1
|
Raeva S, Vainberg N, Dubinin V. Analysis of spontaneous activity patterns of human thalamic ventrolateral neurons and their modifications due to functional brain changes. Neuroscience 1999; 88:365-76. [PMID: 10197760 DOI: 10.1016/s0306-4522(98)00228-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the human thalamic ventralis lateralis nucleus the spontaneous activity of 235 single units during 38 stereotactic operations in locally anaesthetized parkinsonian patients was analysed. Two basic cell types (A and B) were shown to exist in this nucleus: (i) with unitary irregular (2-40/s) discharges characterized by a tendency to spike grouping in the range of 4-6 Hz and 10-30 Hz (A-type, 74%), (ii) with bursting discharges firing in short trains (5-30 ms) characterized by an unstable rhythmic 3-6 Hz pattern similar to a low-threshold Ca2+ intrinsic burst structure of discharges (B-type, 26%). The functional brain changes after a motor tests performance were accompanied by the appearance of two different transient modifications of activity of A-cells pattern into rhythmic burst discharges: (i) in the range of 3-6 Hz, similar to the bursts found for B-cells and recorded mainly in the anterior ventrolateral region in rigid patients, (ii) in the range of 5 +/- 1 Hz, characterized by other interspike interval and recorded in the posterior ventrolateral region in patients with tremor. Modifications during short-term anaesthesia resulted in 10-15 Hz burst discharges that were associated with gradual disappearance of A-cells activity. In contrast to what happens for A-cells, the activity of bursting B-units was characterized by an invariant intrinsic structure of discharges irrespective of the functional brain changes or the forms of parkinsonian pathology. The nature of A- and B-units as well as the mechanisms of transient modifications of their spontaneous activity patterns due to the functional brain changes are discussed.
Collapse
Affiliation(s)
- S Raeva
- Laboratory of Human Cell Neurophysiology, Institute of Chemical Physics, Russian Academy of Sciences, Moscow
| | | | | |
Collapse
|
2
|
|
3
|
Lukhanina EP. Role of the ventrolateral nucleus of the thalamus in extrapyramidal motor pathology. NEUROPHYSIOLOGY+ 1996. [DOI: 10.1007/bf01053340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Montagne-Clavel J, Olivéras JL. Does barbiturate anesthesia modify the neuronal properties of the somatosensory thalamus? A single-unit study related to nociception in the awake-pentobarbital-treated rat. Neurosci Lett 1995; 196:69-72. [PMID: 7501260 DOI: 10.1016/0304-3940(95)11847-p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
By means of extracellular recordings, we studied thalamic ventrobasal complex neurons of rats tested first awake, and then anesthetized with pentobarbital. In both conditions, we found two groups of units in both states. The first group, displaying a spontaneous bursting activity, was not obviously responding to peripheral stimuli. Another group, displaying a single-spike activity, was almost exclusively activated by innocuous and/or noxious and innocuous mechanical stimuli. Still in this group, units specifically driven by noxious stimuli were only found under pentobarbital. These data, different from classical findings, emphasize the interest of the awake preparation in order to study nociceptive cellular mechanisms at the thalamic level.
Collapse
Affiliation(s)
- J Montagne-Clavel
- Unit, de Recherches de Physiopharmacologie du Système Nerveux de l'INSERM (U.161), Paris, France
| | | |
Collapse
|
5
|
Comparative analysis of background activity of ventrolateral thalamic neurons in patients with parkinsonism and torsion muscle dystonia. NEUROPHYSIOLOGY+ 1994. [DOI: 10.1007/bf01054503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Núñez A, Barrenechea C, Avendaño C. Spontaneous activity and responses to sensory stimulation in ventrobasal thalamic neurons in the rat: an in vivo intracellular recording and staining study. Somatosens Mot Res 1994; 11:89-98. [PMID: 8017148 DOI: 10.3109/08990229409028861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Spontaneous activity and responses to sensory stimulation in ventrobasal (VB) thalamic neurons were studied in barbiturate-anesthetized rats through intracellular recordings. The recordings were carried out with micropipettes filled with K acetate KCl plus horseradish peroxidase (HRP), our KCl plus biocytin. Two types of spontaneous depolarizing events were observed: fast potentials (FPs), characterized by a low amplitude (5.3 +/- 1.8 mV [mean and standard deviation]), a fast rising slope (1.15 +/- 0.19 msec), and a short duration (8.47 +/- 0.89 msec); and slow potentials (SPs), characterized by a larger and more variable amplitude (9.1 +/- 5.6 mV) and a longer duration (62.5 +/- 27.2 msec), with a slower rising slope (26.2 +/- 6.4 msec). The potential changes elicited by sensory stimuli delivered manually were similar to those elicited by electronically gated short air jets to the receptive fields. FPs were evoked by sensory stimulation in 62.7% of the recorded neurons, and SPs in the remaining 37.3%. Both types of events could occur spontaneously in the same neuron, but only one of them was triggered by stimulation of the receptive field. Five neurons that were successfully stained with either HRP or biocytin were studied in detail. All were medium-sized stellate cells, with spine-like appendages sparsely distributed along slender radiating dendrites. The axons took a rostrolateral course across the VB, and all but one left one or two thin collaterals in the reticular thalamic nucleus. No overt morphological differences were observed between VB neurons that responded with FPS or SPs to sensory stimulation.
