PP, Hamers A, Hoogenboom RL. Acid condensation products of indole-3-carbinol and their in-vitro (anti)estrogenic, (anti)androgenic and aryl hydrocarbon receptor activities. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
10
|
Koper JEB, Kortekaas M, Loonen LMP, Huang Z, Wells JM, Gill CIR, Pourshahidi LK, McDougall G, Rowland I, Pereira-Caro G, Fogliano V, Capuano E. Aryl hydrocarbon Receptor activation during in vitro and in vivo digestion of raw and cooked broccoli (brassica oleracea var. Italica). Food Funct 2020; 11:4026-4037. [PMID: 32323699 DOI: 10.1039/d0fo00472c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Broccoli is rich in glucosinolates, which can be converted upon chewing and processing into Aryl hydrocarbon Receptor (AhR) ligands. Activation of AhR plays an important role in overall gut homeostasis but the role of broccoli processing on the generation of AhR ligands is still largely unknown. In this study, the effects of temperature, cooking method (steaming versus boiling), gastric pH and further digestion of broccoli on AhR activation were investigated in vitro and in ileostomy subjects. For the in vitro study, raw, steamed (t = 3 min and t = 6 min) and boiled (t = 3 min and t = 6 min) broccoli were digested in vitro with different gastric pH. In the in vivo ileostomy study, 8 subjects received a broccoli soup or a broccoli soup plus an exogenous myrosinase source. AhR activation was measured in both in vitro and in vivo samples by using HepG2-Lucia™ AhR reporter cells. Cooking broccoli reduced the AhR activation measured after gastric digestion in vitro, but no effect of gastric pH was found. Indole AhR ligands were not detected or detected at very low levels both after intestinal in vitro digestion and in the ileostomy patient samples, which resulted in no AhR activation. This suggests that the evaluation of the relevance of glucosinolates for AhR modulation in the gut cannot prescind from the way broccoli is processed, and that broccoli consumption does not necessarily produce substantial amounts of AhR ligands in the large intestine.
Collapse
Affiliation(s)
- Jonna E B Koper
- Wageningen University, Department of Agrotechnology & Food Sciences, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dolciami D, Ballarotto M, Gargaro M, López-Cara LC, Fallarino F, Macchiarulo A. Targeting Aryl hydrocarbon receptor for next-generation immunotherapies: Selective modulators (SAhRMs) versus rapidly metabolized ligands (RMAhRLs). Eur J Med Chem 2019; 185:111842. [PMID: 31727470 DOI: 10.1016/j.ejmech.2019.111842] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Aryl Hydrocarbon Receptor (AhR) constitutes a major network hub of genomic and non-genomic signaling pathways, connecting host's immune cells to environmental factors. It shapes innate and adaptive immune processes to environmental stimuli with species-, cell- and tissue-type dependent specificity. Although an ever increasing number of studies has thrust AhR into the limelight as attractive target for the development of next-generation immunotherapies, concerns exist on potential safety issues associated with small molecule modulation of the receptor. Selective AhR modulators (SAhRMs) and rapidly metabolized AhR ligands (RMAhRLs) are two classes of receptor agonists that are emerging as interesting lead compounds to bypass AhR-related toxicity in favor of therapeutic effects. In this article, we discuss SAhRMs and RMAhRLs reported in literature, covering concepts underlying their definitions, specific binding modes, structure-activity relationships and AhR-mediated functions.
Collapse
Affiliation(s)
- Daniela Dolciami
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy
| | - Marco Ballarotto
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Piazz.le Gambuli, 1, 06132, Perugia, Italy
| | - Luisa Carlota López-Cara
- Department of Pharmaceutical & Organic Chemistry, Faculty of Pharmacy, University of Granada, 18010, Granada, Spain
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Piazz.le Gambuli, 1, 06132, Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy.
| |
Collapse
|
12
|
Lamas B, Natividad JM, Sokol H. Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol 2018; 11:1024-1038. [PMID: 29626198 DOI: 10.1038/s41385-018-0019-2] [Citation(s) in RCA: 335] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 02/04/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is a member of the basic helix-loop-helix-(bHLH) superfamily of transcription factors, which are associated with cellular responses to environmental stimuli, such as xenobiotics and oxygen levels. Unlike other members of bHLH, AhR is the only bHLH transcription factor that is known to be ligand activated. Early AhR studies focused on understanding the role of AhR in mediating the toxicity and carcinogenesis properties of the prototypic ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In recent years, however, it has become apparent that, in addition to its toxicological involvement, AhR is highly receptive to a wide array of endogenous and exogenous ligands, and that its activation leads to a myriad of key host physiological functions. In this study, we review the current understanding of the functions of AhR in the mucosal immune system with a focus on its role in intestinal barrier function and intestinal immune cells, as well as in intestinal homeostasis.
Collapse
Affiliation(s)
- Bruno Lamas
- Laboratoire de biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL Research University, CNRS, INSERM, AP-HP, Hôpital Saint-Antoine, Paris, F-75005, France.,Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, 78350, France
| | - Jane M Natividad
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, 78350, France
| | - Harry Sokol
- Laboratoire de biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL Research University, CNRS, INSERM, AP-HP, Hôpital Saint-Antoine, Paris, F-75005, France. .,Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, 78350, France.
| |
Collapse
|
13
|
Microwave-Assisted Synthesis of Benzimidazole-Linked Indoline and Indole Hybrids from C-2 Linked (o
-Aminobenzyl)benzimidazoles. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Preliminary SAR on indole-3-carbinol and related fragments reveals a novel anticancer lead compound against resistant glioblastoma cells. Bioorg Med Chem Lett 2017; 27:1561-1565. [DOI: 10.1016/j.bmcl.2017.02.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/17/2022]
|
15
|
Zamaratskaia G, Thøgersen R, Čandek-Potokar M, Rasmussen MK. Co-treatment with indole-3-carbinol and resveratrol modify porcine CYP1A and CYP3A activities and expression. Xenobiotica 2017; 48:232-240. [DOI: 10.1080/00498254.2017.1300708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Galia Zamaratskaia
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden,
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic,
| | | | - Marjeta Čandek-Potokar
- Agricultural Institute of Slovenia, Ljubljana, Slovenia, and
- Faculty of Agriculture and Life Sciences, University of Maribor, Hoče, Slovenia
| | | |
Collapse
|
16
|
Murray IA, Perdew GH. Ligand activation of the Ah receptor contributes to gastrointestinal homeostasis. CURRENT OPINION IN TOXICOLOGY 2017; 2:15-23. [PMID: 28944314 DOI: 10.1016/j.cotox.2017.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Ah receptor (AHR) is capable of binding a structurally diverse group of compounds that can be found in the diet, produced by bacteria in the gut and through endogenous metabolism. The gastrointestinal tract is a rich source of AHR ligands, which have been shown to protect the gut upon challenge with either pathogenic bacteria or toxic chemicals. The human AHR can be activated by a broader range of ligands compared to the mouse AHR, suggesting that studies in mice may underestimate the impact of AHR ligands in the human gut. The protective effect of AHR activation appears to be due to modulating the immune system within the gut. While several mechanisms have been established, due to the increasingly pleotropic nature of the AHR, other mechanisms of action likely exist that remain to be identified. The major contributors to AHR function in the gut and the most appropriate level of receptor activation that maintains intestinal homeostasis warrants further investigation.
