1
|
Depletion of cholinergic amacrine cells by a novel immunotoxin does not perturb the formation of segregated on and off cone bipolar cell projections. J Neurosci 2002. [PMID: 11896166 DOI: 10.1523/jneurosci.22-06-02265.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cone bipolar cells are the first retinal neurons that respond in a differential manner to light onset and offset. In the mature retina, the terminal arbors of On and Off cone bipolar cells terminate in different sublaminas of the inner plexiform layer (IPL) where they form synapses with the dendrites of On and Off retinal ganglion cells and with the stratified processes of cholinergic amacrine cells. Here we first show that cholinergic processes within the On and Off sublaminas of the IPL are present early in development, being evident in the rat on the day of birth, approximately 10 d before the formation of segregated cone bipolar cell axons. This temporal sequence, as well as our previous finding that the segregation of On and Off cone bipolar cell inputs occurs in the absence of retinal ganglion cells, suggested that cholinergic amacrine cells could provide a scaffold for the subsequent in-growth of bipolar cell axons. To test this hypothesis directly, a new cholinergic cell immunotoxin was constructed by conjugating saporin, the ribosome-inactivating protein toxin, to an antibody against the vesicular acetylcholine transporter. A single intraocular injection of the immunotoxin caused a rapid, complete, and selective loss of cholinergic amacrine cells from the developing rat retina. On and Off cone bipolar cells were visualized using an antibody against recoverin, the calcium-binding protein that labels the soma and processes of these interneurons. After complete depletion of cholinergic amacrine cells, cone bipolar cell axon terminals still formed their two characteristic strata within the IPL. These findings demonstrate that the presence of cholinergic amacrine cells is not required for the segregation of recoverin-positive On and Off cone bipolar cell projections.
Collapse
|
2
|
Fischer AJ, Miethke P, Morgan IG, Stell WK. Cholinergic amacrine cells are not required for the progression and atropine-mediated suppression of form-deprivation myopia. Brain Res 1998; 794:48-60. [PMID: 9630509 DOI: 10.1016/s0006-8993(98)00188-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Muscarinic cholinergic pathways have been implicated in the visual control of ocular growth. However, the source(s) of acetylcholine and the tissue(s) which regulate ocular growth via muscarinic acetylcholine receptors (mAChRs) remain unknown. We sought to determine whether retinal sources of acetylcholine and mAChRs contribute to visually guided ocular growth in the chick. Cholinergic amacrine cells were ablated by intraocular injections of either ethylcholine mustard aziridinium ion (ECMA; a selective cholinotoxin) or quisqualic acid (QA; an excitotoxin that destroys many amacrine cells, including those that release acetylcholine). Disruption of cholinergic pathways was assessed immunocytochemically with antibodies to the acetylcholine-synthesizing enzyme choline acetyltransferase (ChAT) and three different isoforms of mAChR, and by biochemical assay for ChAT activity. ECMA (25 nmol) destroyed two of the four subtypes of cholinergic amacrine cells and attenuated retinal ChAT activity, but left retinal mAChR-immunoreactivity intact. QA (200 nmol) destroyed the majority of all four subtypes of cholinergic amacrine cells, and ablated most mAChR-immunoreactivity and ChAT activity in the retina. ECMA and QA had no apparent effect on mAChRs or cholinergic fibres in the choroid, only marginally reduced choroidal ChAT activity, and had little effect on ChAT activity in the anterior segment. Toxin-treated eyes remained emmetropic and responded to form-deprivation by growing excessively and becoming myopic. Furthermore, daily intravitreal injection of 40 microg atropine for 6 days into form-deprived toxin-treated eyes completely prevented ocular elongation and myopia. We conclude that neither cholinergic amacrine cells nor mAChRs in the retina are required for visual regulation of ocular growth, and that atropine may exert its growth-suppressing influence by acting upon extraretinal mAChRs, possibly in the choroid, retinal pigmented epithelium, or sclera.