Collapse
Affiliation(s)
- A Núñez
- Departamento de Morfologia, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
7
|
Marks GA, Roffwarg HP. Spontaneous activity in the thalamic reticular nucleus during the sleep/wake cycle of the freely-moving rat. Brain Res 1993; 623:241-8. [PMID: 8221106 DOI: 10.1016/0006-8993(93)91434-t] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neurons of the somatosensory thalamic reticular nucleus (TRN) were studied by extracellular recordings through the sleep/wake cycle in the unanesthetized, freely-moving rat. All electrophysiologically-identified TRN neurons expressed rhythmic patterns of discharge that altered with shifts in sleep/wake state. During slow wave (SW) sleep, neurons displayed spike-burst discharges in long trains followed by pauses. high-frequency oscillations in auto-correlograms in the spindle-frequency range (approximately 10 Hz) reflected the rhythm of interburst intervals within the trains whereas low-frequency oscillations (0.3-0.2 Hz) displayed the rhythm of intertrain intervals. During rapid eye movement (REM) sleep, a more continuous pattern of spike-burst discharges was prominent, resulting in absence of a detectable, low-frequency rhythm but persistence of spindle-frequency firing. At the transitions between SW and REM sleep, cell discharge was more tonic than during either sleep state and lacked a dominant rhythm. During the wake (AW) state, neurons fired in a single-spike mode that also lacked rhythmicity. Unlike their pattern of discharge, TRN neurons' mean rate of discharge did not distinguish sleep/wake state. The mean discharge rates were: SW, 18.4 +/- 1.3; REM, 17.4 +/- 1.2; AW, 22.3 +/- 2.1 (Hz +/- S.E.M.). Mean discharge rate during transitions from SW to REM sleep (28.6 +/- 2.1) was significantly higher, however, than during any sleep/wake state. Compelling evidence was lacking for segregation of TRN neurons into discrete populations according to absolute discharge rate. Neurons recorded simultaneously from the same electrode discharged synchronous trains of spike-bursts and pauses during SW sleep. This phenomenon may be related to generation of EEG slow waves.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G A Marks
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas 75235-9070
| | | |
Collapse
|
8
|
Marks GA, Roffwarg HP. Cholinergic responsiveness of neurons in the ventroposterior thalamus of the anesthetized rat. Neuroscience 1993; 54:391-400. [PMID: 7687753 DOI: 10.1016/0306-4522(93)90260-m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Acetylcholine has been implicated as an important neurotransmitter in the mechanisms of thalamic activation. Cholinergic mechanisms are thought to directly underlie the high level of excitability observed in thalamic relay neurons during waking and rapid eye movement sleep. We sought to determine if the cholinergic responsiveness of neurons in the ventroposterior nuclei of the thalamus in rat is consistent with this view. Neurons in the chloral hydrate-anesthetized rat were studied with extracellular recording and microiontophoretic application of cholinergic agents. In most cases (63% of 63 cells), the ejection of the agonist, carbachol, had no observable effect on spontaneous activity. Facilitation (25%), inhibition (8%) and inhibition followed by facilitation (3%) were also observed. Carbachol ejections that by themselves were ineffective in altering spontaneous activity proved capable, in 93% of 28 cells, of antagonizing the uniformly facilitatory responses produced by glutamate ejection. The putative M1-selective, cholinergic agonist, McN-A-343, was also ineffective alone in altering spontaneous activity in the majority of cases (74% of 27 cells) and produced only inhibitory responses in the remaining seven neurons studied. Interacting applications of McN-A-343 and glutamate resulted, in all cases, in antagonism of glutamate facilitation (N = 12). The various responses to applied cholinergic agonists were all capable of being antagonized by muscarinic receptor-blocking agents. Both the high proportion of inhibitory responses and the antagonism of glutamate facilitatory responses suggest that ventroposterior neurons in the rat differ from other thalamocortical relay neurons in the rat and cat with regard to cholinergic responsiveness. Additionally, the lack of predominantly facilitatory responding renders it unlikely that cholinergic mechanisms directly underlie increases in excitability of ventroposterior neurons observed during waking and rapid eye movement sleep.
