1
|
Babetto E, Beirowski B. Of axons that struggle to make ends meet: Linking axonal bioenergetic failure to programmed axon degeneration. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148545. [PMID: 35339437 DOI: 10.1016/j.bbabio.2022.148545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
Axons are the long, fragile, and energy-hungry projections of neurons that are challenging to sustain. Together with their associated glia, they form the bulk of the neuronal network. Pathological axon degeneration (pAxD) is a driver of irreversible neurological disability in a host of neurodegenerative conditions. Halting pAxD is therefore an attractive therapeutic strategy. Here we review recent work demonstrating that pAxD is regulated by an auto-destruction program that revolves around axonal bioenergetics. We then focus on the emerging concept that axonal and glial energy metabolism are intertwined. We anticipate that these discoveries will encourage the pursuit of new treatment strategies for neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta Babetto
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| | - Bogdan Beirowski
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
2
|
Beirowski B. Emerging evidence for compromised axonal bioenergetics and axoglial metabolic coupling as drivers of neurodegeneration. Neurobiol Dis 2022; 170:105751. [PMID: 35569720 DOI: 10.1016/j.nbd.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
Impaired bioenergetic capacity of the nervous system is thought to contribute to the pathogenesis of many neurodegenerative diseases (NDD). Since neuronal synapses are believed to be the major energy consumers in the nervous system, synaptic derangements resulting from energy deficits have been suggested to play a central role for the development of many of these disorders. However, long axons constitute the largest compartment of the neuronal network, require large amounts of energy, are metabolically and structurally highly vulnerable, and undergo early injurious stresses in many NDD. These stresses likely impose additional energy demands for continuous adaptations and repair processes, and may eventually overwhelm axonal maintenance mechanisms. Indeed, pathological axon degeneration (pAxD) is now recognized as an etiological focus in a wide array of NDD associated with bioenergetic abnormalities. In this paper I first discuss the recognition that a simple experimental model for pAxD is regulated by an auto-destruction program that exhausts distressed axons energetically. Provision of the energy substrate pyruvate robustly counteracts this axonal breakdown. Importantly, energy decline in axons is not only a consequence but also an initiator of this program. This opens the intriguing possibility that axon dysfunction and pAxD can be suppressed by preemptively energizing distressed axons. Second, I focus on the emerging concept that axons communicate energetically with their flanking glia. This axoglial metabolic coupling can help offset the axonal energy decline that activates the pAxD program but also jeopardize axon integrity as a result of perturbed glial metabolism. Third, I present compelling evidence that abnormal axonal energetics and compromised axoglial metabolic coupling accompany the activation of the pAxD auto-destruction pathway in models of glaucoma, a widespread neurodegenerative condition with pathogenic overlap to other common NDD. In conclusion, I propose a novel conceptual framework suggesting that therapeutic interventions focused on bioenergetic support of the nervous system should also address axons and their metabolic interactions with glia.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Institute for Myelin and Glia Exploration, New York State Center of Excellence in Bioinformatics & Life Sciences (CBLS), University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
3
|
Figley MD, DiAntonio A. The SARM1 axon degeneration pathway: control of the NAD + metabolome regulates axon survival in health and disease. Curr Opin Neurobiol 2020; 63:59-66. [PMID: 32311648 PMCID: PMC7483800 DOI: 10.1016/j.conb.2020.02.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Axons are essential for nervous system function and axonal pathology is a common hallmark of many neurodegenerative diseases. Over a century and a half after the original description of Wallerian axon degeneration, advances over the past five years have heralded the emergence of a comprehensive, mechanistic model of an endogenous axon degenerative process that can be activated by both injury and disease. Axonal integrity is maintained by the opposing actions of the survival factors NMNAT2 and STMN2 and pro-degenerative molecules DLK and SARM1. The balance between axon survival and self-destruction is intimately tied to axonal NAD+ metabolism. These mechanistic insights may enable axon-protective therapies for a variety of human neurodegenerative diseases including peripheral neuropathy, traumatic brain injury and potentially ALS and Parkinson's.
Collapse
Affiliation(s)
- Matthew D Figley
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, 660 Euclid Avenue, St. Louis, MO 63110, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, 660 Euclid Avenue, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Chang B, Quan Q, Lu S, Wang Y, Peng J. Molecular mechanisms in the initiation phase of Wallerian degeneration. Eur J Neurosci 2016; 44:2040-8. [PMID: 27062141 DOI: 10.1111/ejn.13250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022]
Abstract
Axonal degeneration is an early hallmark of nerve injury and many neurodegenerative diseases. The discovery of the Wallerian degeneration slow mutant mouse, in which axonal degeneration is delayed, revealed that Wallerian degeneration is an active progress and thereby illuminated the mechanisms underlying axonal degeneration. Nicotinamide mononucleotide adenylyltransferase 2 and sterile alpha and armadillo motif-containing protein 1 play essential roles in the maintenance of axon integrity by regulating the level of nicotinamide adenine dinucleotide, which seems to be the key molecule involved in the maintenance of axonal health. However, the function of nicotinamide mononucleotide remains debatable, and we discuss two apparently conflicting roles of nicotinamide mononucleotide in Wallerian degeneration. In this article, we focus on the roles of these molecules in the initiation phase of Wallerian degeneration to improve our understanding of the mechanisms underpinning this phenomenon.
