1
|
Yu E, Chen Z, Huang Y, Wu Y, Wang Z, Wang F, Wu M, Xu K, Peng W. A grooved conduit combined with decellularized tissues for peripheral nerve regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:35. [PMID: 37477830 PMCID: PMC10361901 DOI: 10.1007/s10856-023-06737-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 07/01/2023] [Indexed: 07/22/2023]
Abstract
Peripheral nerve injury (PNI) is a common and severe clinical disease worldwide, which leads to a poor prognosis because of the complicated treatments and high morbidity. Autologous nerve grafting as the gold standard still cannot meet the needs of clinical nerve transplantation because of its low availability and limited size. The development of artificial nerve conduits was led to a novel direction for PNI treatment, while most of the currently developed artificial nerve conduits was lack biochemical cues to promote nerve regeneration. In this study, we designed a novel composite neural conduit by inserting decellularized the rat sciatic nerve or kidney in a poly (lactic-co-glycolic acid) (PLGA) grooved conduit. The nerve regeneration effect of all samples was analyzed using rat sciatic nerve defect model, where decellularized tissues and grooved PLGA conduit alone were used as controls. The degree of nerve regeneration was evaluated using the motor function, gastrocnemius recovery, and morphological and histological assessments suggested that the combination of a grooved conduit with decellularized tissues significantly promoted nerve regeneration compared with decellularized tissues and PLGA conduit alone. It is worth to note that the grooved conduits containing decellularized nerves have a promotive effect similar to that of autologous nerve grafting, suggesting that it could be an artificial nerve conduit used for clinical practice in the future.
Collapse
Affiliation(s)
- Enxing Yu
- Department of Plastic and reconstructive surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China
| | - Zhiwu Chen
- Department of Plastic and reconstructive surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China
| | - Yuye Huang
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China
| | - Yibing Wu
- Department of Plastic and reconstructive surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China
| | - Zonghuan Wang
- Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China
| | - Fangfang Wang
- Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China
| | - Miaoben Wu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Kailei Xu
- Department of Plastic and reconstructive surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China.
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, 315010, China.
| | - Wei Peng
- Department of Plastic and reconstructive surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China.
| |
Collapse
|
2
|
Reed CB, Feltri ML, Wilson ER. Peripheral glia diversity. J Anat 2022; 241:1219-1234. [PMID: 34131911 PMCID: PMC8671569 DOI: 10.1111/joa.13484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Recent years have seen an evolving appreciation for the role of glial cells in the nervous system. As we move away from the typical neurocentric view of neuroscience, the complexity and variability of central nervous system glia is emerging, far beyond the three main subtypes: astrocytes, oligodendrocytes, and microglia. Yet the diversity of the glia found in the peripheral nervous system remains rarely discussed. In this review, we discuss the developmental origin, morphology, and function of the different populations of glia found in the peripheral nervous system, including: myelinating Schwann cells, Remak Schwann cells, repair Schwann cells, satellite glia, boundary cap-derived glia, perineurial glia, terminal Schwann cells, glia found in the skin, olfactory ensheathing cells, and enteric glia. The morphological and functional heterogeneity of glia found in the periphery reflects the diverse roles the nervous system performs throughout the body. Further, it highlights a complexity that should be appreciated and considered when it comes to a complete understanding of the peripheral nervous system in health and disease.
Collapse
Affiliation(s)
- Chelsey B. Reed
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of NeurologyJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| | - M. Laura Feltri
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of NeurologyJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| | - Emma R. Wilson
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| |
Collapse
|
3
|
Chen T, Jiang H, Zhu Y, Chen X, Zhang D, Li X, Shen F, Xia H, Min Y, Xie K. Highly Ordered 3D Tissue Engineering Scaffolds as a Versatile Culture Platform for Nerve Cells Growth. Macromol Biosci 2021; 21:e2100047. [PMID: 33893711 DOI: 10.1002/mabi.202100047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/11/2021] [Indexed: 12/14/2022]
Abstract
Tissue engineering scaffolds provide an encouraging alternative for nerve injuries due to their biological support for nerve cell growth, which can be used for neuronal repair. Nerve cells have been reported to be mostly cultured on 2D scaffolds that cannot mimic the native extracellular matrix. Herein, highly ordered 3D scaffolds are fabricated for nerve cell culture by melt electrospinning writing, the microstructures and geometries of the scaffolds could be well modulated. An effective strategy for scaffold surface modification to promote nerve cell growth is proposed. The effects of scaffolds with different surface modifications, viz., plasma treatment, single poly-D-lysine (PDL) coating after plasma treatment, single laminin (LM) coating after plasma treatment, double PDL and LM coatings after plasma treatment, on PC12 cell growth are evaluated. Experiments show the scaffold modified with double PDL and LM coatings after plasma treatment facilitated the growth of PC12 cells most effectively, indicating the synergistic effect of PDL and LM on the growth of nerve cells. This is the first systematic and quantitative study of the effects of different scaffold surface modifications on nerve cell growth. The above results provide a versatile culture platform for growing nerve cells, and for recovery from peripheral nerve injury.
Collapse
Affiliation(s)
- Tingkuo Chen
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haiming Jiang
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yibin Zhu
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xueliu Chen
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dao Zhang
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiang Li
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fangcheng Shen
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongyan Xia
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yonggang Min
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kang Xie
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
4
|
Burrell JC, Bhatnagar D, Brown DP, Murthy NS, Dutton J, Browne KD, Laimo FA, Ali ZS, Rosen JM, Kaplan HM, Kohn J, Cullen DK. Tyrosine-derived polycarbonate nerve guidance tubes elicit proregenerative extracellular matrix deposition when used to bridge segmental nerve defects in swine. J Biomed Mater Res A 2020; 109:1183-1195. [PMID: 32985789 DOI: 10.1002/jbm.a.37110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022]
Abstract
Promising biomaterials should be tested in appropriate large animal models that recapitulate human inflammatory and regenerative responses. Previous studies have shown tyrosine-derived polycarbonates (TyrPC) are versatile biomaterials with a wide range of applications across multiple disciplines. The library of TyrPC has been well studied and consists of thousands of polymer compositions with tunable mechanical characteristics and degradation and resorption rates that are useful for nerve guidance tubes (NGTs). NGTs made of different TyrPCs have been used in segmental nerve defect models in small animals. The current study is an extension of this work and evaluates NGTs made using two different TyrPC compositions in a 1 cm porcine peripheral nerve repair model. We first evaluated a nondegradable TyrPC formulation, demonstrating proof-of-concept chronic regenerative efficacy up to 6 months with similar nerve/muscle electrophysiology and morphometry to the autograft repair control. Next, we characterized the acute regenerative response using a degradable TyrPC formulation. After 2 weeks in vivo, TyrPC NGT promoted greater deposition of pro-regenerative extracellular matrix (ECM) constituents (in particular collagen I, collagen III, collagen IV, laminin, and fibronectin) compared to commercially available collagen-based NGTs. This corresponded with dense Schwann cell infiltration and axon extension across the lumen. These findings confirmed results reported previously in a mouse model and reveal that TyrPC NGTs were well tolerated in swine and facilitated host axon regeneration and Schwann cell infiltration in the acute phase across segmental defects - likely by eliciting a favorable neurotrophic ECM milieu. This regenerative response ultimately can contribute to functional recovery.
Collapse
Affiliation(s)
- Justin C Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Divya Bhatnagar
- New Jersey Center for Biomaterials, Rutgers University, New Brunswick, New Jersey, USA
| | - Dan P Brown
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - N Sanjeeva Murthy
- New Jersey Center for Biomaterials, Rutgers University, New Brunswick, New Jersey, USA
| | - John Dutton
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin D Browne
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Franco A Laimo
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Zarina S Ali
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph M Rosen
- Dartmouth-Hitchcock Medical Center, Division of Plastic Surgery, Dartmouth College, Lebanon, New Hampshire, USA
| | - Hilton M Kaplan
- New Jersey Center for Biomaterials, Rutgers University, New Brunswick, New Jersey, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers University, New Brunswick, New Jersey, USA
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Li W, Huang A, Zhong Y, Huang L, Yang J, Zhou C, Zhou L, Zhang Y, Fu G. Laminin-modified gellan gum hydrogels loaded with the nerve growth factor to enhance the proliferation and differentiation of neuronal stem cells. RSC Adv 2020; 10:17114-17122. [PMID: 35521457 PMCID: PMC9053442 DOI: 10.1039/d0ra01723j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
The reconstruction of peripheral nerves has lately received great attention as many patients suffer from peripheral nerve injury every year around the world. However, the damage to human nerve cells has different degrees of irreversibility due to a slow growth speed and low adhesion with the surrounding tissues. In an effort to overcome this challenge, we applied novel laminin (LN)-modified thiolated gellan gum (TGG) and loaded the nerve growth factor (NGF) as a tissue engineering scaffold for facilitating neuronal stem cell proliferation via a synergy effect for the ERK–MAPK pathway. TGG was characterized by 1H NMR spectroscopy and scanning electron microscopy, and its rheological behavior was also studied. The NGF release curve fitted the Korsmeyer–Peppas model and belonged to a Fickian diffusion-controlled release mechanism. The neuronal stem cells from newborn SD rats could adhere tightly and proliferate at a relatively rapid speed, showing excellent biocompatibility and the ability to promote growth in the modified TGG. LN and NGF could decrease the apoptosis effects of neuronal stem cells, as shown via the flow cytometry results. In a three-dimensional culture environment, LN and NGF could facilitate neuronal stem cells to differentiate into neurons, as proved by immunofluorescence, q-PCR, and western blot analyses. Therefore, the rational design of the TGG gel loaded with NGF has promising applications in the reconstruction of peripheral nerves. Laminin-modified thiolated gellan gum and loaded with the nerve growth factor in facilitateding neuronal stem cell proliferation and differentiation.![]()
Collapse
Affiliation(s)
- Wenqiang Li
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong
- Guangzhou Sport University
- Guangzhou
- China
| | - Anfei Huang
- The First Affiliated Hospital
- Jinan University
- Guangzhou
- China
| | - Yanheng Zhong
- The First Affiliated Hospital
- Jinan University
- Guangzhou
- China
| | - Lin Huang
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong
- Guangzhou Sport University
- Guangzhou
- China
| | - Jing Yang
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong
- Guangzhou Sport University
- Guangzhou
- China
| | - Changren Zhou
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou
- China
| | - Lin Zhou
- The First Affiliated Hospital
- Jinan University
- Guangzhou
- China
| | - Yanling Zhang
- Department of Ultrasound
- Third Affiliated Hospital
- Sun Yat-sen University
- The People's Republic of China
| | - Guo Fu
- The First Affiliated Hospital
- Jinan University
- Guangzhou
- China
| |
Collapse
|
6
|
Babovic N, Klaus D, Schessler MJ, Schimoler PJ, Kharlamov A, Miller MC, Tang P. Assessment of Conduit-Assisted Primary Nerve Repair Strength With Varying Suture Size, Number, and Location. Hand (N Y) 2019; 14:735-740. [PMID: 29619886 PMCID: PMC6900681 DOI: 10.1177/1558944718769382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Outcomes following digital nerve repair are suboptimal despite much research and various methods of repair. Increased tensile strength of the repair and decreased suture material at the repair site may be 2 methods of improving biologic and biomechanical outcomes, and conduit-assisted repair can aid in achieving both of these goals. Methods: Ninety-nine fresh-frozen digital nerves were equally divided into 11 different groups. Each group uses a different combination of number of sutures at the coaptation site and number of sutures at each end of the nerve-conduit junction, as well as 2 calibers of nylon suture. Nerves were transected, repaired with these various suture configurations using an AxoGuard conduit, and loaded to failure. Results: The 2-way analysis of variance (ANOVA) showed that repairs performed with 8-0 suture have significantly higher maximum failure load compared with 9-0 suture repairs (P < .01). Increasing the number of sutures in the repair significantly increased the maximum failure load in all groups regardless of suture caliber used (P < .01). Repairs with 9-0 suture at the coaptation site did not jeopardize repair strength when compared with 8-0 suture. Conclusions: Conduit-assisted primary digital nerve repairs with 8-0 suture increases the maximum load to failure compared with repairs with 9-0 suture, as does increasing the overall number of sutures. Using 9-0 suture at the coaptation site with 8-0 suture at the nerve-conduit junction does not jeopardize tensile strength when compared with similar repairs using all 8-0 suture and may decrease inflammation at the repair site while still achieving sufficient tensile strength.
