1
|
Dawkins R, Keller SL, Sewell WF. Pharmacology of acetylcholine-mediated cell signaling in the lateral line organ following efferent stimulation. J Neurophysiol 2005; 93:2541-51. [PMID: 15615825 PMCID: PMC2001307 DOI: 10.1152/jn.01283.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholinergic efferent fibers modify hair cell responses to mechanical stimulation. It is hypothesized that calcium entering the hair cell through a nicotinic receptor activates a small-conductance (SK), calcium-activated potassium channel to hyperpolarize the hair cell. The calcium signal may be amplified by calcium-induced calcium release from the synaptic cisternae. Pharmacological tests of these ideas in the intact cochlea have been technically difficult because of the complex and fragile structure of the mammalian inner ear. We turned to the Xenopus laevis lateral line organ, whose simplicity and accessibility make it a model for understanding hair cell organ function in a relatively intact system. Drugs were applied to the inner surface of the skin while monitoring the effects of efferent stimulation on afferent fiber discharge rate. Efferent effects were blocked by antagonists of SK channels including apamin (EC50 = 0.5 microM) and dequalinium (EC50 = 12 microM). The effect of apamin was not enhanced by co-administration of phenylmethylsulfonyl fluoride, a proteolysis inhibitor. Efferent effects were attenuated by ryanodine, an agent that can interfere with calcium-induced calcium release, although relatively high (mM) concentrations of ryanodine were required. Fluorescent cationic styryl dyes, 4-di-2-asp and fm 1-43, blocked efferent effects, although it was not possible to observe specific entry of the dye into the base of hair cells. These pharmacological findings in the Xenopus lateral line organ support the hypothesis that effects of efferent stimulation are mediated by calcium entry through the nicotinic receptor via activation of SK channels and suggest the generality of this mechanism in meditating cholinergic efferent effects.
Collapse
Affiliation(s)
- Rosie Dawkins
- Eaton-Peabody Lab., Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114, USA
| | | | | |
Collapse
|
2
|
Keefer EW, Gramowski A, Gross GW. NMDA receptor-dependent periodic oscillations in cultured spinal cord networks. J Neurophysiol 2001; 86:3030-42. [PMID: 11731558 DOI: 10.1152/jn.2001.86.6.3030] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cultured spinal cord networks grown on microelectrode arrays display complex patterns of spontaneous burst and spike activity. During disinhibition with bicuculline and strychnine, synchronized burst patterns routinely emerge. However, the variability of both intra- and interculture burst periods and durations are typically large under these conditions. As a further step in simplification of synaptic interactions, we blocked excitatory AMPA synapses with 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzoquinoxaline-7-sulphonamide (NBQX), resulting in network activity mediated through the N-methyl-D-aspartate (NMDA) receptor (NMDA(ONLY)). This activity was APV sensitive. The oscillation under NMDA(ONLY) conditions at 37 degrees C was characterized by a period of 2.9 +/- 0.3 s (16 separate cultures). More than 98% of all neurons recorded participated in this highly rhythmic activity. The temporal coefficients of variation, reflecting the rhythmic nature of the oscillation, were 3.7, 4.7, and 4.9% for burst rate, burst duration, and interburst interval, respectively [mean coefficients of variation (CVs) for 16 cultures]. The oscillation persisted for at least 12 h without change (maximum observation time). Once established, it was not perturbed by agents that block mGlu receptors, GABA(B) receptors, cholinergic receptors, purinergic receptors, tachykinin receptors, serotonin (5-HT) receptors, dopamine receptors, electrical synapses, burst afterhyperpolarization, NMDA receptor desensitization, or the hyperpolarization-activated current. However, the oscillation was destroyed by bath application of NMDA (20-50 microM). These results suggest a presynaptic mechanism underlying this periodic rhythm that is solely dependent on the NMDA synapse. When the AMPA/kainate synapse was the sole driving force (n = 6), the resulting burst patterns showed much higher variability and did not develop the highly periodic, synchronized nature of the NMDA(ONLY) activity. Network size or age did not appear to influence the reliability of expression of the NMDA(ONLY) activity pattern. For this reason, we suggest that the NMDA(ONLY) condition unmasks a fundamental rhythmogenic mechanism of possible functional importance during periods of NMDA receptor-dominated activity, such as embryonic and early postnatal development.