Collapse
Affiliation(s)
- Iain A Murray
- Department of Veterinary and Biomedical Sciences, and Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA 16802
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, and Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA 16802
| |
Collapse
|
17
|
Thomson CA, Ho E, Strom MB. Chemopreventive properties of 3,3'-diindolylmethane in breast cancer: evidence from experimental and human studies. Nutr Rev 2016; 74:432-43. [PMID: 27261275 DOI: 10.1093/nutrit/nuw010] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diet is a modifiable factor associated with the risk of several cancers, with convincing evidence showing a link between diet and breast cancer. The role of bioactive compounds of food origin, including those found in cruciferous vegetables, is an active area of research in cancer chemoprevention. This review focuses on 3,3'-diindolylmethane (DIM), the major bioactive indole in crucifers. Research of the cancer-preventive activity of DIM has yielded basic mechanistic, animal, and human trial data. Further, this body of evidence is largely supported by observational studies. Bioactive DIM has demonstrated chemopreventive activity in all stages of breast cancer carcinogenesis. This review describes current evidence related to the metabolism and mechanisms of DIM involved in the prevention of breast cancer. Importantly, this review also focuses on current evidence from human observational and intervention trials that have contributed to a greater understanding of exposure estimates that will inform recommendations for DIM intake.
Collapse
Affiliation(s)
- Cynthia A Thomson
- Cynthia A. Thomson is with the Mel & Enid Zuckerman College of Public Health, the University of Arizona Cancer Center, and the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA. Emily Ho is with the Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, and the Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA. Meghan B. Strom is with the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA.
| | - Emily Ho
- Cynthia A. Thomson is with the Mel & Enid Zuckerman College of Public Health, the University of Arizona Cancer Center, and the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA. Emily Ho is with the Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, and the Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA. Meghan B. Strom is with the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
| | - Meghan B Strom
- Cynthia A. Thomson is with the Mel & Enid Zuckerman College of Public Health, the University of Arizona Cancer Center, and the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA. Emily Ho is with the Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, and the Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA. Meghan B. Strom is with the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
18
|
The Effects of a Multi-Ingredient Performance Supplement on Hormonal Profiles and Body Composition in Male College Athletes. Sports (Basel) 2016; 4:sports4020026. [PMID: 29910274 PMCID: PMC5968923 DOI: 10.3390/sports4020026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 11/17/2022] Open
Abstract
Periods of intense training can elicit an acute decline in performance and body composition associated with weakened hormone profiles. This study investigated the effects of a multi-ingredient performance supplement (MIPS) on body composition and hormone levels in college athletes following a six-week training protocol. Twenty male college athletes were equally assigned to MIPS and placebo (PLA) groups for supplementation (three pills, twice daily) in conjunction with resistance training and specialized sports training (e.g., nine total sessions/week) for six weeks. Dual Energy X-ray Absorptiometry determined body composition at weeks 0 and 6. Serum samples collected at weeks 0 and 6 determined free testosterone (FT), total testosterone (TT), IGF-1 and total estrogen (TE) levels. PLA experienced a significant decline in lean body mass (LBM) (−1.5 kg; p < 0.05) whereas the MIPS sustained LBM. The MIPS increased TT 21.9% (541.5 ± 48.7 to 639.1 ± 31.7) and increased FT 15.2% (13.28 ± 1.1 to 15.45 ± 1.3 ng/dL) (p < 0.05). Conversely, PLA decreased TT 7.9% (554.5 ± 43.3 to 497.2 ± 39.1 ng/dL), decreased FT 17.4% (13.41 ± 1.8 to 11.23 ± 2.55 ng/dL), and decreased FT:E 12.06% (p < 0.05). These findings suggest the MIPS can prevent decrements in LBM and anabolic hormone profiles during intense training periods.
Collapse
|
19
|
Quercetin-6-C-β-d-glucopyranoside, natural analog of quercetin exhibits anti-prostate cancer activity by inhibiting Akt-mTOR pathway via aryl hydrocarbon receptor. Biochimie 2015; 119:68-79. [DOI: 10.1016/j.biochi.2015.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/12/2015] [Indexed: 12/16/2022]
|
20
|
Rzemieniec J, Litwa E, Wnuk A, Lason W, Krzeptowski W, Kajta M. Selective Aryl Hydrocarbon Receptor Modulator 3,3'-Diindolylmethane Impairs AhR and ARNT Signaling and Protects Mouse Neuronal Cells Against Hypoxia. Mol Neurobiol 2015; 53:5591-606. [PMID: 26476840 DOI: 10.1007/s12035-015-9471-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/01/2015] [Indexed: 01/01/2023]
Abstract
The neuroprotective potential of 3,3'-diindolylmethane (DIM), which is a selective aryl hydrocarbon receptor modulator, has recently been shown in cellular and animal models of Parkinson's disease and lipopolysaccharide-induced inflammation. However, there are no data concerning the protective capacity and mechanisms of DIM action in neuronal cells exposed to hypoxia. The aim of the present study was to investigate the neuroprotective potential of DIM against the hypoxia-induced damage in mouse hippocampal cells in primary cultures, with a particular focus on DIM interactions with the aryl hydrocarbon receptor (AhR), its nuclear translocator ARNT, and estrogen receptor β (ERβ). In the present study, 18 h of hypoxia induced apoptotic processes, in terms of the mitochondrial membrane potential, activation of caspase-3, and fragmentation of cell nuclei. These effects were accompanied by substantial lactate dehydrogenase release and neuronal cell death. The results of the present study demonstrated strong neuroprotective and anti-apoptotic actions of DIM in hippocampal cells exposed to hypoxia. In addition, DIM decreased the Ahr and Arnt mRNA expression and stimulated Erβ mRNA expression level. DIM-induced mRNA alterations were mirrored by changes in protein levels, except for ERβ, as detected by ELISA, Western blotting, and immunofluorescence labeling. We also demonstrated that DIM decreased the expression of AhR-regulated CYP1A1. Using specific siRNAs, we provided evidence that impairment of AhR and ARNT, but not ERβ plays a key role in the neuroprotective action of DIM against hypoxia-induced cell damage. This study may have implication for identifying new agents that could protect neurons against hypoxia by targeting AhR/ARNT signaling.
Collapse
Affiliation(s)
- J Rzemieniec
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - E Litwa
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - A Wnuk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - W Lason
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - W Krzeptowski
- Department of Cell Biology and Imaging, Confocal Microscopy Laboratory, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387, Krakow, Poland
| | - M Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland.
| |
Collapse
|
21
|
Hubbard TD, Murray IA, Perdew GH. Indole and Tryptophan Metabolism: Endogenous and Dietary Routes to Ah Receptor Activation. Drug Metab Dispos 2015; 43:1522-35. [PMID: 26041783 PMCID: PMC4576673 DOI: 10.1124/dmd.115.064246] [Citation(s) in RCA: 416] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor recognized for its role in xenobiotic metabolism. The physiologic function of AHR has expanded to include roles in immune regulation, organogenesis, mucosal barrier function, and the cell cycle. These functions are likely dependent upon ligand-mediated activation of the receptor. High-affinity ligands of AHR have been classically defined as xenobiotics, such as polychlorinated biphenyls and dioxins. Identification of endogenous AHR ligands is key to understanding the physiologic functions of this enigmatic receptor. Metabolic pathways targeting the amino acid tryptophan and indole can lead to a myriad of metabolites, some of which are AHR ligands. Many of these ligands exhibit species selective preferential binding to AHR. The discovery of specific tryptophan metabolites as AHR ligands may provide insight concerning where AHR is activated in an organism, such as at the site of inflammation and within the intestinal tract.