Collapse
Affiliation(s)
| | - Derek Klaus
- Allegheny Health Network, Pittsburgh,
PA, USA
| | | | | | | | | | - Peter Tang
- Allegheny Health Network, Pittsburgh,
PA, USA,Peter Tang, Department of Orthopaedic
Surgery, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA 15212,
USA.
| |
Collapse
|
7
|
Biological activity of laminin/polylaminin-coated poly-ℇ-caprolactone filaments on the regeneration and tissue replacement of the rat sciatic nerve. Mater Today Bio 2019; 3:100026. [PMID: 32159152 PMCID: PMC7061579 DOI: 10.1016/j.mtbio.2019.100026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 01/13/2023] Open
Abstract
Unlike the central nervous system, peripheral nerves can regenerate after injury. However, depending on the size of the lesion, the endogenous regenerative potential is not enough to replace the lost nerve tissue. Many strategies have been used to generate biomaterials capable of restoring nerve functions. Here, we set out to investigate whether adsorbing the extracellular matrix protein, laminin (LM), to poly-ℇ-caprolactone (PCL) filaments would enhance functional nerve regeneration. Initial in vitro studies showed that explants of dorsal root ganglia (DRGs) of P1 neonate mice exhibited stronger neuritogenesis on a substrate of LM that had been previously polymerized (polylaminin [polyLM]) than on ordinary LM. On the other hand, when silicone tubes filled with PCL filaments were used to bridge a 10-mm sciatic nerve gap in rats, only filaments coated with LM improved tissue replacement beyond that obtained with empty tubes. Motor function recovery correlated with tissue replacement as only LM-coated filaments consistently improved motor skills. Finally, analysis of the lateral gastrocnemius muscle revealed that the LM group presented twice the amount of α-bungarotixin–labeled motor plates. In conclusion, although polyLM was more effective in stimulating growth of sensory fibers out of DRGs in vitro, LM adsorbed to PCL filaments exhibited the best regenerative properties in inducing functional motor recovery after peripheral injury in vivo.
Collapse
|
8
|
Ai A, Behforouz A, Ehterami A, Sadeghvaziri N, Jalali S, Farzamfar S, Yousefbeigi A, Ai A, goodarzi A, Salehi M, Ai J. Sciatic nerve regeneration with collagen type I hydrogel containing chitosan nanoparticle loaded by insulin. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1534114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Armin Ai
- Dental Student of Scientific Research Center, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Aria Behforouz
- Dental Student of Scientific Research Center, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Arian Ehterami
- Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nooshin Sadeghvaziri
- Dental Student of Scientific Research Center, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Samar Jalali
- Dental Student of Scientific Research Center, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Farzamfar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aylar Yousefbeigi
- Dental Student of Scientific Research Center, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Ai
- School of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash goodarzi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Salehi M, Naseri-Nosar M, Ebrahimi-Barough S, Nourani M, Vaez A, Farzamfar S, Ai J. Regeneration of sciatic nerve crush injury by a hydroxyapatite nanoparticle-containing collagen type I hydrogel. J Physiol Sci 2018; 68:579-587. [PMID: 28879494 PMCID: PMC10717918 DOI: 10.1007/s12576-017-0564-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/14/2017] [Indexed: 11/28/2022]
Abstract
The current study aimed to enhance the efficacy of peripheral nerve regeneration using a hydroxyapatite nanoparticle-containing collagen type I hydrogel. A solution of type I collagen, extracted from the rat tails, was incorporated with hydroxyapatite nanoparticles (with the average diameter of ~212 nm) and crosslinked with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) to prepare the hydrogel. The Schwann cell cultivation on the prepared hydrogel demonstrated a significantly higher cell proliferation than the tissue culture plate, as positive control, after 48 h (n = 3, P < 0.005) and 72 h (n = 3, P < 0.01). For in vivo evaluation, the prepared hydrogel was administrated on the sciatic nerve crush injury in Wistar rats. Four groups were studied: negative control (with injury but without interventions), positive control (without injury), collagen hydrogel and hydroxyapatite nanoparticle-containing collagen hydrogel. After 12 weeks, the administration of hydroxyapatite nanoparticle-containing collagen significantly (n = 4, P < 0.005) enhanced the functional behavior of the rats compared with the collagen hydrogel and negative control groups as evidenced by the sciatic functional index, hot plate latency and compound muscle action potential amplitude measurements. The overall results demonstrated the applicability of the produced hydrogel for the regeneration of peripheral nerve injuries.
Collapse
Affiliation(s)
- Majid Salehi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, 1417755469, Tehran, Iran
| | - Mahdi Naseri-Nosar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, 1417755469, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, 1417755469, Tehran, Iran
| | - Mohammdreza Nourani
- Nano Biotechnology Research Center, Baqiyatallah University of Medical Sciences, 1435944711, Tehran, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, 1417755469, Tehran, Iran
| | - Saeed Farzamfar
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, 1417755469, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, 1417755469, Tehran, Iran.
| |
Collapse
|
10
|
Evaluation of two collagen conduits and autograft in rabbit sciatic nerve regeneration with quantitative magnetic resonance DTI, electrophysiology, and histology. Eur Radiol Exp 2018; 2:19. [PMID: 30148252 PMCID: PMC6091702 DOI: 10.1186/s41747-018-0049-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
Background We compared different surgical techniques for nerve regeneration in a rabbit sciatic nerve gap model using magnetic resonance diffusion tensor imaging (DTI), electrophysiology, limb function, and histology. Methods A total of 24 male New Zealand white rabbits were randomized into three groups: autograft (n = 8), hollow conduit (n = 8), and collagen-filled conduit (n = 8). A 10-mm segment of the rabbit proximal sciatic nerve was cut, and autograft or collagen conduit was used to bridge the gap. DTI on a 3-T system was performed preoperatively and 13 weeks after surgery using the contralateral, nonoperated nerve as a control. Results Overall, autograft performed better compared with both conduit groups. Differences in axonal diameter were significant (autograft > hollow conduit > collagen-filled conduit) at 13 weeks (autograft vs. hollow conduit, p = 0.001, and hollow conduit vs. collagen-filled conduit, p < 0.001). Significant group differences were found for axial diffusivity but not for any of the other DTI metrics (autograft > hollow conduit > collagen-filled conduit) (autograft vs. hollow conduit, p = 0.001 and hollow conduit vs. collagen-filled conduit, p = 0.021). As compared with hollow conduit (autograft > collagen-filled conduit > hollow conduit), collagen-filled conduit animals demonstrated a nonsignificant increased maximum tetanic force. Conclusions Autograft-treated rabbits demonstrated improved sciatic nerve regeneration compared with collagen-filled and hollow conduits as assessed by histologic, functional, and DTI parameters at 13 weeks.
Collapse
|
11
|
Ma F, Xu F, Li R, Zheng Y, Wang F, wei N, zhong J, Tang Q, Zhu T, Wang Z, Zhu J. Sustained delivery of glial cell-derived neurotrophic factors in collagen conduits for facial nerve regeneration. Acta Biomater 2018; 69:146-155. [PMID: 29330037 DOI: 10.1016/j.actbio.2018.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
Abstract
Facial nerve injury caused by traffic accidents or operations may reduce the quality of life in patients, and recovery following the injury presents unique clinical challenges. Glial cell-derived neurotrophic factor (GDNF) is important in nerve regeneration; however, soluble GDNF rapidly diffuses into body fluids, making it difficult to achieve therapeutic efficacy. In this work, we developed a rat tail derived collagen conduit to connect nerve defects in a simple and safe manner. GDNF was immobilized in the collagen conduits via chemical conjugation to enable controlled release of GDNF. The GDNF delivery system prevented rapid diffusion from the site without impacting bioactivity of GDNF; degradation of the collagen conduit was inhibited owing to the chemical conjugation. The artificial nerve conduit was then used to examine facial nerve regeneration across a facial nerve defect. Following transplantation, the artificial nerve conduits degraded gradually without causing dislocations and serious inflammation, with good integration into the host tissue. Functional and histological tests indicated that the artificial nerve conduits were able to guide the axons to grow through the defect, reaching the distal stumps. The degree of nerve regeneration in the group that was treated with the artificial nerve conduit approached that of the autograft group, and exceeded that of the other conduit grafted groups. STATEMENT OF SIGNIFICANCE In this study, we developed artificial nerve conduits consisting of GDNF immobilized on collagen, with the aim of providing an environment for nerve regeneration. Our results show that the artificial nerve conduits guided the regeneration of axons to the distal nerve segment. GDNF was immobilized stably in the artificial nerve conduits, and therefore retained a sufficient concentration at the target site to effectively promote the regeneration process. The artificial nerve conduits exhibited good biocompatibility and facilitated nerve regeneration and functional recovery with an efficacy that was close to that of an autograft, and better than that of the other conduit grafted groups. Our approach provides an effective delivery system that overcomes the rapid diffusion of GDNF in body fluids, promoting peripheral nerve regeneration. The artificial nerve conduit therefore qualifies as a putative candidate material for the fabrication of peripheral nerve reconstruction devices.
