1
|
Szabó Z, Bácskai T, Deák Á, Matesz K, Veress G, Sziklai I. Dendrodendritic connections between the cochlear efferent neurons in guinea pig. Neurosci Lett 2011; 504:195-8. [PMID: 21945541 DOI: 10.1016/j.neulet.2011.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 11/27/2022]
Abstract
The outer hair cells of organ of Corti are innervated by the efferent neurons of medial olivocochlear neurons (MOC) of the brainstem which modify the cochlear auditory processing and sensitivity. Most of the MOC neurons are excited by a dominant ear and only a small portion of them is excited by both ears resulting in a binaural facilitation. The functional role of the feedback system between the organ of Corti and the cochlear efferent neurons is the protection of the ear from acoustic injury. The rapid impulse propagation in the bilateral olivocochlear system is suggestive of an electrotonic interaction between the bilateral olivocochlear neurons. The morphological background of the MOC pathway is not yet completely characterized. Therefore, we have labeled the bilateral cochlear nerves with different neuronal tracers in guinea pigs. In the anesthetized animals the cochlear nerves were exposed in the basal part of the modiolus and labeled simultaneously with different retrograde fluorescent tracers. By using confocal laser scanning microscope we could detect close appositions between the dendrites of the neurons of bilateral MOC. The distance between the neighboring profiles suggested close membrane appositions without interposing glial elements. These connections might serve as one of the underlying mechanisms of the binaural facilitation mediated by the olivocochlear system.
Collapse
Affiliation(s)
- Zs Szabó
- County Borsod Abaúj Zemplén Hospital, Department of Otolaryngology, Szentpéteri kapu 72-76, H-3526 Miskolc, Hungary.
| | | | | | | | | | | |
Collapse
|
2
|
Bácskai T, Veress G, Halasi G, Matesz C. Crossing dendrites of the hypoglossal motoneurons: possible morphological substrate of coordinated and synchronized tongue movements of the frog, Rana esculenta. Brain Res 2009; 1313:89-96. [PMID: 19962369 DOI: 10.1016/j.brainres.2009.11.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/14/2009] [Accepted: 11/25/2009] [Indexed: 02/05/2023]
Abstract
Application of different fluorescent tracers to the right and left hypoglossal nerve of the frog revealed the extent of dendrites crossing the midline into the territory of contralateral hypoglossal motoneurons. By using confocal microscopy, a large number of close appositions were detected between hypoglossal motoneurons bilaterally, which formed dendrodendritic and dendrosomatic contacts. The distance between the neighboring profiles suggested close membrane appositions without interposing glial elements. Application of neurobiotin to one hypoglossal nerve resulted in labeling of perikarya exclusively on the ipsilateral side of tracer application, suggesting the absence of dye-coupled connections with contralateral hypoglossal motoneurons. At the ultrastructural level, the dendrodendritic and dendrosomatic contacts did not show any morphological specialization; the long membrane appositions may provide electrotonic interactions between the neighboring profiles. We propose that dendrites of hypoglossal motoneurons that cross the midline subserve one of the morphological substrates of co-activation, synchronization and timing of bilateral activity of tongue muscles during prey-catching behavior of the frog.
Collapse
Affiliation(s)
- Tímea Bácskai
- Department of Anatomy, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | | | | | | |
Collapse
|
3
|
Bacskai T, Veress G, Halasi G, Deak A, Racz E, Szekely G, Matesz C. Dendrodendritic and dendrosomatic contacts between oculomotor and trochlear motoneurons of the frog, Rana esculenta. Brain Res Bull 2007; 75:419-23. [PMID: 18331909 DOI: 10.1016/j.brainresbull.2007.10.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
Abstract
Gaze fixation requires very fast movements of the eye during body displacement. The morphological and physiological background of the very fine and continuous tuning of gaze fixation is not yet fully understood. In a previous study we have shown that the dendrites of oculomotor neurons form bundles which invade the trochlear nucleus, and vice versa, trochlear dendritic bundles invade the oculomotor nucleus. Earlier physiological observations demonstrating electrotonic coupling between dendrites of spinal motoneurons in the frog suggest a similar mechanism between the oculomotor and trochlear motoneurons. We studied a possible morphological basis of gaze fixation. The experiments were carried out on common water frogs, Rana esculenta. The trochlear and oculomotor nerves were cut, and their proximal stumps were labeled simultaneously with different retrograde fluorescent tracers. Using confocal laser scanning microscope we detected a large number of close contacts in both nuclei, the majority of them were dendrodendritic apposition. The distance between the adjacent profiles suggested close membrane appositions without intercalating glial or neuronal elements. At the ultrastructural level, the dendrodendritic and dendrosomatic contacts did not show any morphological specialization; the long membrane appositions may provide ephaptic interactions between the neighboring profiles. This electrotonic coupling between the oculomotor and trochlear nerve motoneurons may promote the co-activation of the muscles responsible for vertical eye movements.
