1
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Srivastava A, Ahmad OF, Pacia CP, Hallett M, Lungu C. The Relationship between Saccades and Locomotion. J Mov Disord 2018; 11:93-106. [PMID: 30086615 PMCID: PMC6182301 DOI: 10.14802/jmd.18018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
Human locomotion involves a complex interplay among multiple brain regions and depends on constant feedback from the visual system. We summarize here the current understanding of the relationship among fixations, saccades, and gait as observed in studies sampling eye movements during locomotion, through a review of the literature and a synthesis of the relevant knowledge on the topic. A significant overlap in locomotor and saccadic neural circuitry exists that may support this relationship. Several animal studies have identified potential integration nodes between these overlapping circuitries. Behavioral studies that explored the relationship of saccadic and gait-related impairments in normal conditions and in various disease states are also discussed. Eye movements and locomotion share many underlying neural circuits, and further studies can leverage this interplay for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Anshul Srivastava
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Omar F Ahmad
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Pham Pacia
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Codrin Lungu
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Tosa Y, Tsukano K, Itoyama T, Fukagawa M, Nii Y, Ishikawa R, Suzuki KIT, Fukui M, Kawaguchi M, Murakami Y. Involvement of Slit-Robo signaling in the development of the posterior commissure and concomitant swimming behavior in Xenopus laevis. ZOOLOGICAL LETTERS 2015; 1:28. [PMID: 26605073 PMCID: PMC4657333 DOI: 10.1186/s40851-015-0029-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
INTRODUCTION During vertebrate development, the central nervous system (CNS) has stereotyped neuronal tracts (scaffolds) that include longitudinal and commissural axonal bundles, such as the medial longitudinal fascicle or the posterior commissure (PC). As these early tracts appear to guide later-developing neurons, they are thought to provide the basic framework of vertebrate neuronal circuitry. The proper construction of these neuronal circuits is thought to be a crucial step for eliciting coordinated behaviors, as these circuits transmit sensory information to the integrative center, which produces motor commands for the effective apparatus. However, the developmental plan underlying some commissures and the evolutionary transitions they have undergone remain to be elucidated. Little is known about the role of axon guidance molecules in the elicitation of early-hatched larval behavior as well. RESULTS Here, we report the developmentally regulated expression pattern of axon-guidance molecules Slit2 ligand and Robo2 receptor in Xenopus laevis and show that treatment of X. laevis larvae with a slit2- or robo2-morpholino resulted in abnormal swimming behavior. We also observed an abnormal morphology of the PC, which is part of the early axonal scaffold. CONCLUSION Our present findings suggest that expression patterns of Slit2 and Robo2 are conserved in tetrapods, and that their signaling contributes to the construction of the PC in Xenopus. Given that the PC also includes several types of neurons stemming from various parts of the CNS, it may represent a candidate prerequisite neuronal tract in the construction of subsequent complex neuronal circuits that trigger coordinated behavior.
