1
|
Venuti LS, Pena-Flores NL, Herberholz J. Cellular interactions between social experience, alcohol sensitivity, and GABAergic inhibition in a crayfish neural circuit. J Neurophysiol 2020; 125:256-272. [PMID: 33174493 DOI: 10.1152/jn.00519.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We report here that prior social experience modified the behavioral responses of adult crayfish to acute alcohol exposure. Animals housed individually for 1 wk before alcohol exposure were less sensitive to the intoxicating effects of alcohol than animals housed in groups, and these differences are based on changes in the nervous system rather than differences in alcohol uptake. To elucidate the underlying neural mechanisms, we investigated the neurophysiological responses of the lateral giant (LG) interneurons after alcohol exposure. Specifically, we measured the interactions between alcohol and different GABAA-receptor antagonists and agonists in reduced crayfish preparations devoid of brain-derived tonic GABAergic inhibition. We found that alcohol significantly increased the postsynaptic potential of the LG neurons, but contrary to our behavioral observations, the results were similar for isolated and communal animals. The GABAA-receptor antagonist picrotoxin, however, facilitated LG postsynaptic potentials more strongly in communal crayfish, which altered the neurocellular interactions with alcohol, whereas TPMPA [(1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid], an antagonist directed against GABAA-receptors with ρ subunits, did not produce any effects. Muscimol, an agonist for GABAA-receptors, blocked the stimulating effects of alcohol, but this was independent of prior social history. THIP [4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol], an agonist directed against GABAA-receptors with δ subunits, which were not previously known to exist in the LG circuit, replicated the suppressing effects of muscimol. Together, our findings provide strong evidence that alcohol interacts with the crayfish GABAergic system, and the interplay between prior social experience and acute alcohol intoxication might be linked to changes in the expression and function of specific GABAA-receptor subtypes.NEW & NOTEWORTHY The complex interactions between alcohol and prior social experience are still poorly understood. Our work demonstrates that socially isolated crayfish exhibit lower neurobehavioral sensitivity to acute ethanol compared with communally housed animals, and this socially mediated effect is based on changes in the nervous systems rather than on differences in uptake or metabolism. By combining intracellular neurophysiology and neuropharmacology, we investigated the role of the main inhibitory neurotransmitter GABA, and its receptor subtypes, in shaping this process.
Collapse
Affiliation(s)
| | | | - Jens Herberholz
- Neuroscience and Cognitive Science Program.,Department of Psychology, University of Maryland, College Park, Maryland
| |
Collapse
|
2
|
Swierzbinski ME, Herberholz J. Effects of Ethanol on Sensory Inputs to the Medial Giant Interneurons of Crayfish. Front Physiol 2018; 9:448. [PMID: 29755370 PMCID: PMC5934690 DOI: 10.3389/fphys.2018.00448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
Crayfish are capable of two rapid, escape reflexes that are mediated by two pairs of giant interneurons, the lateral giants (LG) and the medial giants (MG), which respond to threats presented to the abdomen or head and thorax, respectively. The LG has been the focus of study for many decades and the role of GABAergic inhibition on the escape circuit is well-described. More recently, we demonstrated that the LG circuit is sensitive to the acute effects of ethanol and this sensitivity is likely mediated by interactions between ethanol and the GABAergic system. The MG neurons, however, which receive multi-modal sensory inputs and are located in the brain, have been less studied despite their established importance during many naturally occurring behaviors. Using a combination of electrophysiological and neuropharmacological techniques, we report here that the MG neurons are sensitive to ethanol and experience an increase in amplitudes of post-synaptic potentials following ethanol exposure. Moreover, they are affected by GABAergic mechanisms: the facilitatory effect of acute EtOH can be suppressed by pretreatment with a GABA receptor agonist whereas the inhibitory effects resulting from a GABA agonist can be occluded by ethanol exposure. Together, our findings suggest intriguing neurocellular interactions between alcohol and the crayfish GABAergic system. These results enable further exploration of potentially conserved neurochemical mechanisms underlying the interactions between alcohol and neural circuitry that controls complex behaviors.
