1
|
Borisov VB, Forte E. Bioenergetics and Reactive Nitrogen Species in Bacteria. Int J Mol Sci 2022; 23:7321. [PMID: 35806323 PMCID: PMC9266656 DOI: 10.3390/ijms23137321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
The production of reactive nitrogen species (RNS) by the innate immune system is part of the host's defense against invading pathogenic bacteria. In this review, we summarize recent studies on the molecular basis of the effects of nitric oxide and peroxynitrite on microbial respiration and energy conservation. We discuss possible molecular mechanisms underlying RNS resistance in bacteria mediated by unique respiratory oxygen reductases, the mycobacterial bcc-aa3 supercomplex, and bd-type cytochromes. A complete picture of the impact of RNS on microbial bioenergetics is not yet available. However, this research area is developing very rapidly, and the knowledge gained should help us develop new methods of treating infectious diseases.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
2
|
Babu D, Morgan AG, Reiz B, Whittal RM, Almas S, Lacy P, Siraki AG. Eosinophil peroxidase oxidizes isoniazid to form the active metabolite against M. tuberculosis, isoniazid-NAD . Chem Biol Interact 2019; 305:48-53. [PMID: 30922765 DOI: 10.1016/j.cbi.2019.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/14/2019] [Accepted: 03/21/2019] [Indexed: 11/24/2022]
Abstract
The formation of isonicotinyl-nicotinamide adenine dinucleotide (INH-NAD+) by the mycobacterial catalase-peroxidase enzyme, KatG, was known to be the major component of the mode of action of isoniazid (INH), an anti-tuberculosis drug. However, there are other enzymes that may catalyze this reaction. We have previously reported that neutrophil myeloperoxidase (MPO) is capable of metabolizing INH through the formation of INH-NAD+ adduct, which could be attributed to being a possible mode of action of INH. However, eosinophilic infiltration of the lungs is more pronounced and characteristic of granulomas in Mycobacterium tuberculosis-infected patients. Thus, the aim of the present study is to investigate the role of eosinophil peroxidase (EPO), a key eosinophil enzyme, during INH metabolism and the formation of its active metabolite, INH-NAD+ using purified EPO and eosinophils isolated from asthmatic donors. UV-Vis spectroscopy revealed INH oxidation by EPO led to a new product (λmax = 326 nm) in the presence of NAD+. This adduct was confirmed to be INH-NAD+ using LC-MS analysis where the intact adduct was detected (m/z = 769). Furthermore, EPO catalyzed the oxidation of INH and formed several free radical intermediates as assessed by electron paramagnetic resonance (EPR) spin-trapping; a carbon-centred radical, which is considered to be the reactive metabolite that binds with NAD+, was found when superoxide dismutase was included in the reaction. Our findings suggest that eosinophilic EPO may also play a role in the pharmacological activity of INH through the formation of INH-NAD+ adduct, and supports further evidence that human cells and enzymes are capable of producing the active metabolite involved in tuberculosis treatment.
Collapse
Affiliation(s)
- Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy & Health Research, University of Alberta, Edmonton, AB, Canada
| | - Andrew G Morgan
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy & Health Research, University of Alberta, Edmonton, AB, Canada
| | - Béla Reiz
- Department of Chemistry, Faculty of Sciences, University of Alberta, Edmonton, AB, Canada
| | - Randy M Whittal
- Department of Chemistry, Faculty of Sciences, University of Alberta, Edmonton, AB, Canada
| | - Sarah Almas
- Pulmonary Research Group, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paige Lacy
- Pulmonary Research Group, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy & Health Research, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Abbadi BL, Rodrigues-Junior VDS, Dadda ADS, Pissinate K, Villela AD, Campos MM, Lopes LGDF, Bizarro CV, Machado P, Sousa EHS, Basso LA. Is IQG-607 a Potential Metallodrug or Metallopro-Drug With a Defined Molecular Target in Mycobacterium tuberculosis? Front Microbiol 2018; 9:880. [PMID: 29765372 PMCID: PMC5938375 DOI: 10.3389/fmicb.2018.00880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022] Open
Abstract