Collapse
Affiliation(s)
- Yasuhiko Tosa
- />Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| | - Kiyohito Tsukano
- />Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| | - Tatsuya Itoyama
- />Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| | - Mai Fukagawa
- />Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| | - Yukako Nii
- />Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| | - Ryota Ishikawa
- />Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| | - Ken-ichi T. Suzuki
- />Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 Japan
| | - Makiko Fukui
- />Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| | - Masahumi Kawaguchi
- />Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Yasunori Murakami
- />Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| |
Collapse
|
4
|
Klemm WR. Why does rem sleep occur? A wake-up hypothesis. Front Syst Neurosci 2011; 5:73. [PMID: 21922003 PMCID: PMC3166790 DOI: 10.3389/fnsys.2011.00073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/08/2011] [Indexed: 11/25/2022] Open
Abstract
Brain activity differs in the various sleep stages and in conscious wakefulness. Awakening from sleep requires restoration of the complex nerve impulse patterns in neuronal network assemblies necessary to re-create and sustain conscious wakefulness. Herein I propose that the brain uses rapid eye movement (REM) to help wake itself up after it has had a sufficient amount of sleep. Evidence suggesting this hypothesis includes the facts that, (1) when first going to sleep, the brain plunges into Stage N3 (formerly called Stage IV), a deep abyss of sleep, and, as the night progresses, the sleep is punctuated by episodes of REM that become longer and more frequent toward morning, (2) conscious-like dreams are a reliable component of the REM state in which the dreamer is an active mental observer or agent in the dream, (3) the last awakening during a night's sleep usually occurs in a REM episode during or at the end of a dream, (4) both REM and awake consciousness seem to arise out of a similar brainstem ascending arousal system (5) N3 is a functionally perturbed state that eventually must be corrected so that embodied brain can direct adaptive behavior, and (6) cortico-fugal projections to brainstem arousal areas provide a way to trigger increased cortical activity in REM to progressively raise the sleeping brain to the threshold required for wakefulness. This paper shows how the hypothesis conforms to common experience and has substantial predictive and explanatory power regarding the phenomenology of sleep in terms of ontogeny, aging, phylogeny, abnormal/disease states, cognition, and behavioral physiology. That broad range of consistency is not matched by competing theories, which are summarized herein. Specific ways to test this wake-up hypothesis are suggested. Such research could lead to a better understanding of awake consciousness.
Collapse
Affiliation(s)
- W R Klemm
- Department of Veterinary Integrative Biosciences, Texas A&M University , College Station, TX, USA
| |
Collapse
|
5
|
Abstract
The cytoarchitecture and the histochemistry of nucleus prepositus hypoglossi and its afferent and efferent connections to oculomotor structures are described. The functional significance of the afferent connections of the nucleus is discussed in terms of current knowledge of the firing behavior of prepositus neurons in alert animals. The efferent connections of the nucleus and the results of lesion experiments suggest that it plays a role in a variety of functions related to the control of gaze.
Collapse
Affiliation(s)
- Robert A McCrea
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, 947 E. 58th St., Chicago, IL 60637, USA.
| | | |
Collapse
|
6
|
Tsumori T, Yokota S, Ono K, Yasui Y. Organization of projections from the medial agranular cortex to the superior colliculus in the rat: a study using anterograde and retrograde tracing methods. Brain Res 2001; 903:168-76. [PMID: 11382400 DOI: 10.1016/s0006-8993(01)02437-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The organization of corticotectal projections from the medial agranular cortex (AGm), which has been considered to contain rat's frontal eye field, was examined using anterograde and retrograde tracing techniques. When biotinylated dextranamine (BDA) injections were made into the rostral part of the AGm, small numbers of BDA-labeled axons were found in the rostral two-thirds of the superior colliculus (SC) while some labeled axons were seen in the caudal one-third of the SC. These labeled axons were distributed mainly in the lateral part of the stratum griseum intermediale. On the other hand, after BDA injections into the caudal part of the AGm, moderate to dense plexuses of labeled axons were found in the rostral two-thirds of the SC while some labeled axons were seen in the caudal one-third of the SC. These labeled axons were distributed in the ventromedial and dorsolateral marginal zones of the stratum griseum intermediale as well as in the stratum griseum profundum. The corticotectal projections were largely uncrossed. After combined injections of BDA into the caudal part of the AGm on one side and cholera toxin B subunit (CTb) into the paramedian pontine reticular formation on the opposite side or into the interstitial nucleus of Cajal on the same side, the overlapping distributions of BDA-labeled axons and CTb-labeled neurons were found in the ventromedial marginal zone of the stratum griseum intermediale ipsilateral to the site of BDA injection. These results suggest that the caudal part of the AGm plays a more significant role in the oculomotor function than does the rostral part of the AGm.