Collapse
Affiliation(s)
- Troy D Hubbard
- Graduate Program in Biochemistry, Microbiology, and Molecular Biology (T.D.H.), and Center for Molecular Toxicology and Carcinogenesis and the Department of Veterinary and Biomedical Sciences (T.D.H., I.A.M., G.H.P)., Pennsylvania State University, University Park, Pennsylvania
| | - Iain A Murray
- Graduate Program in Biochemistry, Microbiology, and Molecular Biology (T.D.H.), and Center for Molecular Toxicology and Carcinogenesis and the Department of Veterinary and Biomedical Sciences (T.D.H., I.A.M., G.H.P)., Pennsylvania State University, University Park, Pennsylvania
| | - Gary H Perdew
- Graduate Program in Biochemistry, Microbiology, and Molecular Biology (T.D.H.), and Center for Molecular Toxicology and Carcinogenesis and the Department of Veterinary and Biomedical Sciences (T.D.H., I.A.M., G.H.P)., Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
22
|
Szaefer H, Krajka-Kuźniak V, Licznerska B, Bartoszek A, Baer-Dubowska W. Cabbage Juices and Indoles Modulate the Expression Profile of AhR, ERα, and Nrf2 in Human Breast Cell Lines. Nutr Cancer 2015; 67:1342-54. [DOI: 10.1080/01635581.2015.1082111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Yoshida K, Ushida Y, Ishijima T, Suganuma H, Inakuma T, Yajima N, Abe K, Nakai Y. Broccoli sprout extract induces detoxification-related gene expression and attenuates acute liver injury. World J Gastroenterol 2015; 21:10091-10103. [PMID: 26401074 PMCID: PMC4572790 DOI: 10.3748/wjg.v21.i35.10091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/25/2015] [Accepted: 07/03/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of broccoli sprout extract (BSEx) on liver gene expression and acute liver injury in the rat.
METHODS: First, the effects of BSEx on liver gene expression were examined. Male rats were divided into two groups. The Control group was fed the AIN-76 diet, and the BSEx group was fed the AIN-76 diet containing BSEx. After a 10-d feeding period, rats were sacrificed and their livers were used for DNA microarray and real-time reverse transcription-polymerase chain reaction (RT-PCR) analyses. Next, the effects of BSEx on acute liver injury were examined. In experiments using acute liver injury models, 1000 mg/kg acetaminophen (APAP) or 350 mg/kg D-galactosamine (D-GalN) was used to induce injury. These male rats were divided into four groups: Control, BSEx, Inducer (APAP or D-GalN), and Inducer+BSEx. The feeding regimens were identical for the two analyses. Twenty-four hours following APAP administration via p.o. or D-GalN administration via i.p., rats were sacrificed to determine serum aspartate transaminase (AST) and alanine transaminase (ALT) levels, hepatic glutathione (GSH) and thiobarbituric acid-reactive substances accumulation and glutathione-S-transferase (GST) activity.
RESULTS: Microarray and real-time RT-PCR analyses revealed that BSEx upregulated the expression of genes related to detoxification and glutathione synthesis in normal rat liver. The levels of AST (70.91 ± 15.74 IU/mL vs 5614.41 ± 1997.83 IU/mL, P < 0.05) and ALT (11.78 ± 2.08 IU/mL vs 1297.71 ± 447.33 IU/mL, P < 0.05) were significantly suppressed in the APAP + BSEx group compared with the APAP group. The level of GSH (2.61 ± 0.75 nmol/g tissue vs 1.66 ± 0.59 nmol/g tissue, P < 0.05) and liver GST activity (93.19 ± 16.55 U/g tissue vs 51.90 ± 16.85 U/g tissue, P < 0.05) were significantly increased in the APAP + BSEx group compared with the APAP group. AST (4820.05 ± 3094.93 IU/mL vs 12465.63 ± 3223.97 IU/mL, P < 0.05) and ALT (1808.95 ± 1014.04 IU/mL vs 3936.46 ± 777.52 IU/mL, P < 0.05) levels were significantly suppressed in the D-GalN + BSEx group compared with the D-GalN group, but the levels of AST and ALT in the D-GalN + BSEx group were higher than those in the APAP + BSEx group. The level of GST activity was significantly increased in the D-GalN + BSEx group compared with the D-GalN group (98.04 ± 15.75 U/g tissue vs 53.15 ± 8.14 U/g tissue, P < 0.05).
CONCLUSION: We demonstrated that BSEx protected the liver from various types of xenobiotic substances through induction of detoxification enzymes and glutathione synthesis.
Collapse
|
24
|
Pondugula SR, Flannery PC, Abbott KL, Coleman ES, Mani S, Samuel T, Xie W. Diindolylmethane, a naturally occurring compound, induces CYP3A4 and MDR1 gene expression by activating human PXR. Toxicol Lett 2014; 232:580-9. [PMID: 25542144 DOI: 10.1016/j.toxlet.2014.12.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/08/2014] [Accepted: 12/20/2014] [Indexed: 11/24/2022]
Abstract
Activation of human pregnane X receptor (hPXR)-regulated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1) plays an important role in mediating adverse drug interactions. Given the common use of natural products as part of adjunct human health behavior, there is a growing concern about natural products for their potential to induce undesired drug interactions through the activation of hPXR-regulated CYP3A4 and MDR1. Here, we studied whether 3,3'-diindolylmethane (DIM), a natural health supplement, could induce hPXR-mediated regulation of CYP3A4 and MDR1 in human hepatocytes and intestinal cells. DIM, at its physiologically relevant concentrations, not only induced hPXR transactivation of CYP3A4 promoter activity but also induced gene expression of CYP3A4 and MDR1. DIM decreased intracellular accumulation of MDR1 substrate rhodamine 123, suggesting that DIM induces the functional expression of MDR1. Pharmacologic inhibition or genetic knockdown of hPXR resulted in attenuation of DIM induced CYP3A4 and MDR1 gene expression, suggesting that DIM induces CYP3A4 and MDR1 in an hPXR-dependent manner. Together, these results support our conclusion that DIM induces hPXR-regulated CYP3A4 and MDR1 gene expression. The inductive effects of DIM on CYP3A4 and MDR1 expression caution the use of DIM in conjunction with other medications metabolized and transported via CYP3A4 and MDR1, respectively.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, United States.
| | - Patrick C Flannery
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, United States
| | - Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, United States
| | - Elaine S Coleman
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States
| | - Sridhar Mani
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, United States
| | - Temesgen Samuel
- Department of Pathobiology, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University, AL, United States
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
25
|
Schneider AJ, Branam AM, Peterson RE. Intersection of AHR and Wnt signaling in development, health, and disease. Int J Mol Sci 2014; 15:17852-85. [PMID: 25286307 PMCID: PMC4227194 DOI: 10.3390/ijms151017852] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/04/2014] [Accepted: 09/18/2014] [Indexed: 12/16/2022] Open
Abstract
The AHR (aryl hydrocarbon receptor) and Wnt (wingless-related MMTV integration site) signaling pathways have been conserved throughout evolution. Appropriately regulated signaling through each pathway is necessary for normal development and health, while dysregulation can lead to developmental defects and disease. Though both pathways have been vigorously studied, there is relatively little research exploring the possibility of crosstalk between these pathways. In this review, we provide a brief background on (1) the roles of both AHR and Wnt signaling in development and disease, and (2) the molecular mechanisms that characterize activation of each pathway. We also discuss the need for careful and complete experimental evaluation of each pathway and describe existing research that explores the intersection of AHR and Wnt signaling. Lastly, to illustrate in detail the intersection of AHR and Wnt signaling, we summarize our recent findings which show that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced disruption of Wnt signaling impairs fetal prostate development.