Collapse
|
12
|
Galla TJ, Vedecnik SV, Halbgewachs J, Steinmann S, Friedrich C, Stark GB. Fibrin/Schwann Cell Matrix in Poly-Epsilon-Caprolactone Conduits Enhances Guided Nerve Regeneration. Int J Artif Organs 2018; 27:127-36. [PMID: 15068007 DOI: 10.1177/039139880402700208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The goal of this study was to investigate if a three dimensional matrix, loaded homogeneously with Schwann cells and the neurotrophic factor LIF (leukemia inhibitory factor), enhances regeneration in a biodegradable nerve guidance channel as compared to non-structured cell suspensions. Therefore a 10 mm nerve gap in the buccal branch of the rat's facial nerve was bridged with tubular PCL (poly-epsilon-caprolactone) conduits filled with no matrix, Schwann cells, the three dimensional fibrin/Schwann cell matrix or the fibrin/Schwann cell matrix added with LIF. Four weeks after the nerve defects were bridged histological and morphometric analyses of the implants were performed. In conclusion, the three dimensional fibrin/Schwann cells matrix enhanced the quantity and the quality of peripheral nerve regeneration through PCL conduits. The application of LIF prevented hyperneurotization. Therefore, tissue engineered fibrin/Schwann cells matrices are new invented biocompatible and biodegradable devices for enhancing peripheral nerve regeneration as compared to non-structured cell suspensions without neurotrophic factors.
Collapse
Affiliation(s)
- T J Galla
- Department of Hand and Plastic Surgery, ValleyTEC, Albert-Ludwigs-University, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Wang B, Yuan J, Xu J, Chen X, Ying X, Dong P. Brain-derived and glial cell line-derived neurotrophic factor fusion protein immobilization to laminin. Exp Ther Med 2016; 13:178-186. [PMID: 28123487 PMCID: PMC5245157 DOI: 10.3892/etm.2016.3925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/01/2016] [Indexed: 11/06/2022] Open
Abstract
Damage to the recurrent laryngeal nerve often causes hoarseness, dyspnea, dysphagia, and sometimes asphyxia due to vocal cord paralysis which result in a reduction of quality of life. Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) play critical roles in peripheral nerve regeneration. However, methods for efficiently delivering these molecules are lacking, which limits their use in clinical applications. The present study reports an effective strategy for targeting BDNF and GDNF to laminin by fusing the N-terminal domains of these molecules with agrin (NtA). More specifically, laminin-binding efficacy was assessed and sustained release assays of the delivery of BDNF or GDNF fused with NtA (LBD-BDNF or LBD-GDNF) to laminin were conducted in vitro. In addition, the bioactivity of LBD-BDNF and LBD-GDNF on laminin in vitro was investigated. LBD-BDNF and LBD-GDNF were each able to specifically bind to laminin and maintain their activity in vitro. Moreover, neurotrophic factors with NtA retained higher concentrations and bioactivity levels compared with those without NtA. The ratio of LBD-BDNF and LBD-GDNF that produced optimal effects was 4:6. BDNF and GDNF fused with NtA were effective in specifically binding to laminin. As laminin is a major component of the extracellular matrix, LBD-BDNF and LBD-GDNF may prove useful in the repair of peripheral nerve injuries.
Collapse
Affiliation(s)
- Baoxin Wang
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated to Shanghai First People's Hospital, Shanghai 201620, P.R. China
| | - Junjie Yuan
- Department of Orthopedics, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated to Sixth People's Hospital South Campus, Shanghai 200011, P.R. China
| | - Jiafeng Xu
- School of Economics and Finance, Shanghai International Studies University, Shanghai 200083, P.R. China
| | - Xinwei Chen
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated to Shanghai First People's Hospital, Shanghai 201620, P.R. China
| | - Xinjiang Ying
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated to Shanghai First People's Hospital, Shanghai 201620, P.R. China
| | - Pin Dong
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated to Shanghai First People's Hospital, Shanghai 201620, P.R. China
| |
Collapse
|
14
|
Abstract
As most elegantly confirmed by the recent success in deriving mice with null mutations in the genes for specific neurotrophic factors or their respective receptors, it is clear that neurotrophic factors alone or in combination are essential for the development of many classes of neurons. Specific neurotrophic factors have now been characterized that have actions on primary sensory afferents, sympathetic and parasym pathetic neurons, and motor neurons—the major contributors to the axon bundles that comprise the periph eral nervous system. The peripheral tissues or "end organs" that these neurons innervate have traditionally been thought of as the key source of neurotrophic factor support, but it is now evident that this "target- derived neurotrophic factor hypothesis" has restricted validity. Rather, the totality of neurotrophic support required to promote the survival, maturation, and maintenance of a neuron appears to be derived not only from targets, but also from support cells and possibly even neurons themselves. In this article, we review the role played by multiple sources of neurotrophic factors, especially factors derived from non-neuronal cells, not only in development, but also in the maintenance and regenerative responses of the adult PNS. In par ticular, we focus on neurotrophic factors of the neurotrophin family and ciliary neurotrophic factor. The Neuro scientist 1:192-199, 1995
Collapse
Affiliation(s)
| | - Vivien Wong
- Regeneron Pharmaceuticals Inc. Tarrytown, New York
| | | |
Collapse
|
15
|
Özay R, Aktaş A, Taşkapılıoğlu MÖ, Gürer B, Erdoğan B, Çağlar YŞ. Does glioblastoma cyst fluid promote sciatic nerve regeneration? Neural Regen Res 2015; 10:1643-9. [PMID: 26692863 PMCID: PMC4660759 DOI: 10.4103/1673-5374.167764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Glioblastoma cyst fluid contains growth factors and extracellular matrix proteins which are known as neurotrophic and neurite-promoting agents. Therefore, we hypothesized that glioblastoma cyst fluid can promote the regeneration of injured peripheral nerves. To validate this hypothesis, we transected rat sciatic nerve, performed epineural anastomosis, and wrapped the injured sciatic nerve with glioblastoma cyst fluid- or saline-soaked gelatin sponges. Neurological function and histomorphological examinations showed that compared with the rats receiving local saline treatment, those receiving local glioblastoma cyst fluid treatment had better sciatic nerve function, fewer scars, greater axon area, counts and diameter as well as fiber diameter. These findings suggest that glioblastoma cyst fluid can promote the regeneration of injured sciatic nerve and has the potential for future clinical application in patients with peripheral nerve injury.
Collapse
Affiliation(s)
- Rafet Özay
- Department of Neurosurgery, Diskapi Yıldırım Beyazıt Educational and Research Hospital, Ankara, Turkey
| | - Abit Aktaş
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University, Istanbul, Turkey
| | | | - Bora Gürer
- Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Bülent Erdoğan
- Department of Neurosurgery, School of Medicine, Fatih University, Ankara, Turkey
| | - Yusuf Şükrü Çağlar
- Department of Neurosurgery, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
16
|
Gnavi S, Fornasari BE, Tonda-Turo C, Laurano R, Zanetti M, Ciardelli G, Geuna S. The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design. Int J Mol Sci 2015; 16:12925-42. [PMID: 26062130 PMCID: PMC4490479 DOI: 10.3390/ijms160612925] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 01/11/2023] Open
Abstract
Electrospun fibrous substrates mimicking extracellular matrices can be prepared by electrospinning, yielding aligned fibrous matrices as internal fillers to manufacture artificial nerves. Gelatin aligned nano-fibers were prepared by electrospinning after tuning the collector rotation speed. The effect of alignment on cell adhesion and proliferation was tested in vitro using primary cultures, the Schwann cell line, RT4-D6P2T, and the sensory neuron-like cell line, 50B11. Cell adhesion and proliferation were assessed by quantifying at several time-points. Aligned nano-fibers reduced adhesion and proliferation rate compared with random fibers. Schwann cell morphology and organization were investigated by immunostaining of the cytoskeleton. Cells were elongated with their longitudinal body parallel to the aligned fibers. B5011 neuron-like cells were aligned and had parallel axon growth when cultured on the aligned gelatin fibers. The data show that the alignment of electrospun gelatin fibers can modulate Schwann cells and axon organization in vitro, suggesting that this substrate shows promise as an internal filler for the design of artificial nerves for peripheral nerve reconstruction.
Collapse
Affiliation(s)
- Sara Gnavi
- Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043, Italy.
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043, Italy.
| | - Benedetta Elena Fornasari
- Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043, Italy.
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043, Italy.
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10100, Italy.
| | - Rossella Laurano
- Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10100, Italy.
| | - Marco Zanetti
- Nanostructured Interfaces and Surfaces, Department of Chemistry, University of Torino, Torino 10100, Italy.
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10100, Italy.
- Department for Materials and Devices of the National Research Council, Institute for the Cehmical and Physical Processes (CNR-IPCF UOS), Pisa 56124, Italy.
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043, Italy.