Collapse
Affiliation(s)
- Matthew E Swierzbinski
- Neuroscience and Cognitive Science Program, Department of Psychology, University of Maryland, College Park, MD, United States
| | - Jens Herberholz
- Neuroscience and Cognitive Science Program, Department of Psychology, University of Maryland, College Park, MD, United States
| |
Collapse
|
3
|
Shen KZ, Johnson SW. Potentiation of GABA(A) receptor agonists by GABA uptake inhibitors in the rat ventral midbrain. Eur J Pharmacol 2001; 428:1-7. [PMID: 11779025 DOI: 10.1016/s0014-2999(01)01218-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Whole-cell patch recordings were made from dopamine-containing neurons in the ventral tegmental area (VTA) and substantia nigra zona compacta (SNC). Isoguvacine evoked an outward current (at -60 mV) in a concentration-dependent manner with an EC50 of 62+/-8 microM. The gamma-aminobutyric acid (GABA) uptake inhibitor 1-(2(((diphenylmethylene)imino)oxy)ethyl)-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride (NO 711) (3 microM) shifted the isoguvacine concentration-response curve to the left, with a new EC50 of 22+/-4 microM. L-Arginine (3 mM) also shifted the isoguvacine concentration-response curve to the left, with a new EC50 of 29+/-5 microM. L-Arginine (3 mM) increased the currents evoked by GABA (100 microM) and muscimol (1 microM) by 208% and 261%, respectively. The GABA uptake inhibitor 4,5,6,7,-tetrahydroisoxazolo[4,5-c]-pyridin-3-ol hydrobromide (THPO) (300 microM) not only mimicked but also occluded the ability of L-arginine (3 mM) to potentiate currents evoked by isoguvacine. Equimolar replacement of Na+ with choline increased GABA-evoked currents, suggesting that a low Na+ concentration has an inhibitory effect on GABA transport. Low Na+ concentration (25 mM) inhibited isoguvacine currents but still occluded the potentiating effects of L-arginine. We conclude that GABA uptake inhibitors potentiate the actions of the GABA(A) receptor agonists, isoguvacine and muscimol, probably because they are effective substrates for GABA transporters in the ventral midbrain.
Collapse
Affiliation(s)
- K Z Shen
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland 97201, USA
| | | |
Collapse
|
4
|
Neckameyer WS, Cooper RL. GABA transporters in Drosophila melanogaster: molecular cloning, behavior, and physiology. INVERTEBRATE NEUROSCIENCE : IN 1998; 3:279-94. [PMID: 10212397 DOI: 10.1007/bf02577688] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular cloning of GABA transporter-homologous cDNAs from a Drosophila melanogaster head-specific library was accomplished using a conserved oligomer from a highly conserved domain within the mammalian GABA transporters. Partial DNA sequencing of these cDNAs demonstrated homology with the mammalian transporters, indicating these are ancient, evolutionarily conserved molecules. Although the Drosophila cDNAs had distinct restriction enzyme patterns, they recognized the same locus in Drosophila genomic DNA, suggesting that the multiple isoforms might arise via alternative splicing. Antibodies specific for the mammalian GABA transporters GAT 1, GAT 2 and GAT 3 recognized non-overlapping and developmentally distinct patterns of expression in Drosophila neuronal tissues. Treatment of larval instars with nipecotic acid, a generalized GABA reuptake inhibitor, revealed specific, dose-dependent alterations in behavior consistent with the presence of multiple transporter molecules with differing affinities for this drug. Synaptic current recordings revealed that nipecotic acid treated larvae have an increase in latency jitter of evoked quantal release, resulting in a broader average excitatory junctional current which was manifested in a broader EJP. These results imply that alterations in the development of the CNS occur if GABAergic neurotransmission is potentiated during development. The data suggest that, as in mammals, there are multiple GABA transporters in Drosophila whose expression is differentially regulated.