Collapse
Affiliation(s)
- Andrew J Schneider
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| | - Amanda M Branam
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| | - Richard E Peterson
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
26
|
Chronic direct renin inhibition with aliskiren prevents the development of hypertension in Cyp1a1-Ren2 transgenic rats with inducible ANG II-dependent hypertension. Am J Med Sci 2013; 344:301-6. [PMID: 22261625 DOI: 10.1097/maj.0b013e3182410d1e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION This study was performed to determine whether chronic direct renin inhibition can prevent the development of slowly progressive angiotensin (ANG) II-dependent hypertension and the associated derangements in renal function in Cyplal-Ren2 transgenic rats with inducible expression of the Ren2 gene. METHODS Male Cyplal-Ren2 rats (n = 6) were fed a normal diet containing 0.15% indole-3-carbinol (I3C) for 16 days to induce slowly progressive ANG II-dependent hypertension. Conscious systolic blood pressure was measured daily using tail-cuff plethysmography. The rats were then anesthetized with pentobarbital sodium and surgically prepared for the measurement of mean arterial pressure (MAP) and renal hemodynamics and excretory function. RESULTS In rats induced with I3C, systolic blood pressure increased by day 3 (130 ± 7-160 ± 5 mm Hg, P < 0.01) and continued to increase to 191 ± 6 mm Hg (P < 0.001) by day 16. In a separate group of rats (n = 6), chronic administration of the direct renin inhibitor, aliskiren (30 mg/kg/d, sc), prevented the development of hypertension (113 ± 5 versus 114 ± 5 mm Hg, not significant). Rats treated with aliskiren exhibited significantly lower mean arterial pressure (138 ± 4 versus 201 ± 6 mm Hg, P < 0.001), renal vascular resistance (23 ± 4 versus 38 ± 3 mm Hg/mL/min · g, P < 0.01), urine flow (17.6 ± 1.4 versus 25.1 ± 2.9 μL/min, P < 0.05) and urinary sodium excretion (1.11 ± 0.32 versus 2.35 ± 0.28 μEq/min, P < 0.05) and higher renal plasma flow (4.22 ± 0.23 versus 2.56 ± 0.21 mL/min · g, P < 0.01) and glomerular filtration rate (1.19 ± 0.07 versus 0.78 ± 0.08 mL/min · g, P< 0.01), compared with induced rats not treated chronically with aliskiren. CONCLUSIONS The present findings demonstrate that chronic direct renin inhibition with aliskiren prevents the development of ANG II-dependent hypertension and the associated derangements in renal hemodynamics and excretory function in Cyplal-Ren2 transgenic rats.
Collapse
|
27
|
Quantitative determination of anticancer compounds in aerial parts of some plants from the family brassicaceae. Pharm Chem J 2012. [DOI: 10.1007/s11094-012-0798-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Yin XF, Chen J, Mao W, Wang YH, Chen MH. A selective aryl hydrocarbon receptor modulator 3,3'-Diindolylmethane inhibits gastric cancer cell growth. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:46. [PMID: 22592002 PMCID: PMC3403951 DOI: 10.1186/1756-9966-31-46] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/16/2012] [Indexed: 12/20/2022]
Abstract
Background Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor associated with gastric carcinogenesis. 3,3'-Diindolylmethane (DIM) is a relatively non-toxic selective AhR modulator. This study was to detect the effects of DIM on gastric cancer cell growth. Methods Gastric cancer cell SGC7901 was treated with DIM at different concentrations (0,10,20,30,40,50 μmol/L) with or without an AhR antagonist, resveratrol. The expression of AhR and Cytochrome P4501A1 (CYP1A1), a classic target gene of AhR pathway, were detected by RT-PCR and Western blot; cell viability was measured by MTT assay, and the changes in cell cycle and apoptosis were analyzed by flow cytometry. Results RT-PCR and western-blot showed that with the increase of the concentration of DIM, AhR protein gradually decreased and CYP1A1 expression increased, suggesting that DIM activated the AhR pathway and caused the translocation of AhR from cytoplasm to nucleus. MTT assay indicated that the viability of SGC7901 cells was significantly decreased in a concentration- and time-dependent manner after DIM treatment and this could be partially reversed by resveratrol. Flow cytometry analysis showed that DIM arrested cell cycle in G1 phase and induced cell apoptosis. Conclusion Selective aryl hydrocarbon receptor modulator 3,3'-Diindolylmethane inhibits SGC7901 cell proliferation by inducing apoptosis and delaying cell cycle progression. AhR may be a potential therapeutic target for gastric cancer treatment.
Collapse
Affiliation(s)
- Xiao-Fei Yin
- Department of Gastroenterology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
29
|
Reding KW, Atkinson C, Westerlind KC, Stanczyk F, Bowles EJA, Yong M, Newton KM, Lampe JW. Fruit intake associated with urinary estrogen metabolites in healthy premenopausal women. OPEN JOURNAL OF PREVENTIVE MEDICINE 2012; 2. [PMID: 24307982 DOI: 10.4236/ojpm.2012.21001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Urinary concentrations of 2:16-hydroxyestrone (2:16-OHE1) approximate concentrations of 2-OHE1 and 16α -OHE1 in breast tissue. As estrogens are purported to be involved in breast cancer development, the 2:16-OHE1 ratio can provide an indication of estrogen metabolite exposure in the breast. With prior studies observing associations between urinary estrogen metabolites and dietary intake of fruits, vegetables, and fiber ascertained from food questionnaires, we examined associations between dietary factors ascertained through 3-day food records and urinary 2:16-OHE1 in 191 pre-menopausal healthy women. Fruit consumption was positively associated with 2:16-OHE1 after adjustment for total energy, ethnicity, body mass index, parity, smoking history, and serum estradiol (p= 0.003). Fruit consumption was positively associated with 2- OHE1 concentrations (p=0.006), but was not associated with 16α-OHE1 (p=0.92). The Musaceae botanical grouping (comprised primarily of bananas) was positively associated with the 2:16-OHE1 ratio, and Rosaceae (comprised of citrus fruits) and Musaceae botanical groupings were positively associated with 2-OHE1 (but not 16α-OHE1) concentrations, after adjustment for confounders. Our data suggest that dietary fruit intake is associated with urinary 2- OHE1 and the 2:16-OHE1 ratio and that breast tissue exposure to estrogen metabolites may thus be influenced by diet.
Collapse
Affiliation(s)
- Kerryn W Reding
- School of Nursing, University of Washington, Seattle, WA, USA ; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Boyle MC, Crabbs TA, Wyde ME, Painter JT, Hill GD, Malarkey DE, Lieuallen WG, Nyska A. Intestinal lymphangiectasis and lipidosis in rats following subchronic exposure to indole-3-carbinol via oral gavage. Toxicol Pathol 2012; 40:561-76. [PMID: 22328411 DOI: 10.1177/0192623311436178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To investigate the toxicity and carcinogenic potential of indole-3-carbinol (I3C), the National Toxicology Program has conducted 13-week subchronic studies in Fisher 344 rats and B6C3F1 mice, and chronic 2-year bioassays in Sprague-Dawley rats and B6C3F1 mice. While the chronic study results are not yet available, subchronic study results and short-term special evaluations of interim sacrifices in the 2-year rat bioassay are presented. F344 rats were orally gavaged ≤300 mg I3C/kg body weight 5 days a week for 13 weeks. Rats treated with ≥150 mg/kg demonstrated a dose-related dilation of lymphatics (lymphangiectasis) of the duodenum, jejunum, and mesenteric lymph nodes. Material within dilated lacteals stained positively for Oil Red O and Sudan Black, consistent with lipid. Electron microscopic evaluation confirmed extracellular lipid accumulation within the villar lamina propria, lacteals, and within villar macrophages. Analyses of hepatic and pulmonary CYP1A enzymes demonstrated dose-dependent I3C induction of CYP1A1 and 1A2. B6C3F1 mice orally gavaged ≤250 mg I3C/kg body weight did not demonstrate histopathological changes; however, hepatic CYP induction was similar to that in rats. The histopathologic changes of intestinal lymphangiectasis and lipidosis in this study share similarities with intestinal lymphangiectasia as observed in humans and dogs. However, the resultant clinical spectrum of protein-losing enteropathy was not present.