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043, Italy.
| |
Collapse
|
17
|
|
18
|
Ma F, Xiao Z, Meng D, Hou X, Zhu J, Dai J, Xu R. Use of natural neural scaffolds consisting of engineered vascular endothelial growth factor immobilized on ordered collagen fibers filled in a collagen tube for peripheral nerve regeneration in rats. Int J Mol Sci 2014; 15:18593-609. [PMID: 25322152 PMCID: PMC4227234 DOI: 10.3390/ijms151018593] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/15/2014] [Accepted: 09/29/2014] [Indexed: 01/12/2023] Open
Abstract
The search for effective strategies for peripheral nerve regeneration has attracted much attention in recent years. In this study, ordered collagen fibers were used as intraluminal fibers after nerve injury in rats. Vascular endothelial growth factor (VEGF) plays an important role in nerve regeneration, but its very fast initial burst of activity within a short time has largely limited its clinical use. For the stable binding of VEGF to ordered collagen fibers, we fused a collagen-binding domain (CBD) to VEGF through recombinant DNA technology. Then, we filled the ordered collagen fibers-CBD-VEGF targeting delivery system in a collagen tube to construct natural neural scaffolds, which were then used to bridge transected nerve stumps in a rat sciatic nerve transection model. After transplantation, the natural neural scaffolds showed minimal foreign body reactions and good integration into the host tissue. Oriented collagen fibers in the collagen tube could guide regenerating axons in an oriented manner to the distal, degenerating nerve segment, maximizing the chance of target reinnervation. Functional and histological analyses indicated that the recovery of nerve function in the natural neural scaffolds-treated group was superior to the other grafted groups. The guiding of oriented axonal regeneration and effective delivery systems surmounting the otherwise rapid and short-lived diffusion of growth factors in body fluids are two important strategies in promoting peripheral nerve regeneration. The natural neural scaffolds described take advantage of these two aspects and may produce synergistic effects. These properties qualified the artificial nerve conduits as a putative candidate system for the fabrication of peripheral nerve reconstruction devices.
Collapse
Affiliation(s)
- Fukai Ma
- Fudan University Huashan Hospital, Department of Neurosurgery, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College-Fudan University, 12 Wulumuqi Zhong Rd., Shanghai 200040, China.
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, China.
| | - Danqing Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, China.
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, China.
| | - Jianhong Zhu
- Fudan University Huashan Hospital, Department of Neurosurgery, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College-Fudan University, 12 Wulumuqi Zhong Rd., Shanghai 200040, China.
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, China.
| | - Ruxiang Xu
- The Affiliated Bayi Brain Hospital, the Military General Hospital of Beijing People's Liberation Army, No. 5 Nanmen Cang, Dongcheng District, Beijing 100700, China.
| |
Collapse
|
19
|
Ma F, Xiao Z, Chen B, Hou X, Han J, Zhao Y, Dai J, Xu R. Accelerating proliferation of neural stem/progenitor cells in collagen sponges immobilized with engineered basic fibroblast growth factor for nervous system tissue engineering. Biomacromolecules 2014; 15:1062-8. [PMID: 24527809 DOI: 10.1021/bm500062n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neural stem/progenitor cells (NS/PCs) play a therapeutic role in nervous system diseases and contribute to functional recovery. However, their efficacy is limited as the majority of cells die post-transplantation. In this study, collagen sponges were utilized as carriers for NS/PCs. Basic fibroblast growth factor (bFGF), a mitogen for NS/PCs, was incorporated into the collagen sponges to stimulate NS/PC proliferation. However, the effect of native bFGF is limited because it diffuses into the culture medium and is lost following medium exchange. To overcome this problem, a collagen-binding polypeptide domain, which has high affinity to collagen, was fused with bFGF to sustain the exposure of NS/PCs within the collagen sponges to bFGF. The results indicated that the number of NS/PCs was significantly higher in collagen sponges incorporating engineered bFGF than in those with native bFGF or the PBS control after 7 days in culture. Here, we designed a natural biological neural scaffold consisting of collagen sponges, engineered bFGF, and NS/PCs. In addition to the effect of proliferated NS/PCs, the engineered bFGF retained in the natural biological neural scaffolds could have a direct effect on nervous system reconstruction. The two aspects of the natural biological neural scaffolds may produce synergistic effects, and so they represent a promising candidate for nervous system repair.
Collapse
Affiliation(s)
- Fukai Ma
- The Affiliated Bayi Brain Hospital, Bayi Clinical College, Southern Medical University , No. 1838, North of Guangzhou Avenue, Guangzhou 510515, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ezra M, Bushman J, Shreiber D, Schachner M, Kohn J. Enhanced femoral nerve regeneration after tubulization with a tyrosine-derived polycarbonate terpolymer: effects of protein adsorption and independence of conduit porosity. Tissue Eng Part A 2013; 20:518-28. [PMID: 24011026 DOI: 10.1089/ten.tea.2013.0092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Following complete nerve transection, entubulation of the nerve stumps helps guide axons to reconnect distally. In this study, a biodegradable and noncytotoxic tyrosine-derived polycarbonate terpolymer composed of 89.5 mol% desaminotyrosyl tyrosine ethyl ester (DTE), 10 mol% desaminotyrosyl tyrosine (DT), and 0.5 mol% poly(ethylene glycol) (PEG, molecular weight [Mw]=1 kDa) [designated as E10-0.5(1K)] was used to fabricate conduits for peripheral nerve regeneration. These conduits were evaluated against commercially available nonporous polyethylene (PE) tubes. The two materials are characterized in vitro for differences in surface properties, and the conduits are then evaluated in vivo in a critical-sized nerve defect in the mouse femoral nerve model. Conduits were fabricated from E10-0.5(1K) in both porous [P-E10-0.5(1K)] and nonporous [NP-E10-0.5(1K)] configurations. The results illustrate that adsorption of laminin, fibronectin, and collagen type I was enhanced on E10-0.5(1K) compared to PE. In addition, in vivo the E10-0.5(1K) conduits improved functional recovery over PE conduits, producing regenerated nerves with a fivefold increase in the number of axons, and an eightfold increase in the percentage of myelinated axons. These increases were observed for both P-E10-0.5(1K) and NP-E10-0.5(1K) after 15 weeks. When conduits were removed at 7 or 14 days following implantation, an increase in Schwann cell proteins and fibrin matrix formation was observed in E10-0.5(1K) conduits over PE conduits. These results indicate that E10-0.5(1K) is a pro-regenerative material for peripheral nerves and that the porosity of P-E10-0.5(1K) conduits was inconsequential in this model of nerve injury.
Collapse
Affiliation(s)
- Mindy Ezra
- 1 New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey , Piscataway, New Jersey
| | | | | | | | | |
Collapse
|
21
|
Tuszynski MH, Steward O. Concepts and methods for the study of axonal regeneration in the CNS. Neuron 2012; 74:777-91. [PMID: 22681683 PMCID: PMC3387806 DOI: 10.1016/j.neuron.2012.05.006] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2012] [Indexed: 12/22/2022]
Abstract
Progress in the field of axonal regeneration research has been like the process of axonal growth itself: there is steady progress toward reaching the target, but there are episodes of mistargeting, misguidance along false routes, and connections that must later be withdrawn. This primer will address issues in the study of axonal growth after central nervous system injury in an attempt to provide guidance toward the goal of progress in the field. We address definitions of axonal growth, sprouting and regeneration after injury, and the research tools to assess growth.
Collapse
Affiliation(s)
- Mark H Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0662, USA.
| | | |
Collapse
|
22
|
Dahlin LB, Lundborg G. EXPERIMENTAL NERVE GRAFTING — TOWARDS FUTURE SOLUTIONS OF A CLINICAL PROBLEM. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s0218810498000258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Restoration of function following complete nerve injuries with subsequent nerve repair is still not satisfactory and in many cases poor, especially when a gap has to be bridged by a graft. In such situations, there may be insufficient access to autologous graft material. Alternatives have to be developed and a close collaboration between basic scientists and clinicians is required. In the present article, current studies on experimental nerve grafts are discussed and some new alternatives to autologous nerve grafts are reviewed.
Collapse
Affiliation(s)
- Lars B Dahlin
- Department of Hand Surgery, Lund University, Malmö University Hospital, S-205-02 Malmö, Sweden
| | - Göran Lundborg
- Department of Hand Surgery, Lund University, Malmö University Hospital, S-205-02 Malmö, Sweden
| |
Collapse
|
23
|
The use of laminin modified linear ordered collagen scaffolds loaded with laminin-binding ciliary neurotrophic factor for sciatic nerve regeneration in rats. Biomaterials 2011; 32:3939-48. [DOI: 10.1016/j.biomaterials.2011.02.020] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/09/2011] [Indexed: 11/19/2022]
|
24
|
Siemionow M, Bozkurt M, Zor F. Regeneration and repair of peripheral nerves with different biomaterials: review. Microsurgery 2011; 30:574-88. [PMID: 20878689 DOI: 10.1002/micr.20799] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peripheral nerve injury may cause gaps between the nerve stumps. Axonal proliferation in nerve conduits is limited to 10-15 mm. Most of the supportive research has been done on rat or mouse models which are different from humans. Herein we review autografts and biomaterials which are commonly used for nerve gap repair and their respective outcomes. Nerve autografting has been the first choice for repairing peripheral nerve gaps. However, it has been demonstrated experimentally that tissue engineered tubes can also permit lead to effective nerve repair over gaps longer than 4 cm repair that was previously thought to be restorable by means of nerve graft only. All of the discoveries in the nerve armamentarium are making their way into the clinic, where they are, showing great potential for improving both the extent and rate of functional recovery compared with alternative nerve guides.
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Plastic Surgery, The Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
25
|
Chen Y, Miller C, Greer M, Quinones M, Greer R. Development of a Multiple-Lumen Nerve Cuff Utilizing Growth Stimulant Patterns for Controlled Regeneration. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-550-303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractSilicone rubber multiple-lumen (ML) nerve cuffs were used for side-by-side comparisons of the effectiveness of two varieties of nerve growth stimulants (collagen gel and a gel mixture of collagen, fibronectin, and laminin) for regenerating cables across a 15 mm gap in 10 adult Sprague-Dawley rats. The filling pattern of the six tubes of the multiple-lumen portion of the cuff alternated with the collagen gel and the gel mixture of collagen, fibronectin, and laminin. After an 8 week implantation period, 53% (32 of 60) of the 0.5 mm diameter lumens displayed successful cable regeneration for both material fillings. The ML cuff experiments demonstrate the ability to bridge a 15 mm gap in the sciatic nerve of the rat by 8 weeks for relatively small diameter conduits in ML cuffs loaded with two varieties of growth stimulants. A more advanced organization including a smaller acellular region fraction and a higher vascularity is seen in the cables from the mixture-filled lumens compared to those in the cables from the collagen-filled lumens.