Collapse
Affiliation(s)
- Biao Chang
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China
| | - Qi Quan
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China
| | - Shibi Lu
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China
| | - Yu Wang
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China.,The Neural Regeneration Co-innovation Center of Jiangsu Province, Nantong, China
| | - Jiang Peng
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China.,The Neural Regeneration Co-innovation Center of Jiangsu Province, Nantong, China
| |
Collapse
|
5
|
Kitay BM, McCormack R, Wang Y, Tsoulfas P, Zhai RG. Mislocalization of neuronal mitochondria reveals regulation of Wallerian degeneration and NMNAT/WLD(S)-mediated axon protection independent of axonal mitochondria. Hum Mol Genet 2013; 22:1601-14. [PMID: 23314018 DOI: 10.1093/hmg/ddt009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Axon degeneration is a common and often early feature of neurodegeneration that correlates with the clinical manifestations and progression of neurological disease. Nicotinamide mononucleotide adenylytransferase (NMNAT) is a neuroprotective factor that delays axon degeneration following injury and in models of neurodegenerative diseases suggesting a converging molecular pathway of axon self-destruction. The underlying mechanisms have been under intense investigation and recent reports suggest a central role for axonal mitochondria in both degeneration and NMNAT/WLD(S) (Wallerian degeneration slow)-mediated protection. We used dorsal root ganglia (DRG) explants and Drosophila larval motor neurons (MNs) as models to address the role of mitochondria in Wallerian degeneration (WD). We find that expression of Drosophila NMNAT delays WD in human DRG neurons demonstrating evolutionary conservation of NMNAT function. Morphological comparison of mitochondria from WLD(S)-protected axons demonstrates that mitochondria shrink post-axotomy, though analysis of complex IV activity suggests that they retain their functional capacity despite this morphological change. To determine whether mitochondria are a critical site of regulation for WD, we genetically ablated mitochondria from Drosophila MN axons via the mitochondria trafficking protein milton. Milton loss-of-function did not induce axon degeneration in Drosophila larval MNs, and when axotomized WD proceeded stereotypically in milton distal axons although with a mild, but significant delay. Remarkably, the protective effects of NMNAT/WLD(S) were also maintained in axons devoid of mitochondria. These experiments unveil an axon self-destruction cascade governing WD that is not initiated by axonal mitochondria and for the first time illuminate a mitochondria-independent mechanism(s) regulating WD and NMNAT/WLD(S)-mediated axon protection.
Collapse
Affiliation(s)
- Brandon M Kitay
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
6
|
Garland P, Broom LJ, Quraishe S, Dalton PD, Skipp P, Newman TA, Perry VH. Soluble axoplasm enriched from injured CNS axons reveals the early modulation of the actin cytoskeleton. PLoS One 2012; 7:e47552. [PMID: 23115653 PMCID: PMC3480358 DOI: 10.1371/journal.pone.0047552] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 09/18/2012] [Indexed: 12/12/2022] Open
Abstract
Axon injury and degeneration is a common consequence of diverse neurological conditions including multiple sclerosis, traumatic brain injury and spinal cord injury. The molecular events underlying axon degeneration are poorly understood. We have developed a novel method to enrich for axoplasm from rodent optic nerve and characterised the early events in Wallerian degeneration using an unbiased proteomics screen. Our detergent-free method draws axoplasm into a dehydrated hydrogel of the polymer poly(2-hydroxyethyl methacrylate), which is then recovered using centrifugation. This technique is able to recover axonal proteins and significantly deplete glial contamination as confirmed by immunoblotting. We have used iTRAQ to compare axoplasm-enriched samples from naïve vs injured optic nerves, which has revealed a pronounced modulation of proteins associated with the actin cytoskeleton. To confirm the modulation of the actin cytoskeleton in injured axons we focused on the RhoA pathway. Western blotting revealed an augmentation of RhoA and phosphorylated cofilin in axoplasm-enriched samples from injured optic nerve. To investigate the localisation of these components of the RhoA pathway in injured axons we transected axons of primary hippocampal neurons in vitro. We observed an early modulation of filamentous actin with a concomitant redistribution of phosphorylated cofilin in injured axons. At later time-points, RhoA is found to accumulate in axonal swellings and also colocalises with filamentous actin. The actin cytoskeleton is a known sensor of cell viability across multiple eukaryotes, and our results suggest a similar role for the actin cytoskeleton following axon injury. In agreement with other reports, our data also highlights the role of the RhoA pathway in axon degeneration. These findings highlight a previously unexplored area of axon biology, which may open novel avenues to prevent axon degeneration. Our method for isolating CNS axoplasm also represents a new tool to study axon biology.