Collapse
Affiliation(s)
- Michael C Boyle
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Patel AR, Spencer SD, Chougule MB, Safe S, Singh M. Pharmacokinetic evaluation and in vitro-in vivo correlation (IVIVC) of novel methylene-substituted 3,3' diindolylmethane (DIM). Eur J Pharm Sci 2012; 46:8-16. [PMID: 22342559 DOI: 10.1016/j.ejps.2012.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 01/02/2012] [Accepted: 01/30/2012] [Indexed: 11/24/2022]
Abstract
PURPOSE 3,3'-Diindolylmethane (DIM) is the major in vivo product of the acid-catalyzed oligomerization of indole-3-carbinol present in cruciferous vegetables. 1, 1-bis (3'-indolyl)-1-(p-substituted phenyl) methanes [C-substituted diindolylmethanes (C-DIMs)] are a new class of anticancer compounds derived from indole 3-carbinol. Despite rapidly increasing knowledge regarding mechanisms responsible for the chemopreventive properties of DIM-C-pPhC6H5, there have been relatively few studies determining the absorption and pharmacokinetic properties of DIM-C-pPhC6H5 to explore its clinical utility. METHODS In this study, we assessed the solubility, lipophilicity and Caco-2 cell permeability of methylene-substituted DIM. Pharmacokinetic properties in rats were determined following i.v. and oral administration of a novel analog of DIM. Pharmacokinetic parameters were determined using non-compartmental and compartmental techniques with WinNonlin® 5.0 software. To explore potential In Vitro-In Vivo Correlation (IVIVC) between the in vitro permeability values, and the oral absorption pharmacokinetics, we employed deconvolution of i.v. and oral data using a three compartment Exact Loo-Riegelman method. RESULTS The oral absorption and disposition were described by a three compartment model with combined zero-order/Michaelis-Menten limited systemic uptake using differential equations, at physiologically relevant doses. The saturation model obtained accounts for a nonlinear change in C(max)/Dose, and the absolute bioavailability (0.13±0.06) was also dose dependent. The absorption rate profile of DIM-C-pPhC6H5 across Caco-2 cells was significantly different than in vivo. CONCLUSIONS The pharmacokinetic absorption model presented represents a useful basis for obtaining plasma level predictability for poorly bioavailable, highly lipophilic drugs, such as the DIM analog DIM-C-pPhC6H5.
Collapse
Affiliation(s)
- Apurva R Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, FL 32307, USA
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Controlled systemic delivery by polymeric implants enhances tissue and plasma curcumin levels compared with oral administration. Eur J Pharm Biopharm 2011; 80:571-7. [PMID: 22227368 DOI: 10.1016/j.ejpb.2011.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/15/2011] [Accepted: 12/19/2011] [Indexed: 12/31/2022]
Abstract
Curcumin possesses potent anti-inflammatory and anti-proliferative activities but with poor biopharmaceutical attributes. To overcome these limitations, curcumin implants were developed and tissue (plasma, brain and liver) curcumin concentrations were measured in female ACI rats for 3 months. Biological efficacy of tissue levels achieved was analyzed by modulation of hepatic cytochromes. Curcumin implants exhibited diffusion-mediated biphasic release pattern with ∼2-fold higher in vivo release as compared to in vitro. Plasma curcumin concentration from implants was ∼3.3 ng/ml on day 1, which dropped to ∼0.2 ng/ml after 3 months, whereas only 0.2-0.3 ng/ml concentration was observed from 4-12 days with diet and was undetected subsequently. Almost 10-fold higher curcumin levels were observed in brain on day 1 from implants compared with diet (30.1 ± 7.3 vs 2.7 ± 0.8 ng/g) and were still significant even after 90 days (7.7 ± 3.8 vs 2.2 ± 0.8 ng/g). Although curcumin levels were similar in liver from both the routes (∼25-30 ng/g from day 1-4 and ∼10-15 ng/g at 90 days), implants were more efficacious in altering hepatic CYP1A1 levels and CYP3A4 activity at ∼28-fold lower doses at 90 days. Curcumin implants provided much higher plasma and tissue concentrations and are a viable alternative for delivery of curcumin to various organs like brain.
Collapse
|
34
|
Indolylfuran, a potent aryl hydrocarbon receptor agonist from sauerkraut, interacts with the oestrogen pathway. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.02.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Banerjee S, Kong D, Wang Z, Bao B, Hillman GG, Sarkar FH. Attenuation of multi-targeted proliferation-linked signaling by 3,3'-diindolylmethane (DIM): from bench to clinic. Mutat Res 2011; 728:47-66. [PMID: 21703360 DOI: 10.1016/j.mrrev.2011.06.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 12/14/2022]
Abstract
Emerging evidence provide credible support in favor of the potential role of bioactive products derived from ingesting cruciferous vegetables such as broccoli, brussel sprouts, cauliflower and cabbage. Among many compounds, 3,3'-diindolylmethane (DIM) is generated in the acidic environment of the stomach following dimerization of indole-3-carbinol (I3C) monomers present in these classes of vegetables. Both I3C and DIM have been investigated for their use in preventing, inhibiting, and reversing the progression of cancer - as a chemopreventive agent. In this review, we summarize an updated, wide-ranging pleiotropic anti-tumor and biological effects elicited by DIM against tumor cells. It is unfeasible to point one single target as basis of cellular target of action of DIM. We emphasize key cellular and molecular events that are effectively modulated in the direction of inducing apoptosis and suppressing cell proliferation. Collectively, DIM orchestrates signaling through Ah receptor, NF-κB/Wnt/Akt/mTOR pathways impinging on cell cycle arrest, modulation of key cytochrome P450 enzymes, altering angiogenesis, invasion, metastasis and epigenetic behavior of cancer cells. The ability of DIM to selectively induce tumor cells to undergo apoptosis has been observed in preclinical models, and thus it has been speculated in improving the therapeutic efficacy of other anticancer agents that have diverse molecular targets. Consequently, DIM has moved through preclinical development into Phase I clinical trials, thereby suggesting that DIM could be a promising and novel agent either alone or as an adjunct to conventional therapeutics such as chemo-radio and targeted therapies. An important development has been the availability of DIM formulation with superior bioavailability for humans. Therefore, DIM appears to be a promising chemopreventive agent or chemo-radio-sensitizer for the prevention of tumor recurrence and/or for the treatment of human malignancies.
Collapse
Affiliation(s)
- Sanjeev Banerjee
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Dejuan Kong
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhiwei Wang
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Bin Bao
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Gilda G Hillman
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Fazlul H Sarkar
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
36
|
Shimamoto K, Dewa Y, Ishii Y, Kemmochi S, Taniai E, Hayashi H, Imaoka M, Morita R, Kuwata K, Suzuki K, Shibutani M, Mitsumori K. Indole-3-carbinol enhances oxidative stress responses resulting in the induction of preneoplastic liver cell lesions in partially hepatectomized rats initiated with diethylnitrosamine. Toxicology 2011; 283:109-17. [PMID: 21396975 DOI: 10.1016/j.tox.2011.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 02/25/2011] [Accepted: 03/03/2011] [Indexed: 12/22/2022]
Abstract
The liver tumor-promoting effects of indole-3-carbinol (I3C), a cytochrome P450 (CYP) 1A inducer found in cruciferous vegetables, were investigated using a medium-term hepatocarcinogenesis model in rats. Six-week-old male F344 rats received an intraperitoneal injection of N-diethylnitrosamine (DEN) and were fed a diet containing 0 (DEN-alone), 0.25, 0.50 or 1.0% of I3C for 8 weeks from 2 weeks after DEN-initiation. The number and area of liver cell foci positive for glutathione S-transferase placental form (GST-P) significantly increased in the livers of rats given 0.5% I3C or more, compared to those in the DEN-alone group. The number of GST-P positive foci also increased in the 0.25% I3C group. The number of liver cells positive for proliferating cell nuclear antigen (PCNA) significantly increased in all I3C groups compared to that in the DEN-alone group. Real-time RT-PCR analysis showed that I3C increased transcript levels of not only Cyp1a1 but also aryl hydrocarbon receptor (AhR) and/or nuclear factor (erythroid-derived 2)-like 2 (Nrf2) gene batteries, such as Cyp1a2, Cyp1b1, Ugt1a6, Nrf2, Nqo1, Gsta5, Gstm2, Ggt1and Gpx2. Reactive oxygen species (ROS) in the microsomal fraction significantly increased in all I3C-treated groups compared to the DEN-alone group, and thiobarbituric acid-reactive substances (TBARS) levels and 8-hydroxy-2'-deoxyguanosine (8-OHdG) content significantly increased in all of the I3C-treated groups and 1.0% I3C group, respectively. These results suggest that I3C is an AhR activator and enhances microsomal ROS production resulting in the upregulation of Nrf2 gene batteries, but the oxidative stress generated overcomes the antioxidant effect of Nrf2-related genes. Such 'a redox imbalance' subsequently induces liver tumor-promoting effects by enhancing cellular proliferation in rats.