Collapse
|
26
|
Kim PD, Hayes A, Amin F, Akelina Y, Hays AP, Rosenwasser MP. Collagen nerve protector in rat sciatic nerve repair: A morphometric and histological analysis. Microsurgery 2010; 30:392-6. [DOI: 10.1002/micr.20760] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Coert JH. Pathophysiology of nerve regeneration and nerve reconstruction in burned patients. Burns 2010; 36:593-8. [PMID: 20071095 DOI: 10.1016/j.burns.2009.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 08/09/2009] [Accepted: 10/06/2009] [Indexed: 12/18/2022]
Abstract
In extensive burns peripheral nerves can be involved. The injury to the nerve can be direct by thermal or electrical burns, but nerves can also be indirectly affected by the systemic reaction that follows the burn. Mediators will be released causing a neuropathy to nerves remote from the involved area. Involved mediators and possible therapeutic options will be discussed. In burned patients nerves can be reconstructed using autologous nerve grafts or nerve conduits. A key factor is an adequate wound debridement and a well-vascularized bed to optimize the outgrowth of the axons. Early free tissue transfers have shown promising results.
Collapse
Affiliation(s)
- J Henk Coert
- Department of Plastic Surgery and Hand Surgery, Erasmus University Medical Center and Sint Franciscus Hospital, Office HS-511, Rotterdam, The Netherlands.
| |
Collapse
|
28
|
Kemp SWP, Syed S, Walsh W, Zochodne DW, Midha R. Collagen nerve conduits promote enhanced axonal regeneration, schwann cell association, and neovascularization compared to silicone conduits. Tissue Eng Part A 2009; 15:1975-88. [PMID: 19196132 DOI: 10.1089/ten.tea.2008.0338] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Peripheral nerve regeneration within guidance conduits involves a critical association between regenerating axons, Schwann cells (SCs), and neovascularization. However, it is currently unknown if there is a greater association between these factors in nonpermeable versus semipermeable nerve guide conduits. We therefore examined this collaboration in both silicone- and collagen-based nerve conduits in both 5- and 10-mm-injury gaps in rat sciatic nerves. Results indicate that collagen conduits promoted enhanced axonal and SC regeneration and association when compared to silicone conduits in the shorter 5-mm-gap model. In addition, collagen tubes displayed enhanced neovascularization over silicone conduits, suggesting that these three factors are intimately related in successful peripheral nerve regeneration. At later time points (1- and 2-month analysis) in a 10-mm-gap model, collagen tubes displayed enhanced axonal regeneration, myelination, and vascularization when compared to silicone-based conduits. Results from these studies suggest that regenerating cables within collagen-based conduits are revascularized earlier and more completely, which in turn enhances peripheral nerve regeneration through these nerve guides as compared to silicone conduits.
Collapse
Affiliation(s)
- Stephen W P Kemp
- Department of Clinical Neuroscience, Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| | | | | | | | | |
Collapse
|
29
|
Preparation and Integration of Human Amnion Nerve Conduits Using a Light-Activated Technique. Plast Reconstr Surg 2009; 124:428-437. [DOI: 10.1097/prs.0b013e3181af010c] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Sun W, Sun C, Zhao H, Lin H, Han Q, Wang J, Ma H, Chen B, Xiao Z, Dai J. Improvement of sciatic nerve regeneration using laminin-binding human NGF-beta. PLoS One 2009; 4:e6180. [PMID: 19587785 PMCID: PMC2703785 DOI: 10.1371/journal.pone.0006180] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 06/06/2009] [Indexed: 12/30/2022] Open
Abstract
Background Sciatic nerve injuries often cause partial or total loss of motor, sensory and autonomic functions due to the axon discontinuity, degeneration, and eventual death which finally result in substantial functional loss and decreased quality of life. Nerve growth factor (NGF) plays a critical role in peripheral nerve regeneration. However, the lack of efficient NGF delivery approach limits its clinical applications. We reported here by fusing with the N-terminal domain of agrin (NtA), NGF-β could target to nerve cells and improve nerve regeneration. Methods Laminin-binding assay and sustained release assay of NGF-β fused with NtA (LBD-NGF) from laminin in vitro were carried out. The bioactivity of LBD-NGF on laminin in vitro was also measured. Using the rat sciatic nerve crush injury model, the nerve repair and functional restoration by utilizing LBD-NGF were tested. Findings LBD-NGF could specifically bind to laminin and maintain NGF activity both in vitro and in vivo. In the rat sciatic nerve crush injury model, we found that LBD-NGF could be retained and concentrated at the nerve injury sites to promote nerve repair and enhance functional restoration following nerve damages. Conclusion Fused with NtA, NGF-β could bind to laminin specifically. Since laminin is the major component of nerve extracellular matrix, laminin binding NGF could target to nerve cells and improve the repair of peripheral nerve injuries.
Collapse
Affiliation(s)
- Wenjie Sun
- Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Changkai Sun
- Institute of Brain Disorders and the Key Lab for Brain Disorders of Liaoning Province, Dalian Medical University, Dalian, China
| | - Hui Zhao
- Institute of Brain Disorders and the Key Lab for Brain Disorders of Liaoning Province, Dalian Medical University, Dalian, China
| | - Hang Lin
- Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qianqian Han
- Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jingyu Wang
- Experimental Animal Center of Dalian Medical University, Dalian, China
| | - Hui Ma
- Department of Pharmaceutics, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bing Chen
- Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhifeng Xiao
- Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianwu Dai
- Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
31
|
Sun W, Sun C, Lin H, Zhao H, Wang J, Ma H, Chen B, Xiao Z, Dai J. The effect of collagen-binding NGF-beta on the promotion of sciatic nerve regeneration in a rat sciatic nerve crush injury model. Biomaterials 2009; 30:4649-56. [PMID: 19573907 DOI: 10.1016/j.biomaterials.2009.05.037] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 05/17/2009] [Indexed: 11/29/2022]
Abstract
Nerve growth factor plays a critical role in peripheral nerve regeneration. However, the lack of efficient NGF delivery approach limits its clinical application. It has demonstrated in our previous work that the native human NGF-beta (NAT-NGF) fused with a collagen-binding domain (CBD) could bind to collagen specifically. Since collagen is the major component of nerve extracellular matrix, we speculated that the collagen-binding NGF would target to nerve cells and improve their regeneration. In this report, we found that the fusion protein could specifically bind to endogenous collagen of the rat sciatic nerves and maintain NGF activity both in vitro and in vivo. In the rat sciatic nerve crush injury model, we found that collagen-binding NGF could be retained and concentrated at the nerve injured site to promote nerve repair and enhance function recovery following nerve damage. Thus, the collagen-binding NGF could improve the repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Wenjie Sun
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100080, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Luís AL, Rodrigues JM, Geuna S, Amado S, Shirosaki Y, Lee JM, Fregnan F, Lopes MA, Veloso AP, Ferreira AJ, Santos JD, Armada-Da-silva PAS, Varejão ASP, Maurício AC. Use of PLGA 90:10 scaffolds enriched with in vitro-differentiated neural cells for repairing rat sciatic nerve defects. Tissue Eng Part A 2009; 14:979-93. [PMID: 18447635 DOI: 10.1089/ten.tea.2007.0273] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) nerve tube guides, made of a novel proportion (90:10) of the two polymers, poly(L-lactide): poly(glycolide) and covered with a neural cell line differentiated in vitro, were tested in vivo for promoting nerve regeneration across a 10-mm gap of the rat sciatic nerve. Before in vivo testing, the PLGA 90:10 tubes were tested in vitro for water uptake and mass loss and compared with collagen sheets. The water uptake of the PLGA tubes was lower, and the mass loss was more rapid and higher than those of the collagen sheets when immersed in phosphate-buffered saline (PBS) solution. The pH values of immersing PBS did not change after soaking the collagen sheets and showed to be around 7.4. On the other hand, the pH values of PBS after soaking PLGA tubes decreased gradually during 10 days reaching values around 3.5. For the in vivo testing, 22 Sasco Sprague adult rats were divided into four groups--group 1: gap not reconstructed; group 2: gap reconstructed using an autologous nerve graft; group 3: gap reconstructed with PLGA 90:10 tube guides; group 4: gap reconstructed with PLGA 90:10 tube guides covered with neural cells differentiated in vitro. Motor and sensory functional recovery was evaluated throughout a healing period of 20 weeks using sciatic functional index, static sciatic index, extensor postural thrust, withdrawal reflex latency, and ankle kinematics. Stereological analysis was carried out on regenerated nerve fibers. Both motor and sensory functions improved significantly in the three experimental nerve repair groups, although the rate and extent of recovery was significantly higher in the group where the gap was reconstructed using the autologous graft. The presence of neural cells covering the inside of the PLGA tube guides did not make any difference in the functional recovery. By contrast, morphometric analysis showed that the introduction of N1E-115 cells inside PLGA 90:10 tube guides led to a significant lower number and size of regenerated nerve fibers, suggesting thus that this approach is not adequate for promoting peripheral nerve repair. Further studies are warranted to assess the role of other cellular systems as a foreseeable therapeutic strategy in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Ana L Luís
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Universidade do Porto, Vairão, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Luís AL, Rodrigues JM, Geuna S, Amado S, Simões MJ, Fregnan F, Ferreira AJ, Veloso AP, Armada-da-Silva PAS, Varejão ASP, Maurício AC. Neural cell transplantation effects on sciatic nerve regeneration after a standardized crush injury in the rat. Microsurgery 2009; 28:458-70. [PMID: 18623156 DOI: 10.1002/micr.20524] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The goal of the present study was to assess whether in vitro-differentiated N1E-115 cells supported by a collagen membrane would enhance rat sciatic nerve regeneration after a crush injury. To set up an appropriate experimental model for investigating the effects of neural cell transplantation, we have recently described the sequence of functional and morphologic changes occurring after a standardized sciatic nerve crush injury with a nonserrated clamp. Functional recovery was evaluated using the sciatic functional index, the static sciatic index, the extensor postural thrust, the withdrawal reflex latency, and ankle kinematics. In addition, histomorphometric analysis was carried out on regenerated nerve fibers by means of the 2D-disector method. Based on the results of the EPT and of some of the ankle locomotor kinematic parameters analyzed, the hypothesis that N1E-115 cells may enhance nerve regeneration is partially supported although histomorphometry disclosed no significant difference in nerve fiber regeneration between the different experimental groups. Therefore, results suggest that enrichment of equine type III collagen membrane with the N1E-115 cellular system in the rat sciatic nerve crush model may support recovery, at least in terms of motor function. The discrepancy between functional and morphological results also suggests that the combined use of functional and morphological analysis should be recommended for an overall assessment of recovery in nerve regeneration studies.