Collapse
Affiliation(s)
- T Tsumori
- Department of Anatomy (2nd Division), Shimane Medical University, Izumo 693-8501, Japan
| | | | | | | |
Collapse
|
7
|
Iwasaki H, Kani K, Maeda T. Neural connections of the pontine reticular formation, which connects reciprocally with the nucleus prepositus hypoglossi in the rat. Neuroscience 1999; 93:195-208. [PMID: 10430483 DOI: 10.1016/s0306-4522(99)00151-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pontine reticular formation connected with the nucleus prepositus hypoglossi was studied in the rat using anterograde and retrograde tracer techniques. The area reciprocally connected with the nucleus prepositus hypoglossi was evident in the pontine reticular formation of the rat. The region had intensive reciprocal connections with the ipsilateral subthalamic region, the contralateral pontine reticular formation and the nucleus prepositus hypoglossi. Furthermore, it was confirmed that the region received cholinergic projections mainly from the pedunculopontine tegmental nucleus and the laterodorsal tegmental nucleus, and aminergic projections from the dopaminergic cell groups A13 and A11, noradrenergic cell groups A7, A6 and A5, and the serotoninergic B9 cell group. This region in the rat was considered to be the preoculomotor structure in the function of horizontal gaze corresponding to the paramedian pontine reticular formation in other animals.
Collapse
Affiliation(s)
- H Iwasaki
- Department of Ophthalmology, Shiga University of Medical Science, Otsu, Japan
| | | | | |
Collapse
|
8
|
Faingold CL, N'Gouemo P, Riaz A. Ethanol and neurotransmitter interactions--from molecular to integrative effects. Prog Neurobiol 1998; 55:509-35. [PMID: 9670216 DOI: 10.1016/s0301-0082(98)00027-6] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is extensive evidence that ethanol interacts with a variety of neurotransmitters. Considerable research indicates that the major actions of ethanol involve enhancement of the effects of gamma-aminobutyric acid (GABA) at GABAA receptors and blockade of the NMDA subtype of excitatory amino acid (EAA) receptor. Ethanol increases GABAA receptor-mediated inhibition, but this does not occur in all brain regions, all cell types in the same region, nor at all GABAA receptor sites on the same neuron, nor across species in the same brain region. The molecular basis for the selectivity of the action of ethanol on GaBAA receptors has been proposed to involve a combination of benzodiazepine subtype, beta 2 subunit, and a splice variant of the gamma 2 subunit, but substantial controversy on this issue currently remains. Chronic ethanol administration results in tolerance, dependence, and an ethanol withdrawal (ETX) syndrome, which are mediated, in part, by desensitization and/or down-regulation of GABAA receptors. This decrease in ethanol action may involve changes in subunit expression in selected brain areas, but these data are complex and somewhat contradictory at present. The sensitivity of NMDA receptors to ethanol block is proposed to involve the NMDAR2B subunit in certain brain regions, but this subunit does not appear to be the sole determinant of this interaction. Tolerance to ethanol results in enhanced EAA neurotransmission and NMDA receptor upregulation, which appears to involve selective increases in NMDAR2B subunit levels and other molecular changes in specific brain loci. During ETX a variety of symptoms are seen, including susceptibility to seizures. In rodents these seizures are readily triggered by sound (audiogenic seizures). The neuronal network required for these seizures is contained primarily in certain brain stem structures. Specific nuclei appear to play a hierarchical role in generating each stereotypical behavioral phases of the convulsion. Thus, the inferior colliculus acts to initiate these seizures, and a decrease in effectiveness of GABA-mediated inhibition in these neurons is a major initiation mechanism. The deep layers of superior colliculus are implicated in generation of the wild running behavior. The pontine reticular formation, substantia nigra and periaqueductal gray are implicated in generation of the tonic-clonic seizure behavior. The mechanisms involved in the recruitment of neurons within each network nucleus into the seizure circuit have been proposed to require activation of a critical mass of neurons. Achievement of critical mass may involve excess EAA-mediated synaptic neurotransmission due, in part, to upregulation as well as other phenomena, including volume (non-synaptic diffusion) neurotransmission. Effects of ETX on receptors observed in vitro may undergo amplification in vivo to allow the excess EAA action to be magnified sufficiently to produce synchronization of neuronal firing, allowing participation of the nucleus in seizure generation. GABA-mediated inhibition, which normally acts to limit excitation, is diminished in effectiveness during ETX, and further intensifies this excitation.