The emergence of strains of Mycobacterium tuberculosis resistant to isoniazid (INH) has underscored the need for the development of new anti-tuberculosis agents. INH is activated by the mycobacterial katG-encoded catalase-peroxidase, forming an acylpyridine fragment that is covalently attached to the C4 of NADH. This isonicotinyl-NAD adduct inhibits the activity of 2-trans-enoyl-ACP(CoA) reductase (InhA), which plays a role in mycolic acid biosynthesis. A metal-based INH analog, Na3[FeII(CN)5(INH)]·4H2O, IQG-607, was designed to have an electronic redistribution on INH moiety that would lead to an intramolecular electron transfer to bypass KatG activation. HPLC and EPR studies showed that the INH moiety can be oxidized by superoxide or peroxide yielding similar metabolites and isonicotinoyl radical only when associated to IQG-607, thereby supporting redox-mediated drug activation as a possible mechanism of action. However, IQG-607 was shown to inhibit the in vitro activity of both wild-type and INH-resistant mutant InhA enzymes in the absence of KatG activation. IQG-607 given by the oral route to M. tuberculosis-infected mice reduced lung lesions. Experiments using early and late controls of infection revealed a bactericidal activity for IQG-607. HPLC and voltammetric methods were developed to quantify IQG-607. Pharmacokinetic studies showed short half-life, high clearance, moderate volume of distribution, and low oral bioavailability, which was not altered by feeding. Safety and toxic effects of IQG-607 after acute and 90-day repeated oral administrations in both rats and minipigs showed occurrence of mild to moderate toxic events. Eight multidrug-resistant strains (MDR-TB) were resistant to IQG-607, suggesting an association between katG mutation and increasing MIC values. Whole genome sequencing of three spontaneous IQG-607-resistant strains harbored katG gene mutations. MIC measurements and macrophage infection experiments with a laboratorial strain showed that katG mutation is sufficient to confer resistance to IQG-607 and that the macrophage intracellular environment cannot trigger the self-activation mechanism. Reduced activity of IQG-607 against an M. tuberculosis strain overexpressing S94A InhA mutant protein suggested both the need for KatG activation and InhA as its target. Further efforts are suggested to be pursued toward attempting to translate IQG-607 into a chemotherapeutic agent to treat tuberculosis.
Collapse
Affiliation(s)
- Bruno L Abbadi
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Valnês da Silva Rodrigues-Junior
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adilio da Silva Dadda
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kenia Pissinate
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Anne D Villela
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria M Campos
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiz G de França Lopes
- Grupo de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Cristiano V Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pablo Machado
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo H S Sousa
- Grupo de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Luiz A Basso
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
4
|
Obata T, Nakashima M. Phytic acid suppresses ischemia-induced hydroxyl radical generation in rat myocardium. Eur J Pharmacol 2016; 774:20-4. [DOI: 10.1016/j.ejphar.2015.12.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 10/22/2022]
|
5
|
Khan SR, Morgan AGM, Michail K, Srivastava N, Whittal RM, Aljuhani N, Siraki AG. Metabolism of isoniazid by neutrophil myeloperoxidase leads to isoniazid-NAD(+) adduct formation: A comparison of the reactivity of isoniazid with its known human metabolites. Biochem Pharmacol 2016; 106:46-55. [PMID: 26867495 DOI: 10.1016/j.bcp.2016.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/04/2016] [Indexed: 01/02/2023]
Abstract
The formation of isonicotinyl-nicotinamide adenine dinucleotide (INH-NAD(+)) via the mycobacterial catalase-peroxidase enzyme, KatG, has been described as the major component of the mode of action of isoniazid (INH). However, there are numerous human peroxidases that may catalyze this reaction. The role of neutrophil myeloperoxidase (MPO) in INH-NAD(+) adduct formation has never been explored; this is important, as neutrophils are recruited at the site of tuberculosis infection (granuloma) through infected macrophages' cell death signals. In our studies, we showed that neutrophil MPO is capable of INH metabolism using electron paramagnetic resonance (EPR) spin-trapping and UV-Vis spectroscopy. MPO or activated human neutrophils (by phorbol myristate acetate) catalyzed the oxidation of INH and formed several free radical intermediates; the inclusion of superoxide dismutase revealed a carbon-centered radical which is considered to be the reactive metabolite that binds with NAD(+). Other human metabolites, including N-acetyl-INH, N-acetylhydrazine, and hydrazine did not show formation of carbon-centered radicals, and either produced no detectable free radicals, N-centered free radicals, or superoxide, respectively. A comparison of these free radical products indicated that only the carbon-centered radical from INH is reducing in nature, based on UV-Vis measurement of nitroblue tetrazolium reduction. Furthermore, only INH oxidation by MPO led to a new product (λmax=326nm) in the presence of NAD(+). This adduct was confirmed to be isonicotinyl-NAD(+) using LC-MS analysis where the intact adduct was detected (m/z=769). The findings of this study suggest that neutrophil MPO may also play a role in INH pharmacological activity.