Collapse
Affiliation(s)
- G A Marks
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas 75235-9070
| | | |
Collapse
|
9
|
Soltesz I, Crunelli V. GABAA and pre- and post-synaptic GABAB receptor-mediated responses in the lateral geniculate nucleus. PROGRESS IN BRAIN RESEARCH 1992; 90:151-69. [PMID: 1321458 DOI: 10.1016/s0079-6123(08)63613-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- I Soltesz
- Department of Visual Science, Institute of Ophthalmology, London, England, UK
| | | |
Collapse
|
10
|
Leresche N, Lightowler S, Soltesz I, Jassik-Gerschenfeld D, Crunelli V. Low-frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. J Physiol 1991; 441:155-74. [PMID: 1840071 PMCID: PMC1180191 DOI: 10.1113/jphysiol.1991.sp018744] [Citation(s) in RCA: 184] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1. Low-frequency membrane potential oscillations recorded intracellularly from thalamocortical (TC) cells of the rat and cat dorsal lateral geniculate nucleus (dLGN) and of the rat ventrobasal nucleus (VB) maintained in vitro were investigated. On the basis of their electrophysiological and pharmacological properties, four types of activity were distinguished and named: the pacemaker oscillations, the spindle-like oscillations, the 'very slow' oscillations and the 'N-methyl-D-aspartate' (NMDA) oscillations. 2. The pacemaker oscillations (95 out of 173 cells) consisted of rhythmic, large-amplitude (10-30 mV) depolarizations which occurred at a frequency of 1.8 +/- 0.3 Hz (range, 0.5-2.9 Hz) and could often give rise to single or a burst of action potentials. Pacemaker oscillations were observed when the membrane potential was moved negative to -55 and positive to -80 mV, but in a given cell the upper and lower limits of this voltage range were separated by only 13.1 +/- 0.5 mV. Above -45 mV tonic firing consisting of single action potentials was seen in the cells showing this or the other types of low-frequency oscillations. 3. The spindle-like oscillations were observed in thirty-nine (out of 173) TC cells and consisted of rhythmic (2.1 +/- 0.3 Hz), large-amplitude depolarizations (and often associated burst firing) similar to the pacemaker oscillations but occurring in discrete periods every 5-25 s and lasting for 1.5-28 s. The spindle-like oscillations were observed when the membrane potential was moved negative to -55 and positive to -80 mV and in two cells they were transformed into continuous pacemaker oscillations by depolarization of the membrane potential to -60 mV. 4. Pacemaker and spindle-like oscillations were unaffected by tetrodotoxin (TTX) or by selective blockade of NMDA, non-NMDA, GABAA, GABAB, nicotinic, muscarinic, alpha- and beta-noradrenergic receptors. 5. The 'very slow' oscillations consisted of a TTX-insensitive, slow hyperpolarization-depolarization sequence (5-15 mV in amplitude) which lasted up to 90 s and was observed in nine dLGN cells and in two VB cells. The pacemaker and the spindle-like oscillations were recorded in one cell each which also showed the 'very slow' oscillations. 6. The 'NMDA' oscillations were observed only in a 'Mg(2+)-free' medium (0 mM-Mg2+, 2-4 mM-Ca2+; 64 out of 72 cells) and consisted of large-amplitude (10-25 mV) depolarizations that did not occur at regular intervals and were intermixed with smaller depolarizations present on the baseline and on the falling phase of the larger ones.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- N Leresche
- Department of Visual Science, Institute of Ophthalmology, London
| | | | | | | | | |
Collapse
|
11
|
Lukanina EP. Effect of catecholaminergic transmission deficiency upon neuronal responses of the ventrolateral thalamic nucleus evoked by stimulation of cerebellar and pallidal inputs. NEUROPHYSIOLOGY+ 1991. [DOI: 10.1007/bf01054141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Spanswick D, Logan SD. Spontaneous rhythmic activity in the intermediolateral cell nucleus of the neonate rat thoracolumbar spinal cord in vitro. Neuroscience 1990; 39:395-403. [PMID: 2087263 DOI: 10.1016/0306-4522(90)90276-a] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intracellular recordings from the intermediolateral cell nucleus of the neonate rat thoracolumbar spinal cord slice preparation revealed a population of neurons which displayed three types of spontaneous rhythmic activity: burst firing, tonic beating and membrane