Collapse
Affiliation(s)
- A J Fischer
- Department of Anatomy and Lions' Sight Centre, The University of Calgary, Faculty of Medicine, 3330 Hospital Dr. N.W., Calgary, Alberta, Canada.
| | | | | | | |
Collapse
|
3
|
Willson CA, Luthman J, Hoffer B, Hanin I. The use of the rat iris as a model system to evaluate the effect of the cholinotoxin, AF64A, in vivo. J Neurosci Methods 1995; 56:49-55. [PMID: 7715246 DOI: 10.1016/0165-0270(94)00089-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The iris is innervated by both cholinergic parasympathetic, and adrenergic sympathetic branches of the autonomic nervous system. This innervation represents a simple and anatomically well-defined system to evaluate the effects of chemical compounds on cholinergic and adrenergic neurons. AF64A (acetyl ethylcholine aziridinium) is a known cholinotoxin in the brain and, in these experiments using the iris system, we evaluated its in vivo effect on cholinergic enzyme activity, pupillary size, and catecholamine neurotransmitter levels. We found in this system that AF64A reduces the activity of choline acetyltransferase (ChAT) but not acetylcholinesterase (AChE). AF64A is selective for cholinergic neurons, since norepinephrine and dopamine levels were unaffected.
Collapse
Affiliation(s)
- C A Willson
- Loyola University Chicago Stritch School of Medicine, Department of Pharmacology, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
4
|
Gómez C, Martín C, Galea E, Estrada C. Direct cytotoxicity of ethylcholine mustard aziridinium in cerebral microvascular endothelial cells. J Neurochem 1993; 60:1534-9. [PMID: 8455040 DOI: 10.1111/j.1471-4159.1993.tb03318.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The choline analogue ethylcholine mustard aziridinium (AF64A) is a potent and irreversible inhibitor of choline uptake in brain synaptosomes and is used as a neurotoxin to produce animal models of cholinergic hypofunction. However, previous studies have shown that intraocular administration of AF64A in rats not only reduced the number of cholinergic neurons in the retina, but also induced ultrastructural alterations in the microvasculature. The purpose of this study was to investigate whether AF64A has a direct cytotoxic effect on endothelial cells. As revealed by the measurement of lactate dehydrogenase activity in the culture medium, AF64A produced similar concentration-dependent cellular damage in cultures of bovine cerebral endothelial cells and in the human cholinergic neuroblastoma cell line SK-N-MC, but not in bovine cerebral smooth muscle cells. The toxic effect of AF64A correlated well with the affinity of the choline transport system detected in each cell type. The effect of the toxin on endothelial cells was mediated by its interaction with the endothelial cell choline carrier, as demonstrated by the following observations: (a) AF64A inhibited [3H]choline uptake in a concentration-dependent manner in both cultured and freshly isolated cerebral endothelial cells, and (b) the addition of choline or hemicholinium-3 to the culture medium prevented the AF64A-induced toxicity in endothelial cell cultures.