Collapse
Affiliation(s)
- Patrick Garland
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Traditionally, researchers have believed that axons are highly dependent on their cell bodies for long-term survival. However, recent studies point to the existence of axon-autonomous mechanism(s) that regulate rapid axon degeneration after axotomy. Here, we review the cellular and molecular events that underlie this process, termed Wallerian degeneration. We describe the biphasic nature of axon degeneration after axotomy and our current understanding of how Wld(S)--an extraordinary protein formed by fusing a Ube4b sequence to Nmnat1--acts to protect severed axons. Interestingly, the neuroprotective effects of Wld(S) span all species tested, which suggests that there is an ancient, Wld(S)-sensitive axon destruction program. Recent studies with Wld(S) also reveal that Wallerian degeneration is genetically related to several dying back axonopathies, thus arguing that Wallerian degeneration can serve as a useful model to understand, and potentially treat, axon degeneration in diverse traumatic or disease contexts.
Collapse
Affiliation(s)
- Michael P Coleman
- Laboratory of Molecular Signaling, The Babraham Institute, Cambridge CB223AT, United Kingdom
| | | |
Collapse
|
8
|
Beirowski B, Adalbert R, Wagner D, Grumme DS, Addicks K, Ribchester RR, Coleman MP. The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves. BMC Neurosci 2005; 6:6. [PMID: 15686598 PMCID: PMC549193 DOI: 10.1186/1471-2202-6-6] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Accepted: 02/01/2005] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The progressive nature of Wallerian degeneration has long been controversial. Conflicting reports that distal stumps of injured axons degenerate anterogradely, retrogradely, or simultaneously are based on statistical observations at discontinuous locations within the nerve, without observing any single axon at two distant points. As axon degeneration is asynchronous, there are clear advantages to longitudinal studies of individual degenerating axons. We recently validated the study of Wallerian degeneration using yellow fluorescent protein (YFP) in a small, representative population of axons, which greatly improves longitudinal imaging. Here, we apply this method to study the progressive nature of Wallerian degeneration in both wild-type and slow Wallerian degeneration (WldS) mutant mice. RESULTS In wild-type nerves, we directly observed partially fragmented axons (average 5.3%) among a majority of fully intact or degenerated axons 37-42 h after transection and 40-44 h after crush injury. Axons exist in this state only transiently, probably for less than one hour. Surprisingly, axons degenerated anterogradely after transection but retrogradely after a crush, but in both cases a sharp boundary separated intact and fragmented regions of individual axons, indicating that Wallerian degeneration progresses as a wave sequentially affecting adjacent regions of the axon. In contrast, most or all WldS axons were partially fragmented 15-25 days after nerve lesion, WldS axons degenerated anterogradely independent of lesion type, and signs of degeneration increased gradually along the nerve instead of abruptly. Furthermore, the first signs of degeneration were short constrictions, not complete breaks. CONCLUSIONS We conclude that Wallerian degeneration progresses rapidly along individual wild-type axons after a heterogeneous latent phase. The speed of progression and its ability to travel in either direction challenges earlier models in which clearance of trophic or regulatory factors by axonal transport triggers degeneration. WldS axons, once they finally degenerate, do so by a fundamentally different mechanism, indicated by differences in the rate, direction and abruptness of progression, and by different early morphological signs of degeneration. These observations suggest that WldS axons undergo a slow anterograde decay as axonal components are gradually depleted, and do not simply follow the degeneration pathway of wild-type axons at a slower rate.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Center for Molecular Medicine Cologne (CMMC) and Institute for Genetics, University of Cologne, Zuelpicher Strasse 47, D-50647 Cologne, Germany
- Department of Anatomy I, University of Cologne, Joseph-Stelzmann Strasse 9, D-50931 Cologne, Germany
| | - Robert Adalbert
- Center for Molecular Medicine Cologne (CMMC) and Institute for Genetics, University of Cologne, Zuelpicher Strasse 47, D-50647 Cologne, Germany
- Babraham Institute, Babraham, Cambridge CB2 4 AT, UK
| | - Diana Wagner
- Center for Molecular Medicine Cologne (CMMC) and Institute for Genetics, University of Cologne, Zuelpicher Strasse 47, D-50647 Cologne, Germany