Collapse
Affiliation(s)
- W S Neckameyer
- Department of Pharmacology and Physiological Sciences, St. Louis University School of Medicine, MO 63104, USA.
| | | |
Collapse
|
5
|
Roberts E, Wendel J. Dynamic modelling of the binding of substances to the conserved membrane-adjacent heptapeptide of the 15-residue C-terminal cytoplasmic fragment of mammalian dopamine D2 receptors. Neurochem Res 1996; 21:177-200. [PMID: 9182243 DOI: 10.1007/bf02529135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dynamic modelling was carried out on the binding in water of several substances to the conserved membrane-adjacent heptapeptide of the 15-residue C-terminal cytoplasmic fragment (C-tail) of mammalian dopamine D2 receptors, PheAsnIleGluPheArgLys. Particularly important in the establishment of binding pockets for ligands were the carboxyl, phenyl, guanidino, and epsilon-amino groups of the last 4 residues. A broad array of chemical structures was found to be potentially capable of binding to this site, among which were dopamine, dopamine D2 receptor agonists and antagonists, GABA, muscimol, GABA(B) receptor agonists and antagonists, homocamosine, and carnosine. Since the C-tail is critical for G protein binding, it is suggested that many naturally-occurring and synthetic substances may be modulators of activation of G proteins by G-coupled receptors.
Collapse
Affiliation(s)
- E Roberts
- Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
6
|
Rogers RF, Fass DM, Matzel LD. Current, voltage and pharmacological substrates of a novel GABA receptor in the visual-vestibular system of Hermissenda. Brain Res 1994; 650:93-106. [PMID: 7953683 DOI: 10.1016/0006-8993(94)90211-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the marine mollusc, Hermissenda crassicornis, Type B photoreceptors exhibit an IPSP to both presynaptic hair cell stimulation and microapplication of gamma-aminobutyric acid (GABA) to the terminal branches. It was found that both the endogenous IPSP and the response to exogenously applied GABA were mediated to a large part by an outward current which reversed at approximately -80 mV. Additionally, these hyperpolarizing responses were found to mask a smaller depolarization that was mediated by the reduction of a basal outward current. Both the IPSP and the hyperpolarizing response to GABA, as well as the sublimated depolarizing response to GABA, were attenuated by the K+ channel blocker tetraethylammonium chloride (TEA) and displayed a strong sensitivity to [K+]o, while showing no sensitivity to [Cl-]o or the Cl- channel blocker picrotoxin. Moreover, iontophoretic injections of stable guanine analogues, GTP[gamma S] and GDP[beta S], into B photoreceptors eliminated both the IPSP and the GABA-induced hyperpolarization, while cholinergically mediated, interphotoreceptor interactions were unaffected. These results suggest that the endogenous receptor is at least partially homologous to the mammalian GABAB class receptor. Consistent with this classification, microapplication of selective GABAB receptor agonist baclofen onto the terminal region of the B photoreceptor resulted in a hyperpolarizing response that was qualitatively similar to that of GABA, although the GABAA agonist muscimol was also active, but less so than either GABA or baclofen. Attempts to block the endogenous IPSP or GABA-induced hyperpolarization by bath application of the GABAA receptor subtype antagonist bicuculline was ineffective and the GABAB receptor subtype antagonist saclofen was only weakly effective. These data demonstrate that the presynaptic hair cell's influence on postsynaptic B photoreceptors is in many respects similar to GABAB mediated responses in the mammalian CNS. This receptor is in some respects unique, however, in terms of its cross-sensitivity to both GABAA and GABAB agonists, its weak sensitivity to saclofen, and its apparent anomalous modulation of multiple K+ conductances.