Collapse
Affiliation(s)
- C Gómez
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
5
|
Ferrer M, Galván R, Marín J, Balfagón G. Presynaptic muscarinic receptor subtypes involved in the inhibition of acetylcholine and noradrenaline release in bovine cerebral arteries. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1992; 345:619-26. [PMID: 1635587 DOI: 10.1007/bf00164574] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Experiments were performed in bovine cerebral arteries preincubated with [3H]-choline or [3H]-noradrenaline to analyze the presynaptic muscarinic receptors involved in inhibition of acetylcholine and noradrenaline release induced by electrical stimulation (4 Hz, 200 mA, 0.3 ms, 1 min). For this purpose, the actions of several muscarinic receptor antagonists on the 3H overflow and on the carbachol-induced inhibition of this overflow were assessed. The evoked [3H]-acetylcholine release and [3H]-noradrenaline release were markedly reduced by the presence of tetrodotoxin, Ca(2+)-free medium, and the inhibitor of both choline transport and choline acetyltransferase, AF64A. Chemical sympathetic denervation with 6-hydroxydopamine (6-OHDA) decreased the uptake of [3H]-noradrenaline, and AF64A reduced mainly the uptake of [3H]-choline, but also of [3H]-noradrenaline. Carbachol reduced the evoked [3H]-noradrenaline and [3H]-acetylcholine release; the IC50 values were 0.37 and 0.43 mumol/l, respectively. Atropine and 4-DAMP, but not AF-DX 116, methoctramine or pirenzepine, increased the evoked [3H]-acetylcholine release. However, these muscarinic antagonists failed to modify the evoked [3H]-noradrenaline release. Carbachol inhibited the release of both acetylcholine and noradrenaline. The inhibition was blocked by the antagonists. The rank orders of potency (based on plC50 values) were, in the case of [3H]-acetylcholine release, atropine greater than 4-DAMP greater than AF-DX 116 greater than or equal to pirenzepine greater than or equal to methoctramine, and, in the case of [3H]-noradrenaline release, atropine greater than 4-DAMP greater than AF-DX 116 greater than or equal to methoctramine greater than or equal to pirenzepine.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Ferrer
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
6
|
Jardon B, Bonaventure N, Scherrer E. Possible involvement of cholinergic and glycinergic amacrine cells in the inhibition exerted by the ON retinal channel on the OFF retinal channel. Eur J Pharmacol 1992; 210:201-7. [PMID: 1601057 DOI: 10.1016/0014-2999(92)90672-q] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the frog retina, the inhibition exerted by the ON channel on the OFF channel was evidenced by the increase in transient ganglion cell OFF responses, when the ON channel was blocked by 2-amino-4-phosphonobutyrate (APB). Intraocular administration of the neurotoxic choline analog ethylcholine mustard arizidinium ion (ECMA) also provoked an increase in the number of spikes of transient ganglion cell OFF responses, without suppressing the ON responses. APB, when administrated after ECMA, abolished the ON responses, but did not modify the OFF responses already increased by ECMA. Neurons located in the inner part of the inner nuclear layer were histologically altered by the toxin, and choline acetyltransferase activity was significantly depressed in ECMA-treated retinas. A double immunostaining experiment showed that amacrine cells containing glycine bear muscarinic binding sites. These results confirm the participation of cholinergic neurons in the inhibition exerted by the ON retinal channel on the OFF retinal channel, and suggest the involvement of a cholinergic/glycinergic loop of amacrine cells in this mechanism.
Collapse
Affiliation(s)
- B Jardon
- Laboratoire de Neurophysiologie et Biologie des Comportements, Centre de Neurochimie, Strasbourg, France
| | | | | |
Collapse
|
7
|
Morley BJ, Spangler KM, Schneider BL, Javel E. Selective degeneration of a putative cholinergic pathway in the chinchilla cochlea following infusion with ethylcholine aziridinium ion. Brain Res 1991; 544:94-100. [PMID: 1855140 DOI: 10.1016/0006-8993(91)90889-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ethylcholine aziridinium ion (AF64A) diluted in artificial perilymph, or artificial perilymph alone was infused into the cochlea of chinchillas. After a survival time of 7 days, the cochleas were fixed with aldehydes, post-fixed in osmium and embedded in epoxy resin for light and electron microscopy. The ultrastructure of the cochleas infused with artificial perilymph was normal. Infusion of 1 microM AF64A resulted in massive degeneration of the axons of the lateral efferent system, a putative cholinergic pathway that originates in the brainstem and terminates on dendrites of the spiral ganglion innervating cochlear inner hair cells. The axons and terminals of a second putative cholinergic pathway, the medial efferent system which terminates on the outer hair cells, were normal. Infusion of AF64A in a concentration of 10 microM resulted in significant pathology of cochlear and supporting cells as well as the loss of efferent terminals at both inner and outer hair cell regions. The results suggest that AF64A is a selective neurotoxin when used under low-dosage conditions, and that certain pathways may be more susceptible to the effects of AF64A than others. One interpretation of these findings is that lateral efferent axons may have a higher rate of high-affinity choline uptake than terminals of the medial efferent axons.