| | - Daniela S Grumme
- Center for Molecular Medicine Cologne (CMMC) and Institute for Genetics, University of Cologne, Zuelpicher Strasse 47, D-50647 Cologne, Germany
| | - Klaus Addicks
- Department of Anatomy I, University of Cologne, Joseph-Stelzmann Strasse 9, D-50931 Cologne, Germany
| | - Richard R Ribchester
- Division of Neuroscience, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Michael P Coleman
- Center for Molecular Medicine Cologne (CMMC) and Institute for Genetics, University of Cologne, Zuelpicher Strasse 47, D-50647 Cologne, Germany
- Babraham Institute, Babraham, Cambridge CB2 4 AT, UK
| |
Collapse
|
9
|
Tsao JW, Paramananthan N, Parkes HG, Dunn JF. Altered brain metabolism in the C57BL/Wld mouse strain detected by magnetic resonance spectroscopy: association with delayed Wallerian degeneration? J Neurol Sci 1999; 168:1-12. [PMID: 10500267 DOI: 10.1016/s0022-510x(99)00161-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the C57BL/Wld(s) (Wld) mouse strain, both PNS and CNS axonal disintegration during Wallerian degeneration is dramatically slowed, with isolated axons being able to conduct compound action potentials (CAPs) for several weeks post-transection. The ability to conduct a CAP signifies the presence of an intact plasma membrane, normal ion gradients, and functioning ion channels. In neurons, ion homeostasis is primarily regulated by the Na(+)-K(+)-ATPase, which utilizes approximately 50% of neuronal energy output. To investigate the possibility that the Wld mutation prolongs axonal degeneration by conferring a more favorable energetic status to neurons or alters metabolism, we used 31P and 1H magnetic resonance spectroscopy (MRS) to compare the cerebral and muscle energy metabolism, membrane phospholipid contents, and water-soluble metabolites of Wld and wild-type (C57BL/6J [6J], and BALB/c) mouse strains. We first demonstrate that, with advancing age, transected Wld CNS nerves degenerate faster, paralleling previous findings in the PNS. We found significantly decreased phosphocreatine and phosphomonoester concentrations in the brains of Wld mice at 1- and 2-months of age compared to both 6J and BALB/c mice, but we failed to find differences in the adenylate (ATP, ADP, or AMP) or phospholipid concentrations. In another excitable tissue, skeletal muscle, no differences in energy-containing metabolites were detected. High resolution 1H MRS indicated that at 1 month of age, Wld brains have cytosolic levels of glutamate and phosphocholine that are significantly decreased, relative to total N-acetyl aspartate content. Our results demonstrate that delayed Wallerian degeneration in the C57BL/Wld mouse strain is associated with altered cerebral metabolism, although these changes may be secondary to the mutation.
Collapse
Affiliation(s)
- J W Tsao
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK.
| | | | | | | |
Collapse
|
10
|
Repérant J, Rio JP, Ward R, Miceli D, Vesselkin NP, Hergueta S, Lemire M. Sequential events of degeneration and synaptic remodelling in the viper optic tectum following retinal ablation. A degeneration, radioautographic and immunocytochemical study. J Chem Neuroanat 1991; 4:397-413. [PMID: 1664211 DOI: 10.1016/0891-0618(91)90021-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ultrastructural changes taking place in the retino-recipient layers of the viper optic tectum were examined between 5 and 122 days after retinal ablation. The initial degeneration of retinotectal terminals proceeds at widely different rates and is characterized by a marked degree of polymorphism in which a number of different patterns can be discerned. In the final stages of degeneration, either both the degenerating bouton and the distal portion of the postsynaptic element are engulfed by reactive glia, or, more frequently, only the degenerating terminal is eliminated and the postsynaptic differentiation remains. The free postsynaptic differentiations are reoccupied predominantly by boutons containing pleiomorphic vesicles and which are for the most part gamma-aminobutyric acid (GABA)ergic, thus forming heterologous synapses; less frequently these sites are occupied by boutons of the ipsilateral visual contingent to form homologous synapses. These two processes, both of which depend on terminal axonal sprouting, take place within the first 3 postoperative months. They are followed by a decrease in the number of heterologous synapses and a concurrent increase in the number of homologous synapses newly formed by optic boutons generated by collateral preterminal sprouting of ipsilateral retinotectal fibres. The data suggest that partial deafferentation of the optic tectum induces a transitory GABAergic innervation of free postsynaptic sites prior to the restoration of new retinal synaptic contacts.