Collapse
Affiliation(s)
- R F Rogers
- Department of Psychology, Rutgers University, New Brunswick, NJ 08903
| | | | | |
Collapse
|
7
|
Cazalets JR, Sqalli-Houssaini Y, Clarac F. GABAergic inactivation of the central pattern generators for locomotion in isolated neonatal rat spinal cord. J Physiol 1994; 474:173-81. [PMID: 8014893 PMCID: PMC1160304 DOI: 10.1113/jphysiol.1994.sp020011] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. Experiments were performed using an isolated brainstem-spinal cord preparation from newborn rats, in order to study the GABAergic control of the spinal neuronal networks that generate locomotor rhythms in mammals. Locomotor-like activities were recorded in the ventral roots, and the various neurochemical compounds were added to the superfusion saline. 2. Bath application of GABA suppressed in a dose-dependent manner the motor activity induced by an excitatory amino acid N-methyl-D,L-aspartate (NMA). Both the GABAA agonist muscimol and the GABAB agonist baclofen mimicked the effects of GABA, since they either slowed down or stopped the rhythmic activity. 3. Experiments were performed in which the lumbar compartment was superfused separately from the brainstem. Chemical activation of the brainstem by NMA alone failed to induce locomotor-like activity. When GABAA (bicuculline) and GABAB (phaclofen) antagonists were simultaneously bath applied to the lumbar spinal cord, however, locomotor-like activity was induced. 4. The GABA uptake inhibitors nipecotic acid and guvacine suppressed the rhythmic motor pattern induced by NMA in a dose-dependent manner. The effects of nipecotic acid were reversed by bicuculline and phaclofen. 5. Bicuculline added during NMA-induced locomotor-like activity greatly increased both the frequency and amplitude of motor bursts, while phaclofen modified only the frequency. 6. The motor pattern depended on the balance between activatory and inactivatory influences, since the rhythmic patterns recorded with low doses of NMA associated with high doses of bicuculline were similar to those elicited by higher doses of NMA associated with low doses of bicuculline.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
8
|
Roberts E, Sherman MA. GABA--the quintessential neurotransmitter: electroneutrality, fidelity, specificity, and a model for the ligand binding site of GABAA receptors. Neurochem Res 1993; 18:365-76. [PMID: 8386333 DOI: 10.1007/bf00967239] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Alone of the known neurotransmitters, GABA is an electroneutral zwitterion (pI = 7.3) at physiological pH. This confers the highest probability of successfully traversing densely packed synaptic gaps without interacting electrostatically with charged entities enroute, making GABA a high fidelity neurotransmitter. Inhibitory tone in the nervous system is coordinately coupled with physiological activity by means of the GABA system, acidification increasing GABA formation and its Cl- channel-opening efficacy, while decreasing its removal by transport and metabolic degradation. The above, together with diminution upon acidification of the postsynaptic efficacy of glutamate on excitatory NMDA receptors constitutes a sensitively responsive mechanism by which protons control levels of neural activity, locally and globally. A model made of the GABA binding site of GABAA receptors based on H-bond and hydrophobic interactions makes it seem unlikely that any other substance known to occur in nerve tissue would give rise to a high noise level at GABAA receptors.
Collapse
Affiliation(s)
- E Roberts
- Department of Neurobiochemistry, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | | |
Collapse
|
9
|
Kerrison J, Freschi JE. The effects of γ-aminobutyric acid on voltage-clamped motoneurons of the lobster cardiac ganglion. ACTA ACUST UNITED AC 1992; 101:227-33. [PMID: 1354095 DOI: 10.1016/0742-8413(92)90265-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1. We examined the electrophysiological and pharmacological effects of GABA on voltage-clamped motoneurons of the lobster cardiac ganglion. 2. GABA caused a dose-dependent current (EC50 = 0.7 mM), which reversed at the estimated Cl- equilibrium potential. 3. The conductance activated by GABA was voltage-dependent, increasing as a non-linear function of depolarization. 4. A Na(+)-dependent GABA uptake mechanism was only weakly sensitive to nipecotic acid. 5. Picrotoxin inhibited the GABA response, but bicuculline had no effect. 6. We conclude that the effect of GABA in the lobster cardiac ganglion is similar to its effect on other crustacean neuromuscular tissues and on vertebrate GABAA receptors. 7. There appear to be differences among species with respect to the physiology and pharmacology of the Na(+)-dependent GABA transporter. 8. The effect of GABA is also similar to the ionic mechanism underlying the action of histamine in the cardiac ganglion.