Collapse
Affiliation(s)
- B J Morley
- Research Division, Boys Town National Research Hospital, Omaha, NE 68131
| | | | | | | |
Collapse
|
8
|
Gómez-Ramos P, Galea E, Estrada C. Neuronal and microvascular alterations induced by the cholinergic toxin AF64A in the rat retina. Brain Res 1990; 520:151-8. [PMID: 2207627 DOI: 10.1016/0006-8993(90)91700-q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The choline analogue ethylcholine mustard aziridinium ion (AF64A) produces both neuronal and non-neuronal alterations in the rat retina. The possible involvement of the retinal capillaries in the origin of the apparently non-specific lesions has been investigated. Two hours after a single intraocular injection of 5 nmol AF64A, ultrastructural alterations were observed in neurons of the inner nuclear layer and the ganglion cell layer, where cholinergic cells are located. One week later, the number of cholinergic neurons, identified by choline acetyltransferase immunohistochemistry, was decreased to 65% of control, the neurons located in the inner nuclear layer being more sensitive than those in the ganglion cell layer. The same dose of AF64A also induced ultrastructural changes in retinal capillaries, which showed a significant increase in the number of pinocytotic vesicles and microvilli in the endothelial cells, 2-5 h after the toxin administration. One day later, arterioles and capillaries presented contracted profiles and the lumen was occasionally lost. The sensitivity of endothelial cells to the toxic effects of AF64A may be explained by the presence in the cerebral endothelium of a choline transport mechanism with an affinity close to that of cerebral synaptosomes. In vitro, both neuronal and endothelial choline uptake systems were equally sensitive to the toxin inhibitory effect. The early and severe vascular alterations induced in the retinal microvessels by AF64A may produce changes in blood perfusion and capillary permeability that could account for the apparently non-specific histological damage.
Collapse
Affiliation(s)
- P Gómez-Ramos
- Departamento de Morfología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
9
|
Morley BJ, Garner LL. AF64A depletes hippocampal high-affinity choline uptake but does not alter the density of alpha-bungarotoxin binding sites or modify the effect of exogenous choline. Brain Res 1990; 519:1-5. [PMID: 2397397 DOI: 10.1016/0006-8993(90)90053-e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sodium-dependent, high-affinity choline uptake (HACU) and the density of alpha-bungarotoxin (BuTX) receptor-binding sites were measured in the hippocampus following the intraventricular infusion of ethylcholine aziridinium ion (AF64A), a neurotoxin that competes with choline at high-affinity choline transport sites and may result in the degeneration of cholinergic axons. Eight days after the infusion of AF64A into the lateral ventricles (2.5 nmol/side), HACU was depleted by 60% in the hippocampus of experimental animals in comparison with controls, but the density of BuTX-binding sites was not altered. The administration of 15 mg/ml of choline chloride in the drinking water increased the density of BuTX-binding sites, as previously reported by this laboratory. The administration of AF64A did not prevent the effect of exogenous choline on the density of binding sites, nor did choline treatment alter the effect of AF64A on HACU. These data indicate that the density of BuTX-binding sites in the hippocampus is not altered following a substantial decrease in HACU and presumed degeneration of cholinergic axons. Since the effect of exogenous choline was not prevented by AF64A treatment, the data are interpreted to support the hypothesis that the increase in the density of BuTX-binding sites following dietary choline supplementation is attributable to a direct effect of choline on receptor sites.