oscillations. Most neurons displayed more than one of these types of activity. Neurons had mean resting potentials of -59 mV and input resistances ranging from 10 to 48 m omega. Spontaneous oscillations which were observed either independently or following hyperpolarization of neurons displaying tonic beating or bursting behaviour had a mean peak amplitude and frequency of approximately 14 mV and 1 Hz respectively. Oscillations were not obviously reversible as they were still apparent at potentials as negative as -120 to -140 mV. This suggests that the oscillations had a site of generation distant to the recording electrode. Neurons displaying tonic beating activity were characterized by low frequency firing activated at the peak of the depolarizing phase of the underlying oscillation and these neurons could be induced to exhibit burst behaviour by membrane depolarization. The frequency of firing in tonic beating neurons ranged from 0.1 to 8.8 Hz. Burst firing was characterized by: bursts of 3-17 action potentials; burst cycle frequency of approximately 1 Hz; an afterdepolarization potential mainly observed at the termination of a burst. Burst firing was abolished by cobalt and membrane hyperpolarization but not by barium, low calcium or tetraethylammonium chloride. The switch from tonic beating to burst firing may, in part, involve activation of a voltage- and calcium-dependent afterdepolarization potential. We conclude that a population of neurons in the lateral horn of the spinal cord are capable of rhythmic activity with underlying spontaneous pacemaker-like oscillations.
Collapse
Affiliation(s)
- D Spanswick
- Department of Physiology, University of Birmingham Medical School, U.K
| | | |
Collapse
|
13
|
White G, Lovinger DM, Weight FF. Transient low-threshold Ca2+ current triggers burst firing through an afterdepolarizing potential in an adult mammalian neuron. Proc Natl Acad Sci U S A 1989; 86:6802-6. [PMID: 2549548 PMCID: PMC297934 DOI: 10.1073/pnas.86.17.6802] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In a variety of mammalian neurons, a brief depolarization generates an afterdepolarizing potential that triggers the firing of a short series or burst of action potentials. Although such burst firing is thought to contribute to the processing of neural information, the ionic currents that underlie this phenomenon have not been established. In whole-cell patch-clamp experiments on dorsal root ganglion neurons, we have found that the current that underlies this type of burst firing is a transient low-threshold (T-type) Ca2+ current. The data suggest that the T-type Ca2+ current may play an important role in the processing of information in the nervous system by virtue of its ability to elicit burst firing in neurons.
Collapse
Affiliation(s)
- G White
- Laboratory of Physiologic and Pharmacologic Studies, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852
| | | | | |
Collapse
|
14
|
Sumitomo I, Takahashi Y, Kayama Y, Ogawa T. Burst discharges of thalamic reticular neurons: an intracellular analysis in anesthetized rats. Brain Res 1989; 482:34-41. [PMID: 2706480 DOI: 10.1016/0006-8993(89)90539-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In order to analyze the mechanism of burst discharges intracellular recordings were made from 27 somatosensory thalamic reticular (S-TR) neurons in urethane-anesthetized rats. Burst discharges, composed of 2-7 spikes, were always superposed on a slow depolarization (SD) lasting for 40-60 ms, which appeared only when the membrane was hyperpolarized. The number of spikes superposed on an SD varied depending upon the amplitude of the SD. A single shock stimulation of the lemniscus medialis elicited a series of SDs, each without being preceded by a phasic hyperpolarizing potential. The SDs were repeated with spindle rhythms. Evidence has been provided that EPSPs contribute to the mechanism for triggering SDs. In spontaneous rhythmic SDs occurring with the rhythm of EEG spindles, steps representing EPSPs were recordable on the rising phase of each SD. It is suggested that excitatory synaptic inputs to S-TR neurons with the spindle rhythm are responsible for the rhythmic generation of SDs. Ventrobasal relay neurons are presumed as the source of the inputs.
Collapse
Affiliation(s)
- I Sumitomo
- Laboratory of Biological Science, Osaka Keizai University, Japan
| | | | | | | |
Collapse
|