Collapse
Affiliation(s)
- J Kerrison
- Department of Neurology, Emory University, Atlanta, GA 30322
| | | |
Collapse
|
10
|
Kaila K, Rydqvist B, Pasternack M, Voipio J. Inward current caused by sodium-dependent uptake of GABA in the crayfish stretch receptor neurone. J Physiol 1992; 453:627-45. [PMID: 1464849 PMCID: PMC1175577 DOI: 10.1113/jphysiol.1992.sp019248] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A two-microelectrode current-voltage clamp and Cl(-)-selective microelectrodes were used to examine the effects of gamma-aminobutyric acid (GABA) on membrane potential, current and intracellular Cl- activity (aiCl) in the crayfish stretch receptor neurone. All experimental solutions were CO2-HCO3- free. 2. GABA (500 microM) produced a mono- or biphasic depolarization (amplitude < or = 10 mV), often with a prominent initial depolarizing component followed by a transient shift to a more negative level. In some neurones, an additional depolarizing phase was seen upon washout of GABA. Receptor desensitization, being absent, played no role in the multiphasic actions of GABA. 3. The pronounced increase in membrane conductance evoked by GABA (500 microM) was associated with an increase in aiCl which indicates that the depolarizing action was not due to a current carried by Cl- ions. 4. The currents activated by GABA under voltage clamp conditions were inwardly directed when recorded at the level of the resting membrane potential, and they often revealed a biphasic character. The reversal potential of peak currents activated by pulses of 500 microM-GABA (EGABA) was 9-12 mV more positive than the reversal potential of the simultaneously measured net Cl- flux (ECl). ECl was 2-7 mV more negative than the resting membrane potential. 5. EGABA (measured using pulses of 500 microM-GABA) was about 10 mV more positive than the reversal potential of the current activated by 500 microM-muscimol, a GABA agonist that is a poor substrate of the Na(+)-dependent GABA uptake system. 6. In the absence of Na+, the depolarization and inward current caused by 500 microM-GABA were converted to a hyperpolarization and to an outward current. Muscimol produced an immediate outward current both in the presence and absence of Na+. 7. Following block of the inhibitory channels by picrotoxin (100-200 microM), the depolarizing effect of 500 microM-GABA was enhanced and the transient hyperpolarizing shifts were abolished. 8. In the presence of picrotoxin, GABA (> or = 2 microM) produced a concentration-dependent monophasic inward current which had a reversal potential of +30 to +60 mV. This current was inhibited in the absence of Na+ and by the GABA uptake blocker, nipecotic acid. Unlike the channel-mediated current, the picrotoxin-insensitive current was activated without delay also at low (2-10 microM) concentrations of GABA.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Kaila
- Department of Zoology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
11
|
|
12
|
Abstract
Swimmeret mechanostimulation initiates an abdominal extension program which includes flexion inhibition. Agonists and antagonists were used to examine the GABAergic nature of inhibitory responses recorded intracellularly from a flexion producing interneuron (FPI 303) and flexor motor neuron (f3) pair, and extracellularly from the other flexor efferents. The GABA antagonist picrotoxin (PTX) enhanced spontaneous flexion. As PTX levels increased, the swimmeret evoked response shifted from inhibition of flexion (less than 10 microM), to inhibition followed by excitation (10-30 microM), to flexion excitation (greater than or equal to 50 microM). The irreversibility of PTX effects, and the absence of bicuculline or baclofen induced changes in flexion activity, suggests that the receptors differ from mammalian GABA receptors. Both GABA and its agonist muscimol suppressed flexion activity and reduced intracellular potential amplitudes. Proof that PTX acts by binding the GABA receptor was obtained by observing that the addition of GABA or muscimol to preparations pretreated with PTX did not affect either spontaneous or swimmeret evoked activities, or intracellular potential amplitudes. These results imply involvement of GABAergic interneurons in the abdominal motor programs which inhibit flexion.