Collapse
Affiliation(s)
- Tímea Bacskai
- Department of Anatomy, University of Debrecen, Medical and Health Science Center, H-4012 Debrecen, Hungary.
| | | | | | | | | | | | | |
Collapse
|
4
|
Nagy I, Sik A, Polgár E, Petkó M, Antal M. Combination of cobalt labelling with immunocytochemical reactions for electron microscopic investigations on frog spinal cord. Microsc Res Tech 1994; 28:60-6. [PMID: 7520303 DOI: 10.1002/jemt.1070280107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cobalt staining of primary afferents in frog spinal cord was combined with peroxidase-antiperoxidase pre-embedding or immunogold post-embedding immunocytochemical labelling. Our results have shown that cobalt labelling can easily be distinguished from both of the immunoreaction end products. The protocol of cobalt labelling did not affect the immunoreactivity of structures. The morphology and synaptology of cobalt labelled and immunostained profiles in our sections were very similar to those reported in previous studies using different double labelling techniques. These results indicate that this new combined method could be used as an alternative double labelling technique in electron microscopic studies on nervous tissues.
Collapse
Affiliation(s)
- I Nagy
- Department of Anatomy, Histology and Embryology, University Medical School of Debrecen, Hungary
| | | | | | | | | |
Collapse
|
5
|
Shupliakov OV, Antal M, Székely G. Recurrent dorsal root potentials and motoneuron morphology in the frog spinal cord. Neurosci Lett 1990; 117:289-94. [PMID: 2094819 DOI: 10.1016/0304-3940(90)90679-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
About one third of motoneurons stimulated intracellularly evoked dorsal root potentials (DRP) in the lumbar segments of the isolated and perfused frog spinal cord. Axon collaterals were found in one of the 22 motoneurons filled with HRP (horseradish peroxidase) through the stimulating electrode. In further experiments injecting individual motoneurons with cobalt, and filling the ventral roots with HRP or cobalt, the frequency of occurrence of axon collaterals was about 2% of the number of labelled motor cells. It is suggested that the presence of motor axon collaterals is not indispensable in the generation of the DRP evoked by ventral root or motor cell stimulation.
Collapse
Affiliation(s)
- O V Shupliakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Science of the USSR, Leningrad
| | | | | |
Collapse
|
6
|
Bras H, Gogan P, Tyc-Dumont S. The dendrites of single brain-stem motoneurons intracellularly labelled with horseradish peroxidase in the cat. Morphological and electrical differences. Neuroscience 1987; 22:947-70. [PMID: 3683857 DOI: 10.1016/0306-4522(87)92972-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The geometrical differences between individual dendrites of a given motoneuron were investigated in the cat. We chose two brain-stem motoneurons involved in different motor activities. One abducens and one laryngeal motoneuron were selected from two series of experiments which had combined intracellular recording and horseradish peroxidase staining. Three-dimensional reconstructions were made using a computer-aided microscope to obtain high-resolution measurements from serial histological sections. Each dendrite was characterized by computer dissection. Comparisons between dendrites were made on the basis of the following parameters: spatial projections, length, diameters, tapering, branching pattern, daughter--branch ratio and branching power. The present findings show that each dendrite projects to specific terminal fields for both motoneurons and are different in the complexity of their geometry and branching structure. The consequences of this complexity for the cable properties of the motoneurons were analysed. The dendrites of the two motoneurons were partitioned into a series of contiguous regions deemed short enough to be considered an isopotential cylinder and the steady-state properties were calculated for each segment. The properties of each segment were then combined for each dendrite for the following parameters: electronic distance, somatopetal and somatofugal voltage attenuation, input resistance and charge transfer effectiveness ratio. The present results show significant differences in the electrical behaviour of individual dendrites. Branch-to-branch computation reveals low attenuation pathways between branches suggesting the possibility of local influences within the distal branches of the dendritic arborization. It is proposed that the individual dendrites of the motoneuron function as distinct channels and/or integrators for afferent inputs.
Collapse
Affiliation(s)
- H Bras
- INSERM-U 6, CNRS-UA 634, Marseille, France
| | | | | |
Collapse
|
7
|
Oka Y, Satou M, Ueda K. An improved method for correlative light and electron microscopic examination of cobaltic-lysine-labelled neurons. Neurosci Lett 1987; 73:187-91. [PMID: 2434889 DOI: 10.1016/0304-3940(87)90015-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We describe an improved method for correlative light and electron microscopic examination of synaptic organization of neurons extracellularly labelled by the axonal transport of cobaltic-lysine (Co-lys). After filling the neurons with Co-lys and precipitating the CoS, the brain is fixed in a double-aldehyde fixative, and thick slices are cut using a Microslicer. The slices are intensified using a physical developer, postfixed in OsO4 and embedded in resin. By cutting alternating semithin and ultrathin sections, it is possible to specify sites and types of synaptic contacts on labelled neuronal profiles.