Collapse
Affiliation(s)
- C L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield 62794-1222, USA
| | | | | |
Collapse
|
9
|
Everling S, Paré M, Dorris MC, Munoz DP. Comparison of the discharge characteristics of brain stem omnipause neurons and superior colliculus fixation neurons in monkey: implications for control of fixation and saccade behavior. J Neurophysiol 1998; 79:511-28. [PMID: 9463418 DOI: 10.1152/jn.1998.79.2.511] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fixation neurons (SCFNs) in the rostral pole of the superior colliculus (SC) and omnipause neurons (OPNs) in the nucleus raphe interpositus (rip) in the pons share similar discharge properties. Both types of neurons discharge tonically during periods of visual fixation and pause for saccadic eye movements, and their activation by electrical stimulation suppresses saccade generation. On the basis of these similarities and the projection from the rostral SC to the rip, it was hypothesized that SCFNs provide a major excitatory input to OPNs. We investigated the role and relationship of SCFNs and OPNs with respect to both fixation behavior and saccade generation by comparing their activity recorded in the same monkeys performing a gap saccade task. In this task, the central fixation point was extinguished 200 ms before the presentation of an eccentric saccadic target, and the discharges of OPNs and SCFNs were contrasted during visual fixation, nonvisual (gap) fixation, and saccade generation. During visual fixation, the mean discharge rate of OPNs was higher and more regular than that of SCFNs. During the gap period, SCFNs decreased their discharge rate before target appearance, whereas no change in discharge rate was observed in OPNs. For both SCFNs and OPNs, the activity level before target appearance was not correlated to saccadic reaction time. In contrast to SCFNs, several OPNs responded with a transient phasic increase in discharge immediately after the target presentation. Before their saccade-related pause, there was a gradual reduction in the activity of SCFNs, whereas OPNs had an abrupt cessation of discharge. SCFNs paused earlier than OPNs, but the OPN pause onset was better synchronized to saccade onset than the SCFN pause onset. OPNs resumed firing after their pause in activity earlier than SCFNs, and the OPN pause end was better synchronized to saccade end than the SCFN pause end. These physiological data reveal differences in the discharge properties of SCFNs and OPNs that are irreconcilable with the hypothesis that the discharge pattern of OPNs reflects simply the excitatory input from SCFNs. It is most likely that additional inputs to OPNs compensate for the reduction in discharge of SCFNs during these periods.
Collapse
Affiliation(s)
- S Everling
- Department of Physiology, Medical Research Council Group in Sensory-Motor Neuroscience, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | |
Collapse
|
10
|
Riaz A, Faingold CL. Seizures during ethanol withdrawal are blocked by focal microinjection of excitant amino acid antagonists into the inferior colliculus and pontine reticular formation. Alcohol Clin Exp Res 1994; 18:1456-62. [PMID: 7695044 DOI: 10.1111/j.1530-0277.1994.tb01450.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Physical dependence on ethanol can result in seizure susceptibility during ethanol withdrawal. In rats, generalized tonic-clonic seizures are precipitated by auditory stimulation during the ethanol withdrawal syndrome. Excitant amino acids (EAAs) are implicated as neurotransmitters in the inferior colliculus and the brain stem reticular formation, which play important roles in the neuronal network for genetic models of audiogenic seizures (AGSs). Ethanol blocks the actions of EAAs in various brain regions, including the inferior colliculus. In this study, dependence was produced by intragastric administration of ethanol for 4 days. During ethanol withdrawal, AGSs were blocked by systemic administration of competitive or noncompetitive NMDA antagonists 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) or dizocilpine (MK-801). Focal microinjections of NMDA or non-NMDA antagonists into the inferior colliculus or the pontine reticular formation also inhibited AGSs. MK-801 was the most potent anticonvulsant systemically. When injected into the inferior colliculus, CPP had a more potent anticonvulsant effect than either MK-801 or the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. The inferior colliculus was more sensitive than the pontine reticular formation to the anticonvulsant effects of both competitive NMDA and non-NMDA antagonists. The results of the present support the idea that continued ethanol administration may lead to development of supersensitivity to the action of EAAs in inferior colliculus and pontine reticular formation neurons. This may be a critical mechanism subserving AGS susceptibility during ethanol withdrawal.