Collapse
Affiliation(s)
- V C Kotak
- Department of Biological Sciences, Rutgers University, Piscataway, NJ 08855
| | | |
Collapse
|
13
|
Kim KH, Takeuchi H. Pharmacological characteristics of two different types of inhibitory GABA receptors on Achatina fulica neurones. Eur J Pharmacol 1990; 182:49-62. [PMID: 2169426 DOI: 10.1016/0014-2999(90)90492-o] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
GABA (gamma-aminobutyric acid) receptors of Achatina fulica neurones have been classified into two types associated with neuronal inhibition and one type with excitation. The pharmacological features of muscimol I and baclofen types associated with inhibition were investigated in this study. Activation of muscimol I type receptors on TAN (tonically autoactive neurone) by GABA, muscimol and trans-4-aminocrotonic acid (TACA) produced a transient outward current (Iout) with an increase in membrane conductance (g). Their relative potencies at GABA ED50 (approximately 10(-4) M) were: GABA: muscimol: TACA = 1:0.6:0.3. The relation between Iout and g increase (delta g) induced by various concentrations of these compounds was linear. The Hill coefficients for GABA were close to 1.0. The GABA effects were potentiated by pentobarbitone, antagonized competitively by pitrazepin and non-competitively by picrotoxin and diazepam, and unaffected by bicuculline. The reversal potentials of the effects of GABA, muscimol and TACA on TAN changed under various [Cl-]0 according to the Nernst equation for Ec1, but not under various [K+]0 and [Na+]0. Activation of baclofen type GABA receptors on RPeNLN (right pedal nerve large neurone) by GABA and (+/-)-baclofen produced a slow Iout with an increase in g. The two compounds were almost equipotent (ED50: approximately 3 x 10(-4) M). The relation between Iout and delta g produced by various concentrations was linear. The Hill coefficients for GABA were also close to 1.0. The reversal potentials of GABA and (+/-)-baclofen on RPeNLN changed under various [K+]0 according to the Nernst equation for EK, but not under various [Cl-]0 and [Na+]0. The two compounds hardly affected the voltage-gated and slowly inactivating calcium current. The Iout produced by GABA and (+/-)-baclofen was reduced by tetraethylammonium chloride, but was unaffected by 4-aminopyridine, bicuculline, pitrazepin and picrotoxin. In conclusion, the pharmacological features of muscimol I type GABA receptors are partly comparable to those of mammalian GABAA receptors, except for the influences of bicuculline and diazepam: the features of the baclofen type GABA receptor, which did not occur with muscimol I type receptors in the same neurone, were similar to those of GABAB.