Collapse
Affiliation(s)
- Saifur R Khan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Andrew G M Morgan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Karim Michail
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Nutan Srivastava
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Randy M Whittal
- Department of Chemistry, Faculty of Sciences, University of Alberta, Edmonton, Canada
| | - Naif Aljuhani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada; Pharmacology and Toxicology Department, Faculty of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
6
|
Isoniazid: Radical-induced oxidation and reduction chemistry. Bioorg Med Chem Lett 2013; 23:3096-100. [DOI: 10.1016/j.bmcl.2013.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 11/19/2022]
|
7
|
van Rensburg SJ, van Zyl JM, Potocnik FCV, Daniels WMU, Uys J, Marais L, Hon D, van der Walt BJ, Erasmus RT. The effect of stress on the antioxidative potential of serum: implications for Alzheimer's disease. Metab Brain Dis 2006; 21:171-9. [PMID: 16770696 DOI: 10.1007/s11011-006-9020-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 10/24/2005] [Indexed: 11/24/2022]
Abstract
There is growing consensus in the literature that oxidation status is increased in Alzheimer's disease (AD), and that antioxidant supplementation as prevention or treatment strategy should be investigated further. In the present study the total antioxidant status (TAS) was found to be highly significantly lower in 22 AD patients (p < 0.0001) than in 22 age- and gender matched non-demented controls. The TAS was also lower than controls in 22 patients with vascular dementia, but not significantly. The increased oxidation status in AD was verified using the benzoate hydroxylation method. The origin of the enhanced oxidation status in AD has not been elucidated. To determine whether a causal effect between stress and oxidative status of serum can be demonstrated, a rat model was used with two different kinds of stressors, swim stress (exercise) and restraint stress (non-exercise stress). Following swim stress the maximum oxidative effect was observed at one hour post stress (p < 0.001). At 24 h the oxidative status had recovered significantly to below control values. Restraint stress, however, showed progressively increased oxidation which attained significance after 24 h (p < 0.005). It is postulated that stress may contribute to the higher oxidation status in AD patients.
Collapse
Affiliation(s)
- S J van Rensburg
- Department of Chemical Pathology, National Health Laboratory Service, Tygerberg Hospital and Stellenbosch University, P.O. Box 19113, 7505 Tygerberg, South Africa.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wengenack NL, Lane BD, Hill PJ, Uhl JR, Lukat-Rodgers GS, Hall L, Roberts GD, Cockerill FR, Brennan PJ, Rodgers KR, Belisle JT, Rusnak F. Purification and characterization of Mycobacterium tuberculosis KatG, KatG(S315T), and Mycobacterium bovis KatG(R463L). Protein Expr Purif 2005; 36:232-43. [PMID: 15249045 DOI: 10.1016/j.pep.2004.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Indexed: 11/16/2022]
Abstract
Isoniazid, a first-line antibiotic used for the treatment of tuberculosis, is a prodrug that requires activation by the Mycobacterium tuberculosis enzyme KatG. The KatG(S315T) mutation causes isoniazid resistance while the KatG(R463L) variation is thought to be a polymorphism. Much of the work to date focused on isoniazid activation by KatG has utilized recombinant enzyme overexpressed in Escherichia coli. In this work, native KatG and KatG(S315T) were purified from M. tuberculosis, and KatG(R463L) was purified from Mycobacterium bovis. The native molecular weight, enzymatic activity, optical, resonance Raman, and EPR spectra, K(D) for isoniazid binding, and isoniazid oxidation rates were measured and compared for each native enzyme. Further, the properties of the native enzymes were compared and contrasted with those reported for recombinant KatG, KatG(S315T), and KatG(R463L) in order to assess the ability of the recombinant enzymes to act as good models for the native enzymes.
Collapse
Affiliation(s)
- Nancy L Wengenack
- Department of Biochemistry and Molecular Biology and Section of Hematology Research, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Timmins GS, Master S, Rusnak F, Deretic V. Requirements for nitric oxide generation from isoniazid activation in vitro and inhibition of mycobacterial respiration in vivo. J Bacteriol 2004; 186:5427-31. [PMID: 15292144 PMCID: PMC490879 DOI: 10.1128/jb.186.16.5427-5431.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isoniazid (INH), a front-line antituberculosis agent, is activated by mycobacterial catalase-peroxidase KatG, converting INH into bactericidal reactive species. Here we investigated the requirements and the pathway of nitric oxide (NO*) generation during oxidative activation of INH by Mycobacterium tuberculosis KatG in vitro. We also provide in vivo evidence that INH-derived NO* can inhibit key mycobacterial respiratory enzymes, which may contribute to the overall antimycobacterial action of INH.