Collapse
Affiliation(s)
- A Riaz
- Department of Pharmacology, Southern Illinois University, School of Medicine, Springfield 62794-9230
| | | |
Collapse
|
11
|
Lavrov VV. Increase in excitability of cortical nonspecific structures in the presence of a decreased level of influences from the brainstem reticular formation. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1992; 22:320-7. [PMID: 1528423 DOI: 10.1007/bf01182874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The results of the measurement of the threshold of electrical stimulation of the cortex sufficient to elicit the EEG activation reaction in the norm and under conditions of the reduction of influences from the brainstem of the reticular formation are presented. A decrease in the thresholds was observed in those conditions which are regarded as evidence of an increase in the excitability of the nonspecific cortical formations. The increase was uneven: it was maximal in the sensorimotor and minimal in the visual cortex. It is hypothesized that the data obtained in brain preparations with a decreased level of brainstem reticular influences may be applied to the understanding of certain phenomena of neurotic pathology in its neurophysiological aspect.
Collapse
Affiliation(s)
- V V Lavrov
- Laboratory of Neuroses, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, Leningrad
| |
Collapse
|
12
|
Abstract
The enigmatic nature of the experience of self-awareness is examined in the light of recent discoveries and, on this basis, combined with inferences derived introspectively from the experience of the phenomenon itself; a specific physical locus of this experience within the human brains is deduced-proposed. The fundamental premise in this work is that whereever conscious self-awareness is generated, the neuronal structure(s) involved must continually have access to an extremely precise representation of information derived from the sense of vision plus a great variety of other kinds of information so as to permit it to make decisions regarding actions (movements and their implementation) that promote the survival and perpetuation of the biological system in which the self is generated. First, a definitve set of criteria that define most of the inputs to and operations carried out by the self-awareness entity were assembled. This ensemble of functions was then compared with the connections and possible roles of specific neuroanatomical structures described in published literature, particularly the recent literature and particularly that concerned with the sense of vision. It was discovered that only one brain structure receives the prerequisite information from the sense of vision plus information derived from cortical memory stores plus a variety of other relevant sources needed to generate a coherent sense of selfness. This structure is the superior colliculus of the tectum. The superior colliculi not only receive a highly precise retinotopic representation of inputs to the eyes, but also receive inputs from a great variety of other structures, including many areas of the cerebral cortex, vestibular inputs, auditory inputs, "affective" inputs, and inputs that putatively define the positions of the eyes and of the head. This information, it is deduced, not only allows this structure to generate a continuing synthesis of representations of the self-vs.-environment, but also allows a part of it to assess the significance (probable meaning) of these integrated inputs with respect to the selection of an implementation of actions that serve the interests of the physical structure in which the self-experience is generated. The function of memory in this system not only involves the continually updated representation of where the self is with respect to items and objects in its environment, but also provides means through which the relevance of recorded experiences representing the past may be caused to affect the decision-making process.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- B L Strehler
- Molecular Biology, University of Southern California, Los Angeles
| |
Collapse
|
13
|
Connections linking the mamillary complex and hypothalamo-tegmental area of the brain with the brainstem in lizards. NEUROPHYSIOLOGY+ 1990. [DOI: 10.1007/bf01052062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Abstract
The subcortical connections of the frontal 'oculomotor' areas in the medial wall of the hemisphere under the cruciate sulcus (CRUo), the medial (PREo-m) and the lateral banks (PREo-l) of the presylvian sulcus of cats were investigated using WGA-HRP tracing combined with electrophysiological techniques. Two main modes were identified; one was the common connections to the same targets in the cortico-thalamo-cortical, cerebro-cerebellar and cortico-tectal pathways, and the other was the individual connections to unique portions of the saccade-generating centers in the brainstem. The common reciprocal connections were found in the ventral anterior-ventral lateral complex, principal ventromedial nucleus, rostral intralaminar nuclei, centromedian-parafascicular complex, lateral posterior nucleus, and suprageniculate nucleus. The common efferent projections were in the subthalamic nucleus, lateral habenular nucleus, pretectal nucleus, posterior commisure nucleus, nucleus of Darkschewitsch, pontine nucleus, nucleus reticularis tegmenti pontis, medial accessory inferior olive, and the superior colliculus. The CRUo projected into the ipsilateral field of Forel and paramedial pontine reticular formation (PPRF), the PREo-l projected into the contralateral dorsomedial medullary reticular formation, and the PREo-m projected into the ipsilateral medullary reticular formation and there was only a small degree of projection into the central portion between the abducens nerve rootlets.