Collapse
Affiliation(s)
- Keisuke Shimamoto
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Huang Z, Zuo L, Zhang Z, Liu J, Chen J, Dong L, Zhang J. 3,3'-Diindolylmethane decreases VCAM-1 expression and alleviates experimental colitis via a BRCA1-dependent antioxidant pathway. Free Radic Biol Med 2011; 50:228-36. [PMID: 21034812 DOI: 10.1016/j.freeradbiomed.2010.10.703] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 10/08/2010] [Accepted: 10/19/2010] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species (ROS) exhibit a key role in the pathogenesis of inflammatory bowel disease (IBD). 3,3'-Diindolylmethane (DIM) can protect against oxidative stress in a breast cancer susceptibility gene 1 (BRCA1)-dependent manner. The aim of this study was to examine the therapeutic effects of DIM in experimental colitis and investigate the possible mechanisms underlying its effects on intestinal inflammation. The therapeutic effects of DIM were studied in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Pathological markers of colitis severity, antioxidant activity, and ROS generation in colonic tissue were measured. The impact of DIM on ROS-induced endothelial vascular cell adhesion molecule 1 (VCAM-1) expression and leukocyte-endothelial cell interaction was further investigated in cultures of endothelial cells and in the TNBS-induced colitis model. Administration of DIM was demonstrated to attenuate experimental colitis, as judged by pathological indices. DIM could effectively stimulate the expression of BRCA1 in vitro and in vivo and reduce ROS generation, leading to the inhibition of VCAM-1 expression and leukocyte-endothelial cell adhesion, and finally resulted in an alleviation of experimental colitis. DIM has shown anti-IBD activity in animal models by inhibiting ROS-induced VCAM-1 expression and leukocyte recruitment via a BRCA1-dependent antioxidant pathway and thus may offer potential treatments for IBD patients.
Collapse
Affiliation(s)
- Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
39
|
Honetschlägerová Z, Husková Z, Vaňourková Z, Sporková A, Kramer HJ, Hwang SH, Tsai HJ, Hammock BD, Imig JD, Červenka L, Kopkan L. Renal mechanisms contributing to the antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats with inducible hypertension. J Physiol 2011; 589:207-19. [PMID: 21078594 PMCID: PMC3039270 DOI: 10.1113/jphysiol.2010.199505] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/09/2010] [Indexed: 01/01/2023] Open
Abstract
In the present study, we examined the effects of soluble epoxide hydrolase (sEH) inhibition on the development of angiotensin II-dependent hypertension and on renal function in transgenic rats with inducible expression of the mouse renin gene (strain name Cyp1a1-Ren-2). Hypertension was induced in these rats by indole-3-carbinol (I3C; 0.3% in the diet) for 12 days. The sEH inhibitor cis-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (c-AUCB) was given in two doses (13 or 26 mg l-1) in drinking water. Blood pressure (BP), body weight (BW) and renal excretory parameters were monitored in conscious animals during the experiment. Renal haemodynamics was assessed at the end of treatment in anaesthetized rats. I3C administration resulted in severe hypertension with a rise in systolic BP from 118 ± 2 to 202 ± 3 mmHg, a loss of BW from 266 ± 5 to 228 ± 4 g and a rise in proteinuria from 14 ± 2 to 34 ± 3 mg day-1. Both doses of c-AUCB significantly attenuated the development of hypertension (systolic BP of 181 ± 4 and 176 ± 4 mmHg, respectively), the loss in BW (256 ± 4 and 259 ± 3 g, respectively) and the degree of proteinuria (27 ± 2 and 25 ± 3 mg day-1, respectively) to a similar extent. Moreover, c-AUCB prevented the reduction in renal plasma flow (5.4 ± 0.4 vs. 4.6 ± 0.3 ml min-1 g-1) and significantly increased sodium excretion (0.84 ± 0.16 vs. 0.38 ± 0.08 μmol min-1 g-1) during I3C administration. These data suggest that the oral administration of c-AUCB displays antihypertensive effects in Ren-2 transgenic rats with inducible malignant hypertension via an improvement of renal function.
Collapse
Affiliation(s)
- Zuzana Honetschlägerová
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Enhanced urinary angiotensinogen excretion in Cyp1a1-Ren2 transgenic rats with inducible ANG II-dependent malignant hypertension. Am J Med Sci 2010; 340:389-94. [PMID: 20724906 DOI: 10.1097/maj.0b013e3181eabd28] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Previous studies have demonstrated that the urinary excretion of angiotensinogen is significantly increased in ANG II-infused hypertensive rats, which is associated with an augmentation of intrarenal ANG II levels. These findings suggest that urinary angiotensinogen excretion rates provide an index of intrarenal ANG II levels in ANG II-dependent hypertensive states. However, little information is available regarding the urinary excretion of angiotensinogen in ANG II-dependent malignant hypertension. METHODS This study was performed to determine if urinary angiotensinogen excretion is increased in Cyp1a1-Ren2 transgenic rats [strain name: TGR(Cyp1aRen2)] with inducible ANG II-dependent malignant hypertension. Adult male Cyp1a1-Ren2 rats (n = 6) were fed a normal diet containing 0.3% indole-3-carbinol (I3C) for 10 days to induce ANG II-dependent malignant hypertension. RESULTS Rats induced with I3C exhibited pronounced increases in systolic blood pressure (208 ± 7 versus 127 ± 3 mm Hg; P < 0.001), marked proteinuria (29.4 ± 3.6 versus 5.9 ± 0.3 mg/d; P < 0.001) and augmented urinary angiotensinogen excretion (996 ± 186 versus 241 ± 31 ng/d; P < 0.01). Chronic administration of the AT₁ receptor antagonist, candesartan (25 mg/L in drinking water, n = 6), prevented the I3C-induced increases in systolic blood pressure (125 ± 5 mm Hg; P < 0.001), proteinuria (7.3 ± 1.0 mg/d; P < 0.001) and urinary angiotensinogen excretion (488 ± 51 ng/d, P < 0.01). CONCLUSIONS These data demonstrate that the urinary excretion of angiotensinogen is markedly augmented in ANG II-dependent malignant hypertension. Such increased urinary angiotensinogen excretion may contribute to augmented intrarenal ANG II levels and, thereby, to the increased blood pressure in Cyp1a1-Ren2 transgenic rats with inducible ANG II-dependent malignant hypertension.