Collapse
Affiliation(s)
- J Repérant
- Laboratoire de Neuromorphologie, U-106 INSERM, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
11
|
LoPachin RM, LoPachin VR, Saubermann AJ. Effects of axotomy on distribution and concentration of elements in rat sciatic nerve. J Neurochem 1990; 54:320-32. [PMID: 2293619 DOI: 10.1111/j.1471-4159.1990.tb13317.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
X-ray microprobe analysis was used to determine the effects of axotomy on distribution and concentration (millimoles of element per kilogram dry weight) of Na, P, Cl, K, and Ca in frozen, unfixed sections of rat sciatic nerve. Elemental concentrations were measured in axoplasm, mitochondria, and myelin at 8, 16, and 48 h after transection in small-, medium-, and large-diameter fibers. In addition, elemental composition was determined in extraaxonal space (EAS) and Schwann cell cytoplasm. During the initial 16 h following transection, axoplasm of small fibers exhibited a decrease in dry weight concentrations of K and Cl, whereas Na and P increased compared to control values. Similar changes were observed in mitochondria of small axons, except for an early, large increase in Ca content. In contrast, intraaxonal compartments of larger fibers showed increased dry weight levels of K and P, with no changes in Na or Ca concentrations. Both Schwann cell cytoplasm and EAS at 8 and 16 h after injury had significant increases in Na, K, and Cl dry weight concentrations, whereas no changes, other than an increase in Ca, were observed in myelin. Regardless of fiber size, 48 h after transection, axoplasm and mitochondria displayed marked increases in Na, Cl, and Ca concentrations associated with decreased K. Also at 48 h, both Schwann cell cytoplasm and EAS had increased dry weight concentrations of Na, Cl, and K. The results of this study indicate that, in response to nerve transection, elemental content and distribution are altered according to a specific temporal pattern. This sequence of change, which occurs first in small axons, precedes the onset of Wallerian degeneration in transected nerves.
Collapse
Affiliation(s)
- R M LoPachin
- Department of Anesthesiology, Medical School, SUNY at Stony Brook 11794-8480
| | | | | |
Collapse
|
12
|
Komatsu K, Satoh S. Effect of mitochondrial protein synthesis inhibitors on the trophic action of nerve stump in mice. Exp Neurol 1985; 90:300-7. [PMID: 4054287 DOI: 10.1016/0014-4886(85)90020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We studied the effect of mitochondrial protein synthesis inhibitors on the neurotrophic action of the nerve stump in mice. The sciatic nerve was cut as close to, or as far from the extensor digitorum longus muscles as possible. At 2 and 3 days after denervation, depolarization in the resting membrane potential of muscles with long nerve stumps (14-16 mm) was significantly smaller than in muscles with very short (less than 2 mm) nerve stumps. Chloramphenicol (100 mg/kg, p.o.), erythromycin (4 micrograms/kg, i.p.), ethidium bromide, (10 micrograms/kg, i.p.) or acridine (10 micrograms/kg, i.p.), administered for 2 or 3 days after denervation, increased depolarization in the resting membrane potential of muscles with long nerve stumps; muscles with very short nerve stumps were not affected by these drugs. The administration of chloramphenicol and erythromycin resulted in an earlier increase in the depolarization than ethidium bromide and acridine. Activities of cathepsin B and L of lysosomal proteases in the nerve stumps were enhanced by nerve degeneration; they were not affected by the administration of chloramphenicol or ethidium bromide. We suggest that proteins synthesized in mitochondria of the nerve may participate in trophic actions.
Collapse
|
13
|
|
14
|
Schlaepfer WW, Zimmerman UJ. Mechanisms underlying the neuronal response to ischemic injury. Calcium-activated proteolysis of neurofilaments. PROGRESS IN BRAIN RESEARCH 1985; 63:185-96. [PMID: 3915124 DOI: 10.1016/s0079-6123(08)61983-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Abstract
Growing appreciation of the multiple functions of proteolytic enzymes in intracellular protein degradation and post-translational modification, in the release of biologically active macromolecules and peptides from precursors and in cellular protein regulation and quality control has stimulated interest in proteases in neurobiology and neuropathology. In this article, the proteinases and peptidases thus far studied in the human central nervous system are reviewed with respect to their enzymology, anatomical and cytological distributions and contributions to neurological and psychiatric disease states. Though information concerning brain proteases in man is fragmentary, it suffices to establish the importance of these complex systems for advancing knowledge of human cerebral function in health and disease.
Collapse
|
16
|
Gopalakrishnakone P, Hawgood BJ. Morphological changes induced by crotoxin in murine nerve and neuromuscular junction. Toxicon 1984; 22:791-804. [PMID: 6523507 DOI: 10.1016/0041-0101(84)90162-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The sequence and timing of structural changes induced by crotoxin were examined by electron microscopy following either a single systemic injection of a lethal dose or a single i.m. injection of a sub-lethal dose in mice. Changes in the diaphragm motor nerve terminals, including a reduction in synaptic vesicle population, the appearance of omega (omega) shaped indentations in the axolemma and swelling of mitochondria, were associated with clinical signs of developing muscular paralysis during systemic intoxication. No post-synaptic or myofibrillar changes were observed at the stage of cessation of respiration. Subsequent events observed following i.m. injection included the onset of myonecrosis, disorganization of the endplate, envelopment of axon terminals by Schwann cells and changes in the preterminal motor nerve. A 'Wallerian-type' degeneration of small myelinated axons supplying the soleus muscle was apparent by 24 hr. Re-innervation of the regenerated muscle was rapid.