Collapse
Affiliation(s)
- E Miyashita
- Department of Physiology, Wakayama Medical College, Japan
| | | |
Collapse
|
15
|
Leichnetz GR, Carlton SM, Katayama Y, Gonzalo-Ruiz A, Holstege G, DeSalles AA, Hayes RL. Afferent and efferent connections of the cholinoceptive medial pontine reticular formation (region of the ventral tegmental nucleus) in the cat. Brain Res Bull 1989; 22:665-88. [PMID: 2736395 DOI: 10.1016/0361-9230(89)90087-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Following minor concussive brain injury when there is an otherwise general suppression of CNS activity, the ventral tegmental nucleus of Gudden (VTN) demonstrates increased functional activity (32). Electrical or pharmacological activation of a cholinoceptive region in this same general area of the medial pontine tegmentum contributes to certain components of reversible traumatic unconsciousness, including postural atonia (31, 32, 45). Therefore, in an effort to examine the neuroanatomical basis of the behavioral suppression associated with a reversible traumatic unconsciousness, the afferent and efferent connections of the VTN and putative cholinoceptive medial pontine reticular formation (cmPRF) were studied in the cat using the retrograde horseradish peroxidase (HRP), HRP/choline acetyltransferase (ChAT) double-labeling immunohistochemistry, and anterograde HRP and autoradiographic techniques. Based upon retrograde HRP labeling, the principal afferents to the VTN region of the cmPRF originated from the medial and lateral mammillary nuclei, and lateral habenular nucleus, and to a lesser extent from the interpeduncular nucleus, lateral hypothalamus, dorsal tegmental nucleus, superior central nucleus, and contralateral nucleus reticularis pontis caudalis. Other afferents, which were thought to have been labeled through spread of HRP into the medial longitudinal fasciculus (MLF), adjacent paramedian pontine reticular formation, or uptake by transected fibers descending to the inferior olive, included the nucleus of Darkschewitsch, interstitial nucleus of Cajal, zona incerta, prerubral fields of Forel, deep superior colliculus, nucleus of the posterior commissure, nucleus cuneiformis, ventral periaqueductal gray, vestibular complex, perihypoglossal complex, and deep cerebellar nuclei. In HRP/ChAT double labeling studies, only a very small number of cholinergic VTN afferent neurons were found in the medial parabrachial region of the dorsolateral pontine tegmentum, although the pedunculopontine and laterodorsal tegmental nuclei contained numerous single-labeled ChAT-positive cells. Anterograde HRP and autoradiographic findings demonstrated that the VTN gave rise almost exclusively to ascending projections, which largely followed the course of the mammillary peduncle (16,21) and medial forebrain bundle, or the tegmentopeduncular tract (4). The majority of fibers ascended to terminate in the medial and lateral mammillary nuclei, interpeduncular complex (especially paramedian subnucleus), ventral tegmental area, lateral hypothalamus, and the medial septum in the basal forebrain. Labeling that joined the mammillothalamic tract to terminate in the anterior nuclear complex of the thalamus was thought to occur transneuronally. Some projections were also observed to nucleus reticularis pontis oralis and caudalis, superior central nucleus, and dorsal tegmental nucleus adjacent to the VTN...
Collapse
Affiliation(s)
- G R Leichnetz
- Department of Anatomy Medical College of Virginia, Virginia Commonwealth University, Richmond 23298
| | | | | | | | | | | | | |
Collapse
|