Collapse
Affiliation(s)
- K H Kim
- Department of Physiology, Gifu University School of Medicine, Japan
| | | |
Collapse
|
14
|
Murphy VF, Wann KT. The action of GABA receptor agonists and antagonists on muscle membrane conductance in Schistocerca gregaria. Br J Pharmacol 1988; 95:713-22. [PMID: 2850061 PMCID: PMC1854212 DOI: 10.1111/j.1476-5381.1988.tb11697.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
1. The properties of postsynaptic gamma-aminobutyric acid (GABA) receptors in the extensor tibiae muscle of Schistocerca gregaria were studied by conventional electrophysiological recording techniques. 2. GABA and other active GABA receptor agonists produced rapid, dose-dependent, reversible increases in membrane conductance. 3. In two microelectrode experiments the ED50 for GABA was approximately 1 mM. In three microelectrode experiments (assuming short cable theory conditions) the ED50 for GABA was 2.3 mM. The Hill coefficient for GABA estimated from the latter experiments was 1.4. 4. The relative potency of muscimol/GABA at the ED50 for GABA was 1.36. 3-Aminopropane sulphonic acid (3-APS) and isonipecotic acid were weakly active, baclofen and piperidine-4-sulphonic acid (P4S) were inactive. Isoguvacine produced depolarizations and increases in conductance in preparations which hyperpolarized in response to GABA. These depolarizations were enhanced by both picrotoxin and pitrazepin although the increases in input conductance were depressed. 5. Picrotoxin (20 microM), (+)-bicuculline (20-100 microM) and pitrazepin (1-10 microM) all reversibly antagonized GABA-induced responses. Such antagonism was not competitive in the case of picrotoxin and (+)-bicuculline but was competitive for pitrazepin. Schild plot analysis gave an average pA2 value of 5.5 for pitrazepin. 6. The significance of these results is briefly discussed.
Collapse
Affiliation(s)
- V F Murphy
- Wellcome Research Laboratories, Beckenham, Kent
| | | |
Collapse
|
15
|
Hablitz JJ, Lebeda FJ. Role of uptake in gamma-aminobutyric acid (GABA)-mediated responses in guinea pig hippocampal neurons. Cell Mol Neurobiol 1985; 5:353-71. [PMID: 4084947 DOI: 10.1007/bf00755401] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intracellular recordings were obtained from hippocampal pyramidal neurons maintained in vitro. Measurements were made of the conductance change induced by iontophoretically applied gamma-aminobutyric acid (GABA) and, using voltage-clamp techniques, of inhibitory postsynaptic currents resulting from activation of inhibitory pathways. Analysis of GABA iontophoretic charge-response curves indicated that there was considerable variation among neurons with respect to the slope of this relation. The placement of the GABA-containing pipette did not appear to be responsible for the observed variation, since vertical repositioning of the pipette did not alter the slope of the charge-response relationship. Steady iontophoresis of GABA from one barrel of a double-barreled pipette markedly affected the charge-response relation obtained when short pulses were applied to the other barrel. The curve was shifted to the left, and the slope was decreased. Concomitantly, the enhanced GABA-induced responses were prolonged. Similar alterations in GABA responsiveness were observed when the uptake blocker, nipecotic acid, was iontophoretically applied. Furthermore, bath application of saline containing a reduced sodium concentration (25% of control) also produced a prolongation of GABA-mediated responses. Under voltage clamp, inhibitory postsynaptic currents were observed to have biphasic decays. The initial, fast decay was prolonged by an average of 18% by nipecotic acid, whereas the later, slow phase was prolonged by 23%. The results of these studies support the hypothesis that a saturable GABA uptake system is responsible for the observed variation in the charge-response curves and, in turn, underlies the apparent sensitizing effect of excess GABA application. The results also suggest that a reduction of transmitter uptake affects the time course of inhibitory postsynaptic currents in the hippocampus.
Collapse
|
16
|
Grossfeld RM. Inhibition of crayfish glutamic acid decarboxylase by structural analogs of the substrate and product. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1985; 81:471-8. [PMID: 2861971 DOI: 10.1016/0742-8413(85)90040-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Crayfish glutamic acid decarboxylase (GAD) is inhibited by some aliphatic carboxylic acid analogs of glutamate and gamma-amino-n-butyric acid (GABA). Variations in the length of the carbon skeleton, substitution of a keto for a methylene group, replacement of the carboxyl group or attachment of a bulky basic moiety to the amino terminus of GABA all lead to a drastic reduction in its inhibitory activity. Substitution of a methyl group for the amino group of GABA is a permissible alteration which does not reduce the inhibitory potency. Some structural analogs of glutamate are inhibitory also, particularly if they possess a comparable carbon skeleton and a keto group in the alpha position or a sulfhydryl group. Most of the sulfhydryl analogs are significantly more potent as inhibitors than the corresponding compounds in which the SH group is replaced by an H atom.