Collapse
Affiliation(s)
- Graham S Timmins
- College of Pharmacy, Toxicology Program, University of New Mexico Health Sciences Center, Albuquerque, 87131, USA
| | | | | | | |
Collapse
|
10
|
Timmins GS, Master S, Rusnak F, Deretic V. Nitric oxide generated from isoniazid activation by KatG: source of nitric oxide and activity against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2004; 48:3006-9. [PMID: 15273113 PMCID: PMC478481 DOI: 10.1128/aac.48.8.3006-3009.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 03/08/2004] [Accepted: 04/02/2004] [Indexed: 11/20/2022] Open
Abstract
Isonicotinic acid hydrazide (INH) is a frontline antituberculosis agent. Once taken up by Mycobacterium tuberculosis, INH requires activation by the catalase-peroxidase KatG, converting INH from its prodrug form into a range of bactericidal reactive species. Here we used 15N-labeled INH together with electron paramagnetic resonance spin trapping techniques to demonstrate that nitric oxide (NO*) is generated from oxidation at the hydrazide nitrogens during the activation of INH by M. tuberculosis KatG. We also observed that a specific scavenger of NO* provided protection against the antimycobacterial activity of INH in bacterial culture. No significant increases in mycobacterial protein nitration were detected, suggesting that NOdot; and not peroxynitrite, a nitrating metabolite of NO*, is involved in antimycobacterial action. In conclusion, INH-derived NO* has biological activity, which directly contributes to the antimycobacterial action of INH.
Collapse
Affiliation(s)
- Graham S Timmins
- College of Pharmacy, Toxicology Program, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA.
| | | | | | | |
Collapse
|
11
|
Obata T. Phytic acid suppresses 1-methyl-4-phenylpyridinium ion-induced hydroxyl radical generation in rat striatum. Brain Res 2003; 978:241-4. [PMID: 12834920 DOI: 10.1016/s0006-8993(03)02830-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The present study examined the antioxidant effect of phytic acid on iron (II)-enhanced hydroxyl radical (*OH) generation induced by 1-methyl-4-phenylpyridinium ion (MPP(+)) in the extracellular fluid of rat striatum. Rats were anesthetized, and sodium salicylate in Ringer's solution (0.5 nmol/microl/min) was infused through a microdialysis probe to detect the generation of *OH as reflected by the non-enzymatic formation of 2,3-dihydroxybenzoic acid (DHBA) in the striatum. Phytic acid (100 microM) did not significantly decrease the levels of MPP(+)-induced *OH formation trapped as 2,3-DHBA. To confirm the generation of *OH by the Fenton-type reaction, iron (II) was infused through a microdialysis probe. Introduction of iron (II) (10 microM) enhanced MPP(+) induced *OH generation. However, phytic acid significantly suppressed iron (II)-enhanced *OH formation after MPP(+) treatment (n=6, P<0.05). These results suggest that the antiradical effect of phytic acid occurs by chelating iron required for the MPP(+)-enhanced *OH generation via the Fenton-type reaction.
Collapse
Affiliation(s)
- Toshio Obata
- Department of Pharmacology and Therapeutics, Oita Medical University, 1-1 Idaigaoka, Hasama, Oita 879-5593, Japan.
| |
Collapse
|
12
|
Sharpe MA, Cooper CE. Interaction of peroxynitrite with mitochondrial cytochrome oxidase. Catalytic production of nitric oxide and irreversible inhibition of enzyme activity. J Biol Chem 1998; 273:30961-72. [PMID: 9812992 DOI: 10.1074/jbc.273.47.30961] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Purified mitochondrial cytochrome c oxidase catalyzes the conversion of peroxynitrite to nitric oxide (NO). This reaction is cyanide-sensitive, indicating that the binuclear heme a3/CuB center is the catalytic site. NO production causes a reversible inhibition of turnover, characterized by formation of the cytochrome a3 nitrosyl complex. In addition, peroxynitrite causes irreversible inhibition of cytochrome oxidase, characterized by a decreased Vmax and a raised Km for oxygen. Under these conditions, the redox state of cytochrome a is elevated, indicating inhibition of electron transfer and/or oxygen reduction reactions subsequent to this center. The lipid bilayer is no barrier to these peroxynitrite effects, as NO production and irreversible enzyme inhibition were also observed in cytochrome oxidase proteoliposomes. Addition of 50 microM peroxynitrite to 10 microM fully oxidized enzyme induced spectral changes characteristic of the formation of ferryl cytochrome a3, partial reduction of cytochrome a, and irreversible damage to the CuA site. Higher concentrations of peroxynitrite (250 microM) cause heme degradation. In the fully reduced enzyme, peroxynitrite causes a red shift in the optical spectrum of both cytochromes a and a3, resulting in a symmetrical peak in the visible region. Therefore, peroxynitrite can both modify and degrade the metal centers of cytochrome oxidase.