Collapse
Affiliation(s)
- A L Luís
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Universidade do Porto, Campus Agrário de Vairão, Rua P. Armando Quintas, Vairão, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ban DX, Kong XH, Feng SQ, Ning GZ, Chen JT, Guo SF. Intraspinal cord graft of autologous activated Schwann cells efficiently promotes axonal regeneration and functional recovery after rat's spinal cord injury. Brain Res 2008; 1256:149-61. [PMID: 19103176 DOI: 10.1016/j.brainres.2008.11.098] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 01/03/2023]
Abstract
Basic research in spinal cord injury (SCI) has made great strides in recent years, and some new insights and strategies have been applied in promoting effective axonal regrowth and sprouting. However, a relatively safe and efficient transplantation technique remains undetermined. This study, therefore, was aimed to address a question of how to graft Schwann cells to achieve the best possible therapeutic effects. To clarify the issue, the rats were subjected to spinal cord injury at T10. Autologous activated Schwann cells (AASCs) were obtained by prior ligation of saphenous nerve and subsequently isolated and purified in vitro and then grafted into spinal cord-injured rats via three different routes (group I: intravenous, group II: intrathecal and group III: intraspinal cord). Neurologic function was serially evaluated by Basso, Beattie, Bresnahan locomotor rating scale and footprint analysis. We also evaluated the migration of the transplanted cells at 2 weeks after transplantation. Using biotinylated dextran amine (BDA) anterograde tracing, we demonstrated that more regenerative axons of corticospinal tract (CST) surrounding the injured cavity in group III than those in the other two groups, and we also confirmed it further by quantitative analysis. The microenvironment surrounding the injured spinal cord has been improved to the greatest extent in group III, as determined by immunohistological staining. Relatively complete myelin sheaths and more neurofilaments in axons were found in groups II and III than those in group I under electron microscopy. The results showed that intraspinal cord injection of AASCs promoted recovery of hindlimb locomotor function of injured rats more efficiently than the other grafting routes. In addition, intact myelin sheaths and sufficient neurofilaments in axons were not adequate for full functional recovery after SCI, suggesting that reestablishment of normal synaptic connection is indispensable. The findings in this study strongly suggest that transplantation of AASCs directly into the spinal cord may be one of the promising candidates for potential scaffold for injured spinal cord, and such strategy of transplantation of AASCs could be hopeful to treat patients with SCI.
Collapse
Affiliation(s)
- De-Xiang Ban
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin Heping District Anshan Road 154, Tianjin 300052, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Aberg M, Ljungberg C, Edin E, Millqvist H, Nordh E, Theorin A, Terenghi G, Wiberg M. Clinical evaluation of a resorbable wrap-around implant as an alternative to nerve repair: a prospective, assessor-blinded, randomised clinical study of sensory, motor and functional recovery after peripheral nerve repair. J Plast Reconstr Aesthet Surg 2008; 62:1503-9. [PMID: 18938119 DOI: 10.1016/j.bjps.2008.06.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 06/05/2008] [Accepted: 06/06/2008] [Indexed: 12/11/2022]
Abstract
Peripheral nerve injures are common and often result in impaired functional recovery. The majority of injuries involve the arm and/or the hand. The traditional treatment for peripheral nerve injuries is repair by using microsurgical techniques, either by primary nerve suture or nerve graft, but research to find more successful methods that could improve recovery is ongoing. Tubulisation has been investigated by several authors and is suggested as an alternative to microsurgical techniques. The resorbable poly[(R)-3-hydroxybutyrate] (PHB) is one of the materials that has been previously tested experimentally. In this prospective, randomised, assessor-blinded clinical study, PHB was investigated as an alternative to epineural suturing in the treatment of peripheral nerve injuries at the wrist/forearm level of the arm. Twelve patients, with a complete, common, sharp injury of the median and/or ulnar nerve at the wrist/forearm level, were treated by either using PHB or microsurgical epineural end-to-end suturing. All patients were assessed using a battery of tests, including evaluation of functional, sensory and motor recovery by means of clinical, neurophysiological, morphological and physiological evaluations at 2 weeks and 3, 6, 9, 12 and 18 months after surgery. No adverse events or complications considered as product related were reported, and thus PHB can be regarded as a safe alternative for microsurgical epineural suturing. The majority of the methods in the test battery showed no significant differences between the treatment groups, but one should consider that the study involved a limited number of patients and a high variability was reported for the evaluating techniques. However, sensory recovery, according to the British Medical Research Council score and parts of the manual muscle test, suggested that treating with PHB may be advantageous as compared to epineural suturing. This, however, should be confirmed by large-scale efficacy studies.
Collapse
Affiliation(s)
- Maria Aberg
- Department of Hand & Plastic Surgery, Umeå University SE-901 87 Umeå, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ichihara S, Inada Y, Nakamura T. Artificial nerve tubes and their application for repair of peripheral nerve injury: an update of current concepts. Injury 2008; 39 Suppl 4:29-39. [PMID: 18804584 DOI: 10.1016/j.injury.2008.08.029] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Over the last 20 years, an increasing number of research articles have reported on the use of artificial nerve tubes to repair nerve defects. The development of an artificial nerve tube as an alternative to autogenous nerve grafting is currently a focus of interest for peripheral nerve repair. The clinical employment of tubes as an alternative to autogenous nerve grafts is mainly justified by the limited availability of donor tissue for nerve autografts and the related morbidity. Numerous studies indicate that short-distance defects in humans can be successfully treated by implantation of artificial nerve guides. This review provides a brief overview of various preclinical and clinical trials conducted to evaluate the utility of artificial nerve tubes for the regeneration of peripheral nerves. This review is also intended to help update hand surgeons on the rapid advances in tubulization techniques, and to provide them with indications of the various directions toward which future research can proceed. Future studies need to provide us with as much comparative information as possible on the effectiveness of different tubulization techniques, in order to guide the surgeon in choosing the best indications for their optimal clinical employment. Future progress in implant development can be expected from interdisciplinary approaches involving both materials and life sciences, leading to advances in neuro-tissue engineering that will be needed to effectively treat larger nerve defects.
Collapse
Affiliation(s)
- Satoshi Ichihara
- Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
37
|
Grosheva M, Guntinas-Lichius O, Arnhold S, Skouras E, Kuerten S, Streppel M, Angelova SK, Wewetzer K, Radtke C, Dunlop SA, Angelov DN. Bone marrow-derived mesenchymal stem cell transplantation does not improve quality of muscle reinnervation or recovery of motor function after facial nerve transection in rats. Biol Chem 2008; 389:873-88. [DOI: 10.1515/bc.2008.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractRecently, we devised and validated a novel strategy in rats to improve the outcome of facial nerve reconstruction by daily manual stimulation of the target muscles. The treatment resulted in full recovery of facial movements (whisking), which was achieved by reducing the proportion of pathologically polyinnervated motor endplates. Here, we posed whether manual stimulation could also be beneficial after a surgical procedure potentially useful for treatment of large peripheral nerve defects, i.e., entubulation of the transected facial nerve in a conduit filled with suspension of isogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) in collagen. Compared to control treatment with collagen only, entubulation with BM-MSCs failed to decrease the extent of collateral axonal branching at the lesion site and did not improve functional recovery. Post-operative manual stimulation of vibrissal muscles also failed to promote a better recovery following entubulation with BM-MSCs. We suggest that BM-MSCs promote excessive trophic support for regenerating axons which, in turn, results in excessive collateral branching at the lesion site and extensive polyinnervation of the motor endplates. Furthermore, such deleterious effects cannot be overridden by manual stimulation. We conclude that entubulation with BM-MSCs is not beneficial for facial nerve repair.
Collapse
|
38
|
Piquilloud G, Christen T, Pfister LA, Gander B, Papaloïzos MY. Variations in glial cell line-derived neurotrophic factor release from biodegradable nerve conduits modify the rate of functional motor recovery after rat primary nerve repairs. Eur J Neurosci 2007; 26:1109-17. [PMID: 17767490 DOI: 10.1111/j.1460-9568.2007.05748.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Accelerating axonal regeneration to shorten the delay of reinnervation and improve functional recovery after a peripheral nerve lesion is a clinical demand and an experimental challenge. We developed a resorbable nerve conduit (NC) for controlled release of glial cell line-derived neurotrophic factor (GDNF) with the aim of assessing motor functional recovery according to the release kinetics of this factor in a short gap model. Different types of resorbable NCs were manufactured from a collagen tube and multiple coating layers of poly(lactide-coglycolide), varying in poly(lactide-coglycolide) type and coating thickness to afford three distinct release kinetics of the neurotrophic factor. GDNF release was quantified in vitro. End-to-end suture and GDNF-free NC served as controls. Thirty-five Wistar rats underwent surgery. Motor recovery was followed from 1 to 12 weeks after surgery by video gait analysis. Morphometrical data were obtained at mid-tube level and distal to the NC. NCs were completely resorbed within 3 months with minimal inflammation. GDNF induced a threefold overgrowth of fibers at mid-tube level. However, the number of fibers was similar in the distal segment of all groups. The speed of recovery was inversely proportional to the number of fibers at the NC level but the level of recovery was similar for all groups at 3 months. The resorbable conduits proved their ability to modulate axonal regrowth through controlled release of GDNF. In relation to the dose delivered, GDNF strikingly multiplied the number of myelinated fibers within the NC but this increase was not positively correlated with the return of motor function in this model.