Collapse
Affiliation(s)
- B J Morley
- Research Division, Boys Town National Institute for Communication Disorders in Children, Omaha, NE 68131
| | | |
Collapse
|
10
|
Estrada C, Bready J, Berliner J, Cancilla PA. Choline uptake by cerebral capillary endothelial cells in culture. J Neurochem 1990; 54:1467-73. [PMID: 2324734 DOI: 10.1111/j.1471-4159.1990.tb01193.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A passage of choline from blood to brain and vice versa has been demonstrated in vivo. Because of the presence of the blood-brain barrier, such passage takes place necessarily through endothelial cells. To get a better understanding of this phenomenon, the choline transport properties of cerebral capillary endothelial cells have been studied in vitro. Bovine endothelial cells in culture were able to incorporate [3H]choline by a carrier-mediated mechanism. Nonlinear regression analysis of the uptake curves suggested the presence of two transport components in cells preincubated in the absence of choline. One component showed a Km of 7.59 +/- 0.8 microM and a maximum capacity of 142.7 +/- 9.4 pmol/2 min/mg of protein, and the other one was not saturable within the concentration range used (1-100 microM). When cells were preincubated in the presence of choline, a single saturable component was observed with a Km of 18.5 +/- 0.6 microM and a maximum capacity of 452.4 +/- 42 pmol/2 min/mg of protein. [3H]Choline uptake by endothelial cells was temperature dependent and was inhibited by the choline analogs hemicholinium-3, deanol, and AF64A. The presence of ouabain or 2,4-dinitrophenol did not affect the [3H]choline transport capacity of endothelial cells. Replacement of sodium by lithium and cell depolarization by potassium partially inhibited choline uptake. When cells had been preincubated without choline, recently transported [3H]choline was readily phosphorylated and incorporated into cytidine-5'-diphosphocholine and phospholipids; however, under steady-state conditions most (63%) accumulated [3H]choline was not metabolized within 1 h.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Estrada
- Department of Pathology, UCLA School of Medicine
| | | | | | | |
Collapse
|
11
|
Affiliation(s)
- I Hanin
- Department of Pharmacology and Experimental Therapeutics, Loyola University of Chicago School of Medicine, Maywood, IL 60153
| |
Collapse
|
12
|
Morley BJ, Murrin LC. AF64 depletes hypothalamic high-affinity choline uptake and disrupts the circadian rhythm of locomotor activity without altering the density of nicotinic acetylcholine receptors. Brain Res 1989; 504:238-46. [PMID: 2598026 DOI: 10.1016/0006-8993(89)91363-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ethylcholine aziridinium ion (AF64) was synthesized from acetylethylcholine mustard hydrochloride and 5 nmol was infused into the third ventricle of rats. Seven days after AF64 treatment, sodium dependent high-affinity choline (HACU) uptake was decreased by 54% in the hypothalamus. The density of hypothalamic (-)-[3H]nicotine binding sites and [alpha-125I]bungarotoxin sites in AF64-treated animals did not differ significantly from controls. A second experiment was performed to elucidate the effect of AF64 treatment on HACU and determine the effect of AF64 on entrained circadian rhythms. Animals were infused with artificial CSF or 5 nmol AF64. Locomotor activity and body temperature were recorded for 3 weeks before and 3 weeks after treatment. Ten of 14 AF64-treated animals showed a decrease in the ratio of dark cycle:light cycle locomotor activity. The decrease in dark-cycle activity was correlated with a disruption of a predominant circadian rhythm. The circadian rhythm (CR) of core body temperature was disrupted only transiently, but the CR of locomotor activity remained disrupted for the duration of the experiment in several AF64-treated animals. HACU was decreased by 48% in animals with disrupted rhythms in comparison with controls but was not significantly decreased in AF64-treated animals with normal dark-cycle activity and circadian activity. These data suggest that the AF64-treated animal may be a good model for studying the role of acetylcholine in maintaining the integrity of certain circadian rhythms.
Collapse
Affiliation(s)
- B J Morley
- Research Division, Boys Town National Institute for Communication Disorders in Children, Omaha, NE 68131
| | | |
Collapse
|