Collapse
|
8
|
Antal M, Kraftsik R, Székely G, van der Loos H. Distal dendrites of frog motor neurons: a computer-aided electron microscopic study of cobalt-filled cells. JOURNAL OF NEUROCYTOLOGY 1986; 15:303-10. [PMID: 3489076 DOI: 10.1007/bf01611433] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
With the aid of the cobalt labelling technique, frog spinal cord motor neuron dendrites of the subpial dendritic plexus have been identified in serial electron micrographs. Computer reconstructions of various lengths (2.5-9.8 micron) of dendritic segments showed the contours of these dendrites to be highly irregular, and to present many thorn-like projections 0.4-1.8 micron long. Number, size and distribution of synaptic contacts were also determined. Almost half of the synapses occurred at the origins of the thorns and these synapses had the largest contact areas. Only 8 out of 54 synapses analysed were found on thorns and these were the smallest. For the total length of reconstructed dendrites there was, on average, one synapse per 1.2 micron, while 4.4% of the total dendritic surface was covered with synaptic contacts. The functional significance of these distal dendrites and their capacity to influence the soma membrane potential is discussed.
Collapse
|
9
|
Antal M. The application of cobalt labelling to electron microscopic investigations of serial sections. J Neurosci Methods 1984; 12:69-77. [PMID: 6392759 DOI: 10.1016/0165-0270(84)90050-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cobalt labelling technique can be applied to ultrathin serial sections and subsequent electron microscopical investigations with the following modifications: a prolonged, up to 12 h, fixation of the tissue in aldehydes; a shortened, 15 min, postfixation in OsO4; embedding in soft resin block by using a higher proportion of plasticizer in the polimerizing mixture; mounting of 5 micrometers thick serial sections between two layers of Agar-Agar coatings; performing the intensification of the Agar section-Agar sandwich with a physical developer containing a low percentage of the reductive agent; reembedding selected thick sections for ultrathin serial sectioning and staining with uranile acetate and lead citrate. The technique unambiguously shows all labelled profiles, and preserves the fine structural details of the surrounding tissues.
Collapse
|
10
|
Bassemir UK, Strausfeld NJ. Cytology of cobalt-filled neurons in flies: cobalt deposits at presynaptic and postsynaptic sites, mitochondria and the cytoskeleton. JOURNAL OF NEUROCYTOLOGY 1983; 12:949-70. [PMID: 6663324 DOI: 10.1007/bf01153344] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Combined light and electron microscopy of identified neurons requires an intracellular marker that is both photon opaque and has electron scattering properties. We describe results using cobalt chloride block intensified with silver as an intracellular label. The novelty of the method is its integration in tissue fixation, prior to dehydration, resulting in fine grain precipitates that resolve certain intracellular structures. Filled neurons are clearly distinguishable from unfilled profiles by cobalt-silver precipitates. Energy dispersive X-ray analysis confirms that silver is specifically deposited onto cobalt sulphide cores which are characteristically associated with microtubules, mitochondria, presynaptic and postsynaptic specializations and gap junction-like membrane appositions.
Collapse
|
11
|
Abstract
The dendritic organization of motoneurons was analyzed with the Golgi stain and a morphometric method in the immature and adult human spinal cord. Each motoneuronal column was found to be characterized by a specific orientation of dendritic trees and by a distinct pattern of dendritic bundling. Ventromedial motoneurons have a pyramidal dendritic tree with numerous, short longitudinal branches and elongated dorsal branches. The latter form thick bundles oriented toward the ventral gray commissure. Longitudinal dendrites form a narrow-meshed dendritic plexus, containing abundant microbundles. Motoneurons of the ventromedial column have fewer primary dendrites and a lower ramification index than other motoneurons. Central motoneurons are predominantly oriented longitudinally. The meshes of the rostrocaudal dendritic plexus are looser and the microbundles are finer. Most transverse dendrites run laterally and participate in dendritic bundles which penetrate into the ventrolateral funiculus. The rostrocaudal dendritic domain of ventrolateral motoneurons is the largest dendritic domain of all spinal neurons. The longitudinal dendritic network contains fine microbundles and appears wide-meshed. Transverse dendrites form lateral or medial dendritic bundles depending upon the position of their perikaryon. Dorsolateral motoneurons differ from other motoneurons by their multipolar organization with a slight preponderance of dorsoventral dendritic spread. Rudimentary lateral dendrite bundles are restricted to marginal neurons. The longitudinal plexuses of motoneuronal dendrites and the verticotransverse dendrite bundles of the ventromedial column are well developed in the 26-28-week-old fetus. In contrast, the horizontotransverse dendrite bundles of central and ventrolateral motoneurons can only be recognized from 36 weeks on. The possible specific functions of the various types of dendrites bundles are examined and a laminar dendroarchitectonic schema of the human cord is proposed.