Collapse
Affiliation(s)
- Gaël Piquilloud
- Experimental Plastic and Reconstructive Surgery, CHUV, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Marchesi C, Pluderi M, Colleoni F, Belicchi M, Meregalli M, Farini A, Parolini D, Draghi L, Fruguglietti ME, Gavina M, Porretti L, Cattaneo A, Battistelli M, Prelle A, Moggio M, Borsa S, Bello L, Spagnoli D, Gaini SM, Tanzi MC, Bresolin N, Grimoldi N, Torrente Y. Skin-derived stem cells transplanted into resorbable guides provide functional nerve regeneration after sciatic nerve resection. Glia 2007; 55:425-38. [PMID: 17203471 DOI: 10.1002/glia.20470] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The regeneration in the peripheral nervous system is often incomplete and the treatment of severe lesions with nerve tissue loss is primarily aimed at recreating nerve continuity. Guide tubes of various types, filled with Schwann cells, stem cells, or nerve growth factors are attractive as an alternative therapy to nerve grafts. In this study, we evaluated whether skin-derived stem cells (SDSCs) can improve peripheral nerve regeneration after transplantation into nerve guides. We compared peripheral nerve regeneration in adult rats with sciatic nerve gaps of 16 mm after autologous transplantation of GFP-labeled SDSCs into two different types of guides: a synthetic guide, obtained by dip coating with a L-lactide and trimethylene carbonate (PLA-TMC) copolymer and a collagen-based guide. The sciatic function index and the recovery rates of the compound muscle action potential were significantly higher in the animals that received SDSCs transplantation, in particular, into the collagen guide, compared to the control guides filled only with PBS. For these guides the morphological and immunohistochemical analysis demonstrated an increased number of myelinated axons expressing S100 and Neurofilament 70, suggesting the presence of regenerating nerve fibers along the gap. GFP positive cells were found around regenerating nerve fibers and few of them were positive for the expression of glial markers as S-100 and glial fibrillary acidic protein. RT-PCR analysis confirmed the expression of S100 and myelin basic protein in the animals treated with the collagen guide filled with SDSCs. These data support the hypothesis that SDSCs could represent a tool for future cell therapy applications in peripheral nerve regeneration.
Collapse
Affiliation(s)
- C Marchesi
- Fondazione IRCCS Ospedale Maggiore Policlinico-Mangiagalli e Regina Elena of Milan, Stem Cell Laboratory, Department of Neurological Sciences, Centro Dino Ferrari, University of Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Vleggeert-Lankamp CLAM, de Ruiter GCW, Wolfs JFC, Pêgo AP, van den Berg RJ, Feirabend HKP, Malessy MJA, Lakke EAJF. Pores in synthetic nerve conduits are beneficial to regeneration. J Biomed Mater Res A 2006; 80:965-82. [PMID: 17106899 DOI: 10.1002/jbm.a.30941] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Current opinion holds that pores in synthetic nerve guides facilitate nerve regeneration. Solid factual support for this opinion, however, is absent; most of the relevant studies assessed only morphological parameters and results have been contradictory. To evaluate the effect of pores, the rat sciatic nerve was either autografted or grafted with nonporous, macroporous (10-230 mum), and microporous (1-10 microm) biodegradable epsilon-caprolactone grafts. Twelve weeks later, the grafted nerves were resected, and the electrophysiological properties were determined in vitro. Subsequently midgraft-level sections were inspected, and peroneal nerve sections were evaluated morphometrically. Finally, the gastrocnemic and tibial muscle morphometrical properties were quantified. The microporous nerve graft performed much better than the nonporous and macroporous grafts with respect to most parameters: it was bridged by a free floating bundle that contained myelinated nerve fibers, there were more nerve fibers present distal to the graft, the electrophysiological response rate was higher, and the decrease in muscle cross-sectional area was markedly smaller. Hence, the present study demonstrates the beneficial effect of synthetic nerve guide pores on nerve regeneration, although with the caveat that not pores per se, but only small (1-10 microm) pores were effective.
Collapse
Affiliation(s)
- C L A M Vleggeert-Lankamp
- Neuroregulation Group, Department of Neurosurgery, Leiden University Medical Centre (LUMC), P.O. Box 9600, NL-2300 RC Leiden, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu S, Li H, Ou Yang J, Peng H, Wu K, Liu Y, Yang J. Enhanced rat sciatic nerve regeneration through silicon tubes filled with pyrroloquinoline quinone. Microsurgery 2005; 25:329-37. [PMID: 15915445 DOI: 10.1002/micr.20126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pyrroloquinoline quinone (PQQ) is an antioxidant that also stimulates nerve growth factor (NGF) synthesis and secretion. In an earlier pilot study in our laboratory, Schwann cell growth was accelerated, and NGF mRNA expression and NGF secretion were promoted. The present study was designed to explore the possible nerve-inducing effect of PQQ on a nerve tube model over a 1-cm segmental deficit. An 8-mm sciatic nerve deficit was created in a rat model and bridged by a 1-cm silicone tube. Then,10 mul of 0.03 mmol/l PQQ were perfused into the silicone chamber in the PQQ group. The same volume of normal saline was delivered in the control group. Each animal underwent functional observation (SFI) at 2-week intervals and electrophysiological studies at 4-week intervals for 12 weeks. Histological and morphometrical analyses were performed at the end of the experiment, 12 weeks after tube implantation. Using a digital image-analysis system, thickness of the myelin sheath was measured, and total numbers of regenerated axons were counted. There was a significant difference in SFI, electrophysiological index (motor-nerve conduct velocity and amplitude of activity potential), and morphometrical results (regenerated axon number and thickness of myelin sheath) in nerve regeneration between the PQQ group and controls (P < 0.05). More mature, high-density, newly regenerated nerve was observed in the PQQ group. We conclude that PQQ is a potent enhancer for the regeneration of peripheral nerves.
Collapse
Affiliation(s)
- Shiqing Liu
- Department of Orthopedics, Ren Min Hospital, Wuhan University, Wuhan City, Hu Bei Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
42
|
Martínez JC, Malavé C, Bosch I, Castillo C, Núñez J, Villegas GM, Villegas R. A real-time quantitative PCR comparative study between rat optic and sciatic nerves: determination of neuregulin-1 mRNA levels. ACTA ACUST UNITED AC 2005; 130:49-60. [PMID: 15519676 DOI: 10.1016/j.molbrainres.2004.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2004] [Indexed: 01/13/2023]
Abstract
Injured axons from peripheral nervous system (PNS) possess the ability to regenerate. In contrast, regeneration of injured axons does not occur in the central nervous system (CNS) or occurs to a limited extent. Previous works have shown that rat sciatic nerve conditioned medium (CM) produced PC12 cells neuronal-like differentiation and neurite outgrowth. In the present work, we compared the expression of neuregulin-1s (NRG-1s) from rat sciatic and optic nerves as members of the PNS and CNS, respectively. Sciatic nerve CM showed a higher neurotrophic activity on PC12 cells than rat optic nerve CM. RT-PCR analysis verified the presence of all three types of NRG-1 mRNAs and their receptors in both types of nerves. Real-time quantitative PCR (QPCR) assays showed that the relative expression levels of all three types of NRG-1 mRNAs were higher in optic nerves than in sciatic nerves. Eleven-day cultured optic nerves showed an increased in NDF and SMDF when compared to freshly isolated optic nerves, whereas GGF decreased. However, 11-day-cultured sciatic nerves only showed an increase in SMDF mRNA. Western blots corroborated the differences in NRG-1 expression profile for both types of nerves and their CMs. Incubation of both CMs with the anti-pan-NRG-1 antibody showed that the neurotrophic activity of the optic nerve CM increased, whereas the sciatic nerve CM remained unchanged. These results indicated that different NRG-1 levels are expressed upon nerve degeneration and the balance between those levels and other neurotrophic factors could have an important role on nerve regeneration.
Collapse
Affiliation(s)
- J C Martínez
- Instituto de Estudios Avanzados (IDEA), Apartado 17606, Caracas 1015-A, Miranda 1080, Venezuela.
| | | | | | | | | | | | | |
Collapse
|
43
|
Dubový P. Schwann cells and endoneurial extracellular matrix molecules as potential cues for sorting of regenerated axons: a review. Anat Sci Int 2005; 79:198-208. [PMID: 15633458 DOI: 10.1111/j.1447-073x.2004.00090.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Besides very well elaborated microsurgical management of severed peripheral nerves, the clinical results of functional recovery following surgical repair of mixed nerves are disappointing. An improvement of functional recovery after peripheral nerve lesion requires the accurate regeneration of axons to their original target tissues and structures. Therefore, better clinical results could be obtained by a greater understanding of the cellular and molecular biology of selective nerve regeneration. The studies concerning Schwann cells and their endoneurial extracellular matrix as potent cues for selective promotion and influence of regenerating motor and sensory axons are reviewed. Knowledge of the sorting mechanisms of regenerated motor and sensory axons is needed not only for improvement of functional recovery, but also for the development of biocompatible nerve prostheses.
Collapse
Affiliation(s)
- Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Medical Faculty, Masaryk University Brno, Czech Republic.
| |
Collapse
|
44
|
Jansen K, Meek MF, van der Werff JFA, van Wachem PB, van Luyn MJA. Long-term regeneration of the rat sciatic nerve through a biodegradable poly(DL-lactide-epsilon-caprolactone) nerve guide: tissue reactions with focus on collagen III/IV reformation. J Biomed Mater Res A 2004; 69:334-41. [PMID: 15058006 DOI: 10.1002/jbm.a.30004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long-term studies on nerve-guide regeneration are scarce. Therefore, in rats, long-term (16 months) sciatic nerve regeneration through poly(DL-lactide-epsilon-caprolactone) [poly(DLLA-epsilon-CL)] nerve guides was studied and compared with the nonoperated control side. Poly(DLLA-epsilon-CL) degradation and possible long-term foreign body reaction against poly(DLLA-epsilon-CL) nerve guides, as well as the distribution of both collagen type III and IV were studied. In vivo poly(DLLA-epsilon-CL) studies have been performed before but not for such long time points; also, a detailed analysis of collagen III/IV has not been presented before. The results demonstrate that biodegradable poly(DLLA-epsilon-CL) nerve guides yield good nerve regeneration and collagen III/IV deposition relative to the anatomy of the control side. Regenerated nerve showed almost similar collagen type III/IV distribution patterns as compared with the nonoperated control side, although the delineation of matrix was clearer in the control side. The relative amount of collagen III and IV immunostaining in nerve cross-sections did not, however, differ between the control nerve tissue and the operated side after 16 months. After 16 months of implantation, however, some very small fragments of biomaterial could still be found on the edge of the epineurium of the regenerated nerve, indicating remnants of a secondary foreign body reaction. The biomaterial fragments and foreign body reaction did not influence the nerve regeneration process after 16 months. Biodegradable poly(DLLA-epsilon-CL) nerve guides are useful for long-term bridging of short peripheral nerve gaps.