Collapse
|
41
|
Hayat BS, Ren W, Hai-Feng C, Shen-Gang Y. 3D-QSAR Study on Diindolylmethane and Its Analogues with Comparative Molecular Field Analysis (CoMFA). CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.20030210107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Transient induction of ANG II-dependent malignant hypertension causes sustained elevation of blood pressure and augmentation of the pressor response to ANG II in CYP1A1-REN2 transgenic rats. Am J Med Sci 2010; 339:543-8. [PMID: 20375689 DOI: 10.1097/maj.0b013e3181d82a62] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Transgenic rats with inducible expression of the mouse Ren2 renin gene [strain name: TGR(Cyp1a1Ren2)] allow induction of various degrees of ANG II-dependent hypertension. Dietary administration of the aryl hydrocarbon indole-3-carbinol (I3C) at a dose of 0.15% induces a slowly developing form of ANG II-dependent hypertension, whereas dietary administration of a higher dose (0.3%) of I3C results in the development of ANG II-dependent malignant hypertension. Cessation of administration of 0.15% I3C results in the normalization of blood pressure, indicating the reversibility of hypertension induced by this dose of I3C. The present study was performed to determine if ANG II-dependent malignant hypertension is similarly reversible following cessation of dietary administration of 0.3% I3C. METHODS Cyp1a1-Ren2 rats (n = 6) were fed a normal diet containing 0.3% I3C for 11 days to induce malignant hypertension. RESULTS Cyp1a1-Ren2 rats induced with I3C exhibited pronounced increases in systolic blood pressure (SBP) (132 +/- 3-229 +/- 11 mm Hg, P < 0.001) and marked decreases in body weight (303 +/- 4-222 +/- 2 g, P < 0.001). When I3C administration was terminated, SBP decreased to 167 +/- 4 mm Hg (P < 0.01) and body weight increased to normal levels (309 +/- 2 g, P < 0.01) within 12 days. However, SBP remained significantly elevated (172 +/- 1 mm Hg, P < 0.01) for up to 3 weeks after termination of dietary administration of 0.3% I3C. In addition, the magnitude of the blood pressure response to intravenous bolus administration of 50 ng of ANG II (50 microL in volume) 3 weeks after cessation of dietary I3C administration was substantially higher than that observed in normotensive control rats (134 +/- 1 mm Hg, n = 6) not previously induced with 0.3% I3C (53 +/- 2 versus 38 +/- 3 mm Hg, P < 0.05). CONCLUSIONS The present findings demonstrate that transient induction of ANG II-dependent malignant hypertension results in prolonged elevations of arterial blood pressure and marked augmentation of the magnitude of the pressor response to ANG II in Cyp1a1-Ren2 transgenic rats.
Collapse
|
43
|
Ronco AL, De Stéfani E, Stoll M. Hormonal and metabolic modulation through nutrition: towards a primary prevention of breast cancer. Breast 2010; 19:322-32. [PMID: 20542695 DOI: 10.1016/j.breast.2010.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 01/04/2023] Open
Abstract
Breast cancer (BC) is a polygenic and multifactorial disease for which estrogens have been recognized as the main risk factor, and for which lifestyle plays a key role. Previous epidemiologic cancer research performed in Uruguayan population delimited its dietary and anthropometric profiles. Recognizing the difficulty for universalizing a nutritional basis for prevention due to different eating patterns among regions and countries, we summarize the existent knowledge linking nutrition, estrogens, metabolism and BC. As an attempt towards primary prevention of BC, we present recommendations mainly based on country-specific research findings and modifiable putative risk and protective factors, proposing to modify the intake of meats and other fatty foods--especially sources of Ω-6 and Ω-3 fatty acids--adding olive oil, selected vegetables, citrus fruits and working towards adequate body fat/muscle proportions. From a medical and ethical viewpoint, it is justified to recommend certain nutritional changes to women, because no adverse side effects are expected to occur.
Collapse
Affiliation(s)
- Alvaro L Ronco
- Depto. de Epidemiología, Facultad de Medicina, IUCLAEH, Prado and Salt Lake P.16, Maldonado, Uruguay.
| | | | | |
Collapse
|
44
|
AT1 receptor blockade prevents the increase in blood pressure and the augmentation of intrarenal ANG II levels in hypertensive Cyp1a1-Ren2 transgenic rats fed with a high-salt diet. Am J Med Sci 2010; 339:356-61. [PMID: 20224314 DOI: 10.1097/maj.0b013e3181d2b0a8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION This study was performed to determine the effects of high-salt diet on the magnitude of the increases in systolic blood pressure (SBP) and kidney tissue angiotensin (ANG) II levels that occur after induction of ANG II-dependent malignant hypertension in Cyp1a1-Ren2 transgenic rats with inducible expression of the mouse Ren2 renin gene [strain name: TGR(Cyp1a1Ren2)]. METHODS Cyp1a1-Ren2 rats (n = 6) were fed a normal diet containing 0.3% indole-3-carbinol (I3C) for 10 days to induce ANG II-dependent malignant hypertension. RESULTS Rats induced with I3C exhibited increases in SBP and elevations of ANG II levels in kidney cortex and medulla. In a second group of rats (n = 6), high-salt intake alone did not alter basal SBP; however, subsequent dietary administration of 0.3% I3C during continued high-salt intake elicited a substantially greater increase in SBP than observed in rats fed a normal salt diet. ANG II levels in kidney cortex and medulla of rats induced with I3C and fed a high-salt diet were elevated similarly to those in rats induced with I3C alone. Chronic administration of the AT1 receptor antagonist, losartan (100 mg/L in drinking water, n = 6), markedly attenuated the I3C-induced increase in SBP and prevented the augmentation of ANG II levels in kidney cortex and medulla in rats induced with I3C and maintained on a high-salt diet. CONCLUSIONS Activation of AT1 receptors contributes to the augmented blood pressure and elevated kidney tissue ANG II levels that occur in Cyp1a1-Ren2 transgenic rats with malignant hypertension maintained on a high-salt diet.
Collapse
|
45
|
Marconett CN, Sundar SN, Poindexter KM, Stueve TR, Bjeldanes LF, Firestone GL. Indole-3-carbinol triggers aryl hydrocarbon receptor-dependent estrogen receptor (ER)alpha protein degradation in breast cancer cells disrupting an ERalpha-GATA3 transcriptional cross-regulatory loop. Mol Biol Cell 2010; 21:1166-77. [PMID: 20130088 PMCID: PMC2847521 DOI: 10.1091/mbc.e09-08-0689] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have established in human breast cancer cells that indole-3-carbinol (I3C), a promising anti-cancer phytochemical from Brassica vegetables, ablates ERα expression by stimulating the Rbx-1 E3 ligase mediated degradation of ERα protein and disruption of a cross-regulatory positive feedback loop involving ERα and the GATA3 transcription factor. Estrogen receptor (ER)α is a critical target of therapeutic strategies to control the proliferation of hormone-dependent breast cancers. Preferred clinical options have significant adverse side effects that can lead to treatment resistance due to the persistence of active estrogen receptors. We have established the cellular mechanism by which indole-3-carbinol (I3C), a promising anticancer phytochemical from Brassica vegetables, ablates ERα expression, and we have uncovered a critical role for the GATA3 transcription factor in this indole-regulated cascade. I3C-dependent activation of the aryl hydrocarbon receptor (AhR) initiates Rbx-1 E3 ligase-mediated ubiquitination and proteasomal degradation of ERα protein. I3C inhibits endogenous binding of ERα with the 3′-enhancer region of GATA3 and disrupts endogenous GATA3 interactions with the ERα promoter, leading to a loss of GATA3 and ERα expression. Ectopic expression of GATA3 has no effect on I3C-induced ERα protein degradation but does prevent I3C inhibition of ERα promoter activity, demonstrating the importance of GATA3 in this I3C-triggered cascade. Our preclinical results implicate I3C as a novel anticancer agent in human cancers that coexpress ERα, GATA3, and AhR, a combination found in a large percentage of breast cancers but not in other critical ERα target tissues essential to patient health.