Collapse
|
17
|
Trapido-Rosenthal HG, Morse DE. l-?, ?-Diamino acids facilitate GABA induction of larval metamorphosis in a gastropod mollusc (Haliotis rufescens). J Comp Physiol B 1985. [DOI: 10.1007/bf00684669] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Deisz RA, Dose M, Lux HD. The time course of GABA action on the crayfish stretch receptor: evidence for a saturable GABA uptake. Neurosci Lett 1984; 47:245-50. [PMID: 6089040 DOI: 10.1016/0304-3940(84)90521-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The conductance increase induced by bath application of GABA has been measured in voltage-clamped stretch-receptor neurones of crayfish. A rapid conductance increase was obtained only at GABA concentrations above 3.3 X 10(-4) M. The response to lower GABA concentrations (between 10(-4) and 10(-6) M) developed slowly over 30-60 min. Repetitive application of intermediate GABA concentrations induced postsynaptic conductance changes which were progressively enhanced in their onset and magnitude. In the presence of nipecotic acid or in Na+-free Ringer solutions, the response to all GABA concentrations was rapid and constant for each concentration. The time course of inhibitory postsynaptic currents was unaffected by nipecotic acid. These results suggest the presence of a saturable GABA uptake system which limits the access of bath-applied GABA to postsynaptic receptors. This system has little if any effect on the termination of response to synaptically released GABA.
Collapse
|
19
|
Wong EH, Leeb-Lundberg LM, Teichberg VI, Olsen RW. gamma-Aminobutyric acid activation of 36Cl- flux in rat hippocampal slices and its potentiation by barbiturates. Brain Res 1984; 303:267-75. [PMID: 6331574 DOI: 10.1016/0006-8993(84)91213-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
gamma-Aminobutyric acid (GABA) increases the rate of 36Cl- efflux from preloaded rat hippocampal slices in a dose-dependent manner (EC50: 400 microM). This action has the pharmacological specificity expected of activation of GABA receptors in that it is mimicked by the agonists muscimol and 3-aminopropanesulfonic acid, and blocked by the antagonists bicuculline and picrotoxinin. GABA uptake inhibitors, nipecotic acid and 2,4-diaminobutyric acid, fail to increase 36Cl- flux. Pentobarbital produces a dose-dependent activation (EC50 = 1.5 mM) of 36Cl- efflux with maximal response greater than that of GABA. The effect of pentobarbital can be mimicked by 1,3-dimethylbutylbarbiturate, secobarbital, (+)hexobarbital but not (-)hexobarbital, and is blocked by bicuculline and picrotoxinin. Pentobarbital and the other active barbiturates also potentiate the action of GABA. Phenobarbital does not have any effect independently or in combination with GABA. It is suggested that GABA increases 36Cl- permeability by activation of a postsynaptic receptor which is in turn functionally coupled to a barbiturate receptor.
Collapse
|
20
|
|
21
|
Abstract
The conductance increase induced by GABA and structurally related compounds has been measured in voltage clamped stretch receptor neurones of crayfish. GABA induced only at 10(-3) M a rapid conductance increase. The response to lower concentrations between 10(-6) and 10(-4) M developed slowly (20-60 min). The postsynaptic conductance increase induced by repetitive application of the same GABA concentration was progressively enhanced in the speed and magnitude. In the presence of nipecotic acid or in Na+-free Ringer solutions, the response to all GABA concentrations was instantaneous and constant for each concentration. Muscimol between 10(-6) and 10(-3) M caused instantaneous dose-dependent conductance increases. These results suggest the presence of a saturable GABA uptake system limiting the access of bath applied GABA, but not of muscimol, to postsynaptic receptor sites.
Collapse
|