Collapse
|
17
|
Zimmerman UJ, Schlaepfer WW. Calcium-activated neutral protease (CANP) in brain and other tissues. Prog Neurobiol 1984; 23:63-78. [PMID: 6097938 DOI: 10.1016/0301-0082(84)90012-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Rosenfeld J, Freidrich VL. Axonal swellings in jimpy mice: does lack of myelin cause neuronal abnormalities? Neuroscience 1983; 10:959-66. [PMID: 6646438 DOI: 10.1016/0306-4522(83)90233-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have observed focal axonal enlargements in jimpy, a myelin deficient mutant mouse. Similar axonal swellings have also been found in other studies, in two other myelin deficient mutant mice and in a myelin deficient mutant rat. We suggest that this axonal abnormality represents a common secondary reaction to lack of myelin. Such a secondary reaction might also occur in other species including human, in response to deficient myelin or to loss of myelin due to disease.
Collapse
|
19
|
Matsumoto DE, Scalia F. Long-term survival of centrally projecting axons in the optic nerve of the frog following destruction of the retina. J Comp Neurol 1981; 202:135-55. [PMID: 6974743 DOI: 10.1002/cne.902020112] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A significant number of unmyelinated axons and their synaptic endings in the frog, Rana pipiens, were found to retain a normal morphology long after separation from their cell bodies. At the end of various survival periods following unilateral removal of the retina, horseradish peroxidase (HRP) was administered to the optic nerve stump by a fiber-filling method. In frogs maintained at 20 degrees C, unmyelinated optic nerve axons conducted HRP from the site of application in the orbit to layers A, C, and E of the contralateral optic tectum, even though their retinas had been removed up to 69 days earlier. Such fiber-filling was absent beyond 19 days in other frogs surviving at 35 degrees C. No labeled fibers were continuous with any intracerebral neurons. The HRP was always localized intraaxonally, and the marked axons and terminals were ultrastructurally normal. Counts of surviving axons from electron micrographs of the optic nerves showed that, at 20 degrees C, more than half of the normal complement of unmyelinated axons disappeared in the first 10 days. All the myelinated axons degenerated during the first 6 weeks survival. However, approximately 55,000 normal-appearing unmyelinated axons (12% of the unmyelinated fiber population) persisted in the optic nerve at 10 weeks following removal of the retina. The survival rate was lower at 35 degrees C. In other frogs, one eye was injected with 3H-leucine to initiate axonal transport into the retinal ganglion cell axons. That eye was removed 48 hours later. Autoradiographic analysis of brain sections of frog surviving an additional 31 to 61 days at 20 degrees C showed strong labeling of the optic tract and layers A, C, and E of the contralateral optic tectum. The absence of displaced ganglion cells that might exist within the optic nerve was verified by other observations. It is hypothesized that the potential shown by frog optic axons for long-term survival in the absence of the cell-body expresses a general property of vertebrate (and invertebrate) axons, rather than a special property of the frog optic nerve.
Collapse
|
20
|
Schlaepfer WW, Zimmerman UP. Calcium-mediated breakdown of glial filaments and neurofilaments in rat optic nerve and spinal cord. Neurochem Res 1981; 6:243-55. [PMID: 7197000 DOI: 10.1007/bf00964040] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Disruptive effects of calcium upon neurofilaments and glial filaments were studied in white matter of rat optic nerve and spinal cord and in rat peripheral nerve. Filament ultrastructure and tissue protein composition were compared following a calcium influx into excised tissues. A calcium influx was induced by freeze--thawing tissues in media containing calcium (5 mM) while control tissues were freeze--thawed in the presence of EGTA (5 mM). Experimental and control tissues were either fixed by immersion in glutaraldehyde and processed for electron microscopic examination or homogenized in a solubilizing buffer and analyzed for protein content by SDS-polyacrylamide gel electrophoresis. Morphological studies showed that calcium influxes led to the loss of neurofilaments and glial filaments and to their replacement by an amorphous granular material. These morphological changes were accompanied by the loss of neurofilament triplet proteins and glial fibrillary acidic (GFA) protein from whole-tissue homogenates. In addition, a calcium-sensitive 58,000-mol-wt protein was identified in rat optic and peripheral nerve. The findings indicate the widespread occurrence of neurofilament proteolysis following calcium influxes into CNS and PNS tissues. The parallel breakdown of glial filaments and loss of GFA protein subunits suggest the presence of additional calcium-activated proteases(s) in astroglial cells.