Collapse
|
12
|
Abstract
Long-term fibre degeneration was studied in the optic nerve, and the optic tectum in Rana esculenta using the cobalt filling technique. Myelinated retinal fibres disappeared within 26 days. A number of unmyelinated axons, however, persisted during the experimental period (91 days after eye removal). It was concluded that myelinated fibres degenerate considerably faster than unmyelinated ones in the frog visual system.
Collapse
|
13
|
Motorina MV. Ultrastructural features of synapses of gap junction type in frog spinal motor nuclei. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1980; 10:295-301. [PMID: 7443029 DOI: 10.1007/bf01184039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Hausen K, Wolburg-Buchholz K. An improved cobalt sulfide-silver intensification method for electron microscopy. Brain Res 1980; 187:462-6. [PMID: 7370740 DOI: 10.1016/0006-8993(80)90216-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Mason CA, O'Shea M. Recent developments in intracellular staining. Trends Neurosci 1979. [DOI: 10.1016/0166-2236(79)90032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Sonnhof U, Richter DW, Taugner R. Electrotonic coupling between frog spinal motoneurons. An electrophysiological and morphological study. Brain Res 1977; 138:197-215. [PMID: 201347 DOI: 10.1016/0006-8993(77)90740-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Gogan P, Gueritaud JP, Horcholle-Bossavit G, Tyc-Dumont S. Direct excitatory interactions between spinal motoneurones of the cat. J Physiol 1977; 272:755-67. [PMID: 592213 PMCID: PMC1353653 DOI: 10.1113/jphysiol.1977.sp012071] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
1. Ninety-seven spinal motoneurones were identified by their antidromic invasion following stimulation of the muscle nerve and submitted to a series of four tests to reveal a possible direct excitation between motoneurones. 2. Threshold differentiation, refractoriness, hyperpolarization and collision revealed antidromically induced depolarizations in fourteen of the ninety-seven tested motoneurones. 3. The parameters of the antidromically induced depolarizations indicate a short latency, a low amplitude and independence with regard to the membrane polarization. 4. It is concluded that the antidromically induced depolarizations reached the impaled motoneurone via a route other than its own axon. 5. The mechanism may involve either electrotonic interactions between neighbouring motoneurones or excitatory recurrent collaterals between synergist motoneurones.
Collapse
|
18
|
Mason CA, Sparrow N, Lincoln DW. Structural features of the retinohypothalamic projection in the rat during normal development. Brain Res 1977; 132:141-8. [PMID: 890472 DOI: 10.1016/0006-8993(77)90711-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Luiten PG, van der Pers JN. The connections of the trigeminal and facial motor nuclei in the brain of the carp (Cyprinus carpio L.) as revealed by anterograde and retrograde transport of horseradish peroxidase. J Comp Neurol 1977; 174:575-90. [PMID: 903419 DOI: 10.1002/cne.901740403] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The connections of the rostral and caudal parts of the trigeminal and facial motor nuclei in the carp were studied with the horseradish peroxidase technique. Following ionophoretic peroxidase injections in these motor nuclei, retrogradely labeled cells were observed together with anterogradely labeled motor cell processes. Several cellular areas in thalamus, cerebellum and medulla oblongata were shown to project to the V and VII motor nuclei. Labeled cells were found in the inferior lobe and the glomerular complex of the thalamus. In the medulla oblongata, cells in the descending trigeminal nucleus, reticular nuclei and motor nuclei other than those injected were labeled. Besides these conspicuous projections several smaller connections were also found. These findings are discussed on their significance to respiratory function. Anterogradely labeled cellular processes constitute a relatively simple network of fiber connections between the various motor nuclei and the reticular nuclei of the brainstem. This apparently dendritic system of the bulbar motor complex shows a certain degree of similarity to the structure of the motor system in the spinal cord, and might play a role in the coordinated control of the muscular system.
Collapse
|
20
|
Ulinski PS. Intrinsic organization of snake medial cortex: an electron microscopic and Golgi study. J Morphol 1977; 152:247-79. [PMID: 68117 DOI: 10.1002/jmor.1051520208] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
|