Collapse
Affiliation(s)
- Crystal N Marconett
- Department of Molecular and Cell Biology, University of California-Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
46
|
Dong L, Xia S, Gao F, Zhang D, Chen J, Zhang J. 3,3'-Diindolylmethane attenuates experimental arthritis and osteoclastogenesis. Biochem Pharmacol 2009; 79:715-21. [PMID: 19854159 DOI: 10.1016/j.bcp.2009.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 09/29/2009] [Accepted: 10/13/2009] [Indexed: 12/11/2022]
Abstract
3,3'-Diindolylmethane (DIM) is a natural compound formed during the autolysis of glucobrassicin present in Brassica food plants. This study aimed to investigate the therapeutic efficacies of DIM on experimental arthritis. The effects of DIM on experimental arthritis were examined on a rat model of adjuvant-induced arthritis (AIA), with daily AIA paw swelling observation and histological/radiographic analysis. To elucidate the possible mechanisms of its action, serum cytokine levels as well as the expression of receptor activator for nuclear factor kappa B ligand (RANKL) in infected tissues were subsequently analyzed. The impact of DIM on osteoclastogenesis was further investigated on a mouse model of endotoxin-induced bone resorption (EIBR) and in vitro cultures of fibroblast-like cells and osteoblasts, with RANKL expression being evaluated with great interest. The administration of DIM was demonstrated to attenuate AIA in animal models, as judged by clinical and histologic indices of inflammation and tissue damage. On the one hand, DIM could reduce the expression of several inflammatory cytokines, which was, however, not adequate to prevent the development of the arthritis. On the other hand, DIM was shown to effectively inhibit the expression of RANKL, leading to the blockade of osteoclastogenesis and consequently an alleviation of experimental arthritis. Further in vitro and in vivo studies confirmed the inhibition of RANKL by DIM. DIM has shown anti-arthritis activity in animal models via inhibiting the expression of RANKL, and thus may offer potential treatments for arthritis and associated disorders.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | |
Collapse
|
47
|
Fan S, Meng Q, Saha T, Sarkar FH, Rosen EM. Low concentrations of diindolylmethane, a metabolite of indole-3-carbinol, protect against oxidative stress in a BRCA1-dependent manner. Cancer Res 2009; 69:6083-91. [PMID: 19622773 DOI: 10.1158/0008-5472.can-08-3309] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The indole-3-carbinol (I3C) metabolite 3,3'-diindolylmethane (DIM) is a proposed cancer prevention agent for various tumor types, including breast cancer. Here, we show that DIM up-regulates expression of the tumor suppressor protein BRCA1 in carcinoma and normal cell types. Up-regulation of BRCA1 was dose and time dependent, and it was observed at physiologically relevant micromolar and submicromolar DIM concentrations when cells were exposed for 72 hours. Treatment with the parent compound (I3C) or DIM (1 micromol/L) protected against cell killing due to H(2)O(2) and other oxidants, and the protection was abrogated by knockdown of BRCA1. DIM stimulated signaling by the antioxidant transcription factor NFE2L2 (NRF2) through the antioxidant response element in a BRCA1-dependent manner. We further showed that DIM rapidly stimulated phosphorylation of BRCA1 on Ser (1387) and Ser (1524) and that these phosphorylations are required for protection against oxidative stress. DIM-induced phosphorylation of BRCA1 on Ser (1387) was dependent on ataxia-telangiectasia mutated. Finally, in our assay systems, H(2)O(2)-induced cell death was not due to apoptosis. However, a significant component of cell death was attributable to autophagy, and both DIM and BRCA1 inhibited H(2)O(2)-induced autophagy. Our findings suggest that low concentrations of DIM protect cells against oxidative stress via the tumor suppressor BRCA1 by several distinct mechanisms.
Collapse
Affiliation(s)
- Saijun Fan
- Department of Oncology, Georgetown University, Washington, District of Columbia200 57, USA
| | | | | | | | | |
Collapse
|
48
|
Noguchi-Yachide T, Tetsuhashi M, Aoyama H, Hashimoto Y. Enhancement of chemically-induced HL-60 cell differentiation by 3,3'-diindolylmethane derivatives. Chem Pharm Bull (Tokyo) 2009; 57:536-40. [PMID: 19420792 DOI: 10.1248/cpb.57.536] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
3,3'-Diindolylmethane (DIM, 1) and its derivatives have been prepared, and their enhancing effects on chemically-induced HL-60 cell differentiation were analyzed. Among the prepared compounds, IndDIM (12) showed the most potent enhancing effect on HL-60 cell differentiation induced by chemicals, including retinoids, 1,25-dihydroxyvitamin D(3), 12-O-tetradecanoyl phorbol-13-acetate and dimethyl sulfoxide.
Collapse
|
49
|
Qi M, Anderson AE, Chen DZ, Sun S, Auborn KJ. Indole-3-carbinol prevents PTEN loss in cervical cancer in vivo. Mol Med 2009; 11:59-63. [PMID: 16557333 PMCID: PMC1449523 DOI: 10.2119/2006-00007.auborn] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2006] [Accepted: 02/23/2006] [Indexed: 01/15/2023] Open
Abstract
Indole-3-carbinol (I3C) is a phytochemical (derived from broccoli, cabbage, and other cruciferous vegetables) with proven anticancer efficacy including the reduction of cervical intraepithelial neoplasia (CIN) and its progression to cervical cancer. In a breast cancer cell line, I3C inhibited cell adhesion, spreading, and invasion associated with an upregulation of the tumor suppressor gene PTEN, suggesting that PTEN is important in inhibition of late stages in the development of cancer. The goal of this study was to determine the expression of PTEN during the development of cervical cancer and whether I3C affected expression of PTEN in vivo. We show diminished PTEN expression during the progression from low-grade to high-grade cervical dysplasia in humans and in a mouse model for cervical cancer, the K14HPV16 transgenic mice promoted with estrogen. The implication is that loss of PTEN function is required for this transition. Additionally, dietary I3C increased PTEN expression in the cervical epithelium of the transgenic mouse, an observation that suggests PTEN upregulation by I3C is one mechanism by which I3C inhibits development of cervical cancer.
Collapse
Affiliation(s)
- Mei Qi
- Laboratory of Phytochemical Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Ann E. Anderson
- Department of Pathology, Long Island Jewish Medical Center, The Long Island Campus of Albert Einstein College of Medicine, New Hyde Park, NY, USA
| | - Da-Zhi Chen
- Laboratory of Phytochemical Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Shishinn Sun
- Laboratory of Phytochemical Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
- Department of Otolaryngology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Karen J. Auborn
- Laboratory of Phytochemical Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
- Department of Otolaryngology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Address correspondence and reprint requests to Karen Auborn, Laboratory of Phytochemical Research, Feinstein Institute for Medical Research, Room 140, 350 Community Drive, Manhasset, NY 11030. Phone: (516) 562-1184;
| |
Collapse
|
50
|
Yin H, Chu A, Li W, Wang B, Shelton F, Otero F, Nguyen DG, Caldwell JS, Chen YA. Lipid G protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. J Biol Chem 2009; 284:12328-38. [PMID: 19286662 DOI: 10.1074/jbc.m806516200] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A growing number of orphan G-protein-coupled receptors (GPCRs) have been reported to be activated by lipid ligands, such as lysophosphatidic acid, sphingosine 1-phosphate (S1P), and cannabinoids, for which there are already well established receptors. These new ligand claims are controversial due to either lack of independent confirmations or conflicting reports. We used the beta-arrestin PathHunter assay system, a newly developed, generic GPCR assay format that measures beta-arrestin binding to GPCRs, to evaluate lipid receptor and ligand pairing. This assay eliminates interference from endogenous receptors on the parental cells because it measures a signal that is specifically generated by the tagged receptor and is immediately downstream of receptor activation. We screened a large number of newly "deorphaned" receptors (GPR23, GPR92, GPR55, G2A, GPR18, GPR3, GPR6, GPR12, and GPR63) and control receptors against a collection of approximately 400 lipid molecules to try to identify the receptor ligand in an unbiased fashion. GPR92 was confirmed to be a lysophosphatidic acid receptor with weaker responses to farnesyl pyrophosphate and geranylgeranyl diphosphate. The putative cannabinoid receptor GPR55 responded strongly to AM251, rimonabant, and lysophosphatidylinositol but only very weakly to endocannabinoids. G2A receptor was confirmed to be an oxidized free fatty acid receptor. In addition, we discovered that 3,3'-diindolylmethane, a dietary molecule from cruciferous vegetables, which has known anti-cancer properties, to be a CB(2) receptor partial agonist, with binding affinity around 1 microm. The anti-inflammatory effect of 3,3'-diindolylmethane in RAW264.7 cells was shown to be partially mediated by CB(2).
Collapse
Affiliation(s)
- Hong Yin
- GPCR Platform, Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|