Collapse
|
21
|
Schlaepfer WW, Freeman LA. Calcium-dependent degradation of mammalian neurofilaments by soluble tissue factor(s) from rat spinal cord. Neuroscience 1980; 5:2305-14. [PMID: 7193294 DOI: 10.1016/0306-4522(80)90146-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Nixon RA. Protein degradation in the mouse visual system. I. Degradation of axonally transported and retinal proteins. Brain Res 1980; 200:69-83. [PMID: 6158362 DOI: 10.1016/0006-8993(80)91095-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The analysis of proteolysis in the nervous system is complicated by the heterogeneity of cell types, extensive reutilization of liberated amino acids, and artifacts that may arise when the integrity of the tissue is disrupted during experimentation. For these reasons, changes in proteolytic activity that are observed during brain development and in neuropathological states may often be difficult to interpret. To minimize these problems, we have developed a technique that permits protein degradation to be investigated specifically within axons of the mouse retinal ganglion cells (RGC). In the present study, the method has been used to examine the degradation of proteins conveyed in the slow phases of axoplasmic transport. When adult C57Bl/6J mice were injected intravitreally with L-[3H]proline, labeled proteins within the primary optic pathway (optic nerve and tract) after 5 days were almost exclusively the slow phase axonal proteins. The rate of degradation of these proteins was then determined within the excised, but otherwise intact, optic pathway by measuring the release of acid soluble radioactivity at 37 degrees C in vitro. At physiological pH, the amino acids released by proteolysis were extensively reutilized. Unless amino acid reutilization was prevented, protein degradative rates were artifactually lowered 3-fold. At least two proteolytic systems within RGC axons actively degraded the slowly transported axonal proteins. A 'neutral' system, stimulated by exogenous calcium ions, was optimally active within the physiological pH range (pH 7.0--7.8). The rate of protein degradation at pH 7.4 was uniform along the RGC axon. An 'acidic' system was optimally active with the incubation was carried out at pH 3.8. This proteolytic activity was calcium-independent and exhibited a proximodistal gradient within the RCG axon with higher activity proximally. Similar proteolytic activities were present in isolated intact retinas but in different proportions. The half-lives of axonal and retinal proteins were comparable to CNS protein half-lives estimated in vivo by methods that take amino acid reutilization into account. These and other recent findings demonstrate the utility of this neuron-specific approach in characterizing proteolytic processes within one cell type that may otherwise be obscured by proteolytic events in other cells when brain tissue is analyzed by conventional methods.
Collapse
|
23
|
Schlaepfer WW, Hasler MB. Characterization of the calcium-induced disruption of neurofilaments in rat peripheral nerve. Brain Res 1979; 168:299-309. [PMID: 445144 DOI: 10.1016/0006-8993(79)90171-9] [Citation(s) in RCA: 162] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transverse frozen sections of desheathed rat peripheral nerve were incubated in media of different composition prior to fixation and processing for electron microscopic examination. Neurofilaments remained intact when these tissues were incubated in calcium-free media. A loss of neurofilaments and their replacement by granular debris occurred in myelinated and unmyelinated fibers following incubation in media containing 2 mM calcium. The calcium-mediated disruption of neurofilaments was inhibited by preincubation or incubation with 1 mM p-chloromercuribenzoate (PCMB). The inhibition by preincubation with PCMB could be partially reversed by subsequent preincubation with 10 mM dithioerythritol (DTE). Calcium-mediated breakdown of neurofilaments did not occur after prolonged preincubation in calcium-free media, a finding which suggested that neurofilament disruption was dependent upon a tissue factor which could be lost or inactivated in frozen-sectioned nerve tissues. The findings of the present study provide morphological evidence that neurofilament disruption in mammalian peripheral nerve is mediated by a calcium-activated, PCMB-sensitive enzyme in the axoplasm of myelinated and unmyelinated nerve fibers.