Collapse
Affiliation(s)
- Koen Jansen
- Department of Plastic Surgery, University Hospital Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
45
|
Vleggeert-Lankamp CLAMCLAM, Pêgo APAP, Lakke EAJFEAJF, Deenen M, Marani E, Thomeer RTWMRTWM. Adhesion and proliferation of human Schwann cells on adhesive coatings. Biomaterials 2004; 25:2741-51. [PMID: 14962553 DOI: 10.1016/j.biomaterials.2003.09.067] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Accepted: 09/18/2003] [Indexed: 10/26/2022]
Abstract
Attachment to and proliferation on the substrate are deemed important considerations when Schwann cells (SCs) are to be seeded in synthetic nerve grafts. Attachment is a prerequisite for the SCs to survive and fast proliferation will yield large numbers of SCs in a short time, which appears promising for stimulation of peripheral nerve regeneration. The aim of the present study was to compare the adhesion and proliferation of human Schwann cells (HSCs) on different substrates. The following were selected for their suitability as an internal coating of synthetic nerve grafts; the extracellular matrix proteins fibronectin, laminin and collagen type I and the poly-electrolytes poly(d-lysine) (PDL) and poly(ethylene-imine) (PEI). On all coatings, attachment of HSCs was satisfactory and comparable, indicating that this factor is not a major consideration in choosing a suitable coating. Proliferation was best on fibronectin, laminin and PDL, and worst on collagen type I and PEI. Since nerve regeneration is enhanced by laminin and/or fibronectin, these are preferred as coatings for synthetic nerve grafts seeded with SCs.
Collapse
|
46
|
Meek MF, Jansen K, Steendam R, van Oeveren W, van Wachem PB, van Luyn MJA. In vitro degradation and biocompatibility of poly(DL-lactide-epsilon-caprolactone) nerve guides. J Biomed Mater Res A 2004; 68:43-51. [PMID: 14661248 DOI: 10.1002/jbm.a.10157] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bridging nerve gaps by means of autologous nerve grafts involves donor nerve graft harvesting. Recent studies have focused on the use of alternative methods, and one of these is the use of biodegradable nerve guides. After serving their function, nerve guides should degrade to avoid a chronic foreign body reaction. The in vitro degradation, in vitro cytotoxicity, hemocompatibility, and short-term in vivo foreign body reaction of poly((65)/(35) ((85)/(15) (L)/(D)) lactide-epsilon-caprolactone) nerve guides was studied. The in vitro degradation characteristics of poly(DLLA-epsilon-CL) nerve guides were monitored at 2-week time intervals during a period of 22 weeks. Weight loss, degree of swelling of the tube wall, mechanical strength, thermal properties, and the intrinsic viscosity of the nerve guides were determined. Cytotoxicity was studied by measuring the cell proliferation inhibition index (CPII) on mouse fibroblasts in vitro. Cell growth was evaluated by cell counting, while morphology was assessed by light microscopy. Hemocompatibility was evaluated using a thrombin generation assay and a complement convertase assay. The foreign body reaction against poly(DLLA-epsilon-CL) nerve guides was investigated by examining toluidine blue stained sections. The in vitro degradation data showed that poly(DLLA-epsilon-CL) nerve guides do not swell, maintain their mechanical strength and flexibility for a period of about 8-10 weeks, and start to lose mass after about 10 weeks. Poly(DLLA-epsilon-CL) nerve guides were classified as noncytotoxic, as cytotoxicity tests demonstrated that cell morphology was not affected (CPII 0%). The thrombin generation assay and complement convertase assay indicated that the material is highly hemocompatible. The foreign body reaction against the biomaterial was mild with a light priming of the immunesystem. The results presented in this study demonstrate that poly((65)/(35) ((85)/(15) (L)/(D)) lactide-epsilon-caprolactone) nerve guides are biocompatible, and show good in vitro degradation characteristics, making these biodegradable nerve guides promising candidates for bridging peripheral nerve defects up to several centimeters.
Collapse
Affiliation(s)
- Marcel F Meek
- Department of Plastic Surgery, University Hospital Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
47
|
Lundborg G, Rosén B, Dahlin L, Holmberg J, Rosén I. Tubular repair of the median or ulnar nerve in the human forearm: a 5-year follow-up. ACTA ACUST UNITED AC 2004; 29:100-7. [PMID: 15010152 DOI: 10.1016/j.jhsb.2003.09.018] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Accepted: 09/22/2003] [Indexed: 02/04/2023]
Abstract
The long-term outcome from silicone tube nerve repair was compared with the outcome from routine microsurgical repair in a clinical randomized prospective study, comprising 30 patients with median or ulnar nerve injuries in the distal forearm. Postoperatively, the patients underwent neurophysiological and clinical assessments of sensory and motor function regularly over a 5-year period. After 5 years there was no significant difference in outcome between the two techniques except that cold intolerance was significantly less severe with the tubular technique. In the total group there was ongoing improvement of functional sensibility throughout the 5 years after repair. It is concluded that tubular repair of the median and ulnar nerves is at least as good as routine microsurgical repair, and results in less cold intolerance.
Collapse
Affiliation(s)
- G Lundborg
- Department of Hand Surgery, University Hospital MAS, Malmö, Sweden, and the Department of Clinical Neurophysiology, Lund University, Sweden.
| | | | | | | | | |
Collapse
|
48
|
Meek MF, Koning MAJ, Nicolai JPA, Gramsbergen A. Rehabilitation strategy using enhanced housing environment during neural regeneration. J Neurosci Methods 2004; 136:179-85. [PMID: 15183269 DOI: 10.1016/j.jneumeth.2004.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2003] [Revised: 01/10/2004] [Accepted: 01/12/2004] [Indexed: 11/22/2022]
Abstract
The influence of an enriched environment on the recovery of nerve function was studied after a sciatic nerve lesion and repair. A sciatic nerve gap of 15 mm was bridged in 12 rats using autologous nerve grafts. The rats were housed either in an enriched environment or in standard cages. In the enhanced housing environment, the rats were forced to move by dissociating food and water sources, including wire for foot gripping instead of flat plastic floors, and wooden play toys. Locomotor behavior was recorded on tape with a digital videorecorder and behavioral data were compared with those of a group of six unoperated rats. The video-recordings were analyzed for the stance factor (SF) as well as several other aspects of the rat's walking pattern. Walking was evaluated between 10 and 21 weeks after the operation. Differences in walking behavior between rats raised in an enriched environment and rats raised in standard cages could not be demonstrated. Differences in walking behavior between male and female rats were not found either. But data differed significantly at all ages with rats of the control group. Automutilation of parts of the denervated foot revealed a significant difference in both experimental groups, occurring less often in the enriched environment group.
Collapse
Affiliation(s)
- Marcel F Meek
- Department of Plastic Surgery, University Hospital Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands.
| | | | | | | |
Collapse
|
49
|
Malavé C, Villegas GM, Hernández M, Martínez JC, Castillo C, Suárez de Mata Z, Villegas R. Role of glypican-1 in the trophic activity on PC12 cells induced by cultured sciatic nerve conditioned medium: identification of a glypican-1-neuregulin complex. Brain Res 2003; 983:74-83. [PMID: 12914968 DOI: 10.1016/s0006-8993(03)03031-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glypican-1 is an extracellular matrix component found by microsequencing in a medium conditioned by cultured rat-sciatic nerves (CM). This CM was concentrated by ultrafiltration and fractionated by quaternary ammonium chromatography, followed by Hi-Trap blue affinity chromatography to obtain the active fraction B1.2. Previously, we have reported a 54 kDa neuregulin (NRG) in the same B1.2 fraction [Villegas et al., Brain Res. 852 (2001) 304]. The effect of Glypican-1 on the neuron-like differentiation of PC12 cells was investigated by immunoprecipitation, Western blot and cellular image analysis. Removal of glypican-1 by immunoprecipitation with increasing concentrations of specific antibodies revealed a gradual decrease of the differentiation activity of fraction B1.2, which paralleled the results obtained by removal of the 54 kDa NRG protein. Colorless native electrophoresis and Western blot analysis was used to identify a glypican-1-NRG protein complex, which could be afterwards separated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis into its individual components. Additionally, it was demonstrated that glypican-1, in cooperation with the 54 kDa NRG, is involved in the neuronal-like differentiation of PC12 cells and could play an important role on the regeneration responses of peripheral nerves.
Collapse
Affiliation(s)
- Caridad Malavé
- Centro de Biociencias, Instituto de Estudios Avanzados (IDEA), Apartado 17606, 1015A, Caracas, Venezuela.
| | | | | | | | | | | | | |
Collapse
|
50
|
Jubran M, Widenfalk J. Repair of peripheral nerve transections with fibrin sealant containing neurotrophic factors. Exp Neurol 2003; 181:204-12. [PMID: 12781993 DOI: 10.1016/s0014-4886(03)00041-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Peripheral nerve injury is often followed by incomplete recovery of function and sometimes associated with neuropathic pain. There is, therefore, need for therapies which improve the speed of recovery and the final functional outcome after peripheral nerve injuries. In addition, neuropathic pain is not easily dealt with clinically and should preferably be eliminated. Neurotrophic factors have well-documented abilities to support neuron survival and stimulate neurite outgrowth, making them excellent candidates for use in repairing injured nerves. We investigated the possible beneficial effects of repairing the transected rat sciatic nerve by local application of a fibrin sealant containing nerve growth factor (NGF), glial cell line-derived neurotrophic factor (GDNF), or acidic fibroblast growth factor (aFGF). Fibrin sealant was used in conjunction with sutures. Evaluation of motor and sensory function, autotomy, and histological parameters was carried out from 1 to 12 weeks after injury. We demonstrate that NGF cotreatment decreased the occurance of autotomy, suggesting a reduction of neuropathic pain, and improved the performance in motor and sensory tests. In addition, the number of regenerating motoneurons was significantly increased after NGF administration. GDNF increased the speed of sensory recovery, but also markedly increased autotomy, indicating an increased degree of neuropathic pain. aFGF did not alter the outcome of the motor or sensory tests. Fibrin sealant could easily be used in conjunction with sutures to deliver neurotrophic substances locally to the damaged nerve and to enhance recovery of nerve function.
Collapse
Affiliation(s)
- Marie Jubran
- Department of Neuroscience, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | |
Collapse
|