Collapse
Affiliation(s)
- M A Sharpe
- Department of Biological Sciences, Central Campus, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | | |
Collapse
|
13
|
Kono Y, Yamasaki T, Ueda A, Shibata H. Catalase catalyzes of peroxynitrite-mediated phenolic nitration. Biosci Biotechnol Biochem 1998; 62:448-52. [PMID: 9571774 DOI: 10.1271/bbb.62.448] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Catalase catalyzed the peroxynitrite-mediated nitration of 4-hydroxyphenylacetic acid. The curve for the pH dependence of nitration was similar to that for the reaction between peroxynitrite and phenol. Cyanide, azide, and 3-amino-1,2,4-triazole inhibited the nitration in a dose-dependent way. When catalase was mixed with peroxynitrite, Compound I was detected as an intermediate. Because azide was an electron donor for the peroxidatic action of catalase, and because 3-amino-1,2,4-triazole inhibited catalase activity by binding with Compound I, peroxynitrite-mediated phenolic nitration was probably accompanied by Compound I formation. Both catalase and superoxide dismutase protected Escherichia coli from peroxynitrite toxicity.
Collapse
Affiliation(s)
- Y Kono
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Japan.
| | | | | | | |
Collapse
|
14
|
Szabó C. DNA strand breakage and activation of poly-ADP ribosyltransferase: a cytotoxic pathway triggered by peroxynitrite. Free Radic Biol Med 1996; 21:855-69. [PMID: 8902531 DOI: 10.1016/0891-5849(96)00170-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Peroxynitrite is a reactive oxidant produced from nitric oxide (NO) and superoxide. Although its reactivity and decomposition are very much dependent on the constituents of the cellular environment, peroxynitrite is considered a potent oxidant that reacts with proteins, lipids, and DNA. Inasmuch as peroxynitrite is formed in many pathophysiological conditions that are associated with NO and/or superoxide overproduction, the investigation of the cytotoxic pathways triggered by peroxynitrite is of major importance. Here we review the evidence that peroxynitrite is a potent initiator of DNA strand breakage, which is an obligatory stimulus for the activation of the nuclear enzyme poly ADP ribosyl synthetase (PARS). We present an overview of experimental data that demonstrate or suggest that the peroxynitrite-PARS pathway, by leading to cell necrosis or apoptosis, contributes to cellular injury in a number of pathophysiological conditions including shock and inflammation, pancreatic islet cell destruction, and diabetes, stroke, and neurodegenerative disorders, as well as the toxic effects of various environmental oxidants or cytotoxic drugs.
Collapse
Affiliation(s)
- C Szabó
- Children's Hospital Medical Center, Division of Critical Care, Cineinnati, Ohio 45229, USA
| |
Collapse
|
15
|
Rouse DA, Li Z, Bai GH, Morris SL. Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 1995; 39:2472-7. [PMID: 8585728 PMCID: PMC162967 DOI: 10.1128/aac.39.11.2472] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Resistance to isoniazid in Mycobacterium tuberculosis has been associated with mutations in genes encoding the mycobacterial catalase-peroxidase (katG) and the InhA protein (inhA). Among the 26 isoniazid-resistant clinical isolates evaluated in this study, mutations in putative inhA regulatory sequences were identified in 2 catalase-positive isolates, katG gene alterations were detected in 20 strains, and 4 isolates had wild-type katG and inhA genes. Mutations in the katG gene were detected in all 11 catalase-negative isolates: one frameshift insertion, two partial gene deletions, and nine different missense mutations were identified. An arginine-to-leucine substitution at position 463 was detected in nine catalase-positive isolates. However, site-directed mutagenesis experiments demonstrated that the presence of a leucine at codon 463 did not alter the activity of the M. tuberculosis catalase-peroxidase and did not affect the capacity of this enzyme to restore isoniazid susceptibility to isoniazid-resistant, KatG-defective Mycobacterium smegmatis BH1 cells. These studies further support the association between katG and inhA gene mutations and isoniazid resistance in M. tuberculosis, while also suggesting that other undefined mechanisms of isoniazid resistance exist.
Collapse
Affiliation(s)
- D A Rouse
- Laboratory of Mycobacteria, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|