Collapse
|
24
|
Schlaepfer WW, Micko S. Calcium-dependent alterations of neurofilament proteins of rat peripheral nerve. J Neurochem 1979; 32:211-9. [PMID: 759574 DOI: 10.1111/j.1471-4159.1979.tb04530.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Schlaepfer WW, Micko S. Chemical and structural changes of neurofilaments in transected rat sciatic nerve. J Cell Biol 1978; 78:369-78. [PMID: 690171 PMCID: PMC2110124 DOI: 10.1083/jcb.78.2.369] [Citation(s) in RCA: 116] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The sequence of changes occurring in transected rat sciatic nerve was examined by electron microscopy and by sodium dodecyl sulfate (SDS) polyacrylamide disc gel electrophoresis. Representative segments of transected nerves were processed for ultrastructural examinations between 0 and 34 days after the transection of sciatic nerves immediately below the sacro-sciatic notch. The remainder of the transected nerves and the intact portions of sciatic nerves were desheathed and immediately homogenized in 1 percent SDS containing 8 M urea and 50 mM dithioerythritol. Solubilized proteins were analyzed on 12 percent gels at pH 8.3 in a discontinuous electrophoretic system. Initial changes were limited to the axons of transected nerve fibers and were characterized by the loss of microtubules and neurofilaments and their replacement by an amorphous floccular material. These changes became widespread between 24 and 48 h after transection. The disruption of neurofilaments during this interval occurred in parallel with a selective loss of 69,000, 150,000 and 200,000 mol wt proteins from nerve homogenates, thus corroborating the view that these proteins represent component subunits of mammalian neurofilaments. Furthermore, the selective changes of neurofilament proteins in transected nerves indicate their inherent lability and suggest their susceptibility to calcium-mediated alterations. Electrophoretic profiles of nerve proteins during the 4-34-day interval after nerve transection reflected the breakdown and removal of myelin, the proliferation of Schwann cells and the deposition of endoneurial collagen. A marked increase of intermediate-sized filaments within proliferating Schwann cell processes was not accompanied by the appearance of neurofilamentlike proteins in gels of nerve homogenates.
Collapse
|
26
|
Abstract
A quantitative study of Wallerian degeneration was carried out on teased fibres. The breakdown into ovoids was used as the criterion of degeneration. The fragmentation of fibres begins near the point of nerve interrruption and spreads along the unbranched parts of axons at velocities correlated with fibre diameter and internodal length. The latent period, preceding the onset of fragmentation, lasts from 25.6 h in thin fibres to 45.0 h in the thickest fibres. The speed of the subsequent advance along the nerve varies correspondingly from 250 to 46 mm/day. In each internode the first ovoids appear in the middle, the ends of the internodal segment being initially spared. The spatiotemporal pattern of degeneration is consistent with the hypothesis that a neuronal trophic substance, normally ensuring the integrity of the axon, exerts transcellularly an inhibitory influence on the Schwann cell. This influence disappears when the amount or concentration of migrating trophic substances falls below a critical level in a stretch of axon. The overlying Schwann cells become mobile and exhibit intense metabolic activity, leading eventually to axonal disruption.
Collapse
|
27
|
Schlaepfer WW. Vesicular disruption of myelin simulated by exposure of nerve to calcium ionophore. Nature 1977; 265:734-6. [PMID: 16216 DOI: 10.1038/265734a0] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Madrid RE, Wiśniewski HM. Axonal degeneration in demyelinating disorders. JOURNAL OF NEUROCYTOLOGY 1977; 6:103-17. [PMID: 839247 DOI: 10.1007/bf01175417] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Changes in the L7 and S1 segments of the spinal cord and the corresponding dorsal root ganglia (DRG), spinal roots and sciatic nerves of guinea pigs immunized with whole rabbit sciatic nerve in complete Freund's adjuvant have been studied and compared with the changes found in guinea pigs immunized with purified P.N.S. myelin. In both groups of animals, pathological changes were found in the posterior roots, DRG and root entry zones. In the posterior roots, axonal degeneration and segmental demyelination evolved in parallel, affected different populations of myelinated axons and showed no indication of interdependence. The aetiology of axonal degeneration in this and other demyelinating disorders is discussed. It is concluded that axons can be damaged by being in the vicinity of areas where cell-mediated immune reactions are taking place, i.e. as a consequence of the so-called 'bystander' effect.
Collapse
|
29
|
Wolburg H. Time- and dose-dependent influence of ouabain on the ultrastructure of optic neurones. Cell Tissue Res 1975; 164:503-17. [PMID: 1203964 DOI: 10.1007/bf00219941] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cardiac glycoside ouabain was injected into the eye-bulb of the teleost fish, Carassius carassius. Three doses of ouabain were used: 10(-4) M, 10(-5) M, 10(-6) M. The final concentrations in the vitreous body of the eye were approximately 3-10(-5) M, 3-10-6 M and 3-10-7 M, respectively. After 8 hrs, 1, 2, 4, 6 and 8 days the ultrastructural alterations of retinal ganglion cells, the optic axons near the bulb and the terminal segments in the optic tectum were studied. The high doses of ouabain induced an early necrobiosis of the cell bodies in the retina followed by degeneration in the nerve. This is characterized as a protracted form of Wallerian degeneration. The significance of the inhibition of Na+ -K+-activated ATPase at the perikaryal level for both the integrity of axonal morphology and the axonal flow is discussed.
Collapse
|