Collapse
Affiliation(s)
- E W Keefer
- The Neurosciences Institute, San Diego, California 92121, USA.
| | | | | |
Collapse
|
3
|
Bailey GP, Sewell WF. Contribution of glutamate receptors to spontaneous and stimulus-evoked discharge in afferent fibers innervating hair cells of the Xenopus lateral line organ. Hear Res 2000; 144:8-20. [PMID: 10831861 DOI: 10.1016/s0378-5955(00)00023-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The relative contributions of NMDA (N-methyl-D-aspartate) and non-NMDA glutamate receptors to spontaneous and stimulus-evoked transmission at the hair cell/afferent fiber synapse were determined in the Xenopus laevis lateral line organ. The non-NMDA receptor antagonist, CNQX (6-cyano-7-nitroquinoxaline-2,3-dione), reversibly reduced both spontaneous and stimulus-evoked discharge rate with an EC(50) of 0.5 microM. NMDA receptor antagonism with the combination of chlorokynurenic acid (100 microM) and elevated magnesium (1.1 mM), or elevated magnesium alone, blocked responses to NMDA without significantly altering spontaneous or stimulus-evoked discharge rate or the responses to kainate. All non-NMDA receptor agonists tested increased discharge rate at low concentrations and, at higher concentrations, increased, then suppressed discharge rate. The EC(50)s were: domoic acid (2.4 mcM)<quisqualic acid (6 mcM)<kainic acid (18 mcM)<AMPA (82 mcM)<<glutamate (1150 mcM). NMDA and ibotenic acid also produced an increase in discharge followed by a suppression, but the suppressive phase of the response predominated and maximum increases in discharge rates were low compared to effects of the non-NMDA agonists. The EC(50)s were: NMDA (148 mcM)<ibotenic acid (463 mcM). The EC(50) for the suppression of afferent discharge that followed the initial excitatory effect was similar to the EC(50) for excitation. Perfusion with active concentrations of kainate, AMPA, or NMDA did not alter the threshold for electrical stimulation of these nerve fibers. We conclude that most of the postsynaptic signal normally seen in afferent fibers is mediated by non-NMDA receptors.
Collapse
Affiliation(s)
- G P Bailey
- Eaton-Peabody Laboratory of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston 02114, USA
| | | |
Collapse
|
4
|
Guth PS, Holt JC, Perin P, Athas G, Garcia M, Puri A, Zucca G, Botta L, Valli P. The metabotropic glutamate receptors of the vestibular organs. Hear Res 1998; 125:154-62. [PMID: 9833969 DOI: 10.1016/s0378-5955(98)00145-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This research sought to test the presence and function of metabotropic excitatory amino acid receptors (mGluR) in the frog semicircular canal (SCC). The mGluR agonist +/- 1-aminocyclopentane-trans-1,3-dicarboxylate (ACPD) produced an increase in afferent firing rates of the ampullar nerve of the intact posterior canal. This increase was not due to a stimulation of cholinergic efferent terminals or the acetylcholine (ACh) receptor, since atropine, in concentrations which blocked the response to exogenous acetylcholine, did not affect the response to ACPD. Likewise, ACPD effects were not due to stimulation of postsynaptic NMDA receptors, since the NMDA antagonist D(-)-2-amino-5-phosphonopentanoate (AP-5) did not affect the response to ACPD, reinforcing the reported selectivity of ACPD for mGluRs. When the SCC was superfused with artificial perilymph known to inhibit hair cell transmitter release (i.e. low Ca-high Mg), ACPD failed to increase afferent firing. This suggests that the receptor activated by ACPD is located on the hair cell. Pharmacological evidence suggested that the mGluRs involved in afferent facilitation belong to Group I (i.e. subtypes 1 and 5). In fact, the Group III agonist AP-4 had no effect, and the ACPD facilitatory effect was blocked by the Group I mGluR antagonists (S)-4-carboxyphenylglycine (CPG) and (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA). Additional pharmacological evidence supported the presence of Group I mGluRs. Interestingly, the mGluR antagonists, AIDA and 4CPG, by themselves did not affect the resting firing rates of ampullar afferents. This may suggest that the mGluRs are not involved in resting activity but perhaps only in evoked activity (as suggested in Guth et al. (1991) Hear. Res. 56, 69-78). In addition, the mRNA for the mGluR1 has been detected in hair cells of both SCC, utricle, and saccule. In summary, the evidence points to an mGluR localized to the hair cell (i.e. an autoreceptor) which may be activated to produce a positive feedback augmentation of evoked but not resting transmitter release and thus affect afferent activity.
Collapse
Affiliation(s)
- P S Guth
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112-2699, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Norris CH, Miller AJ, Perin P, Holt JC, Guth PS. Mechanisms and effects of transepithelial polarization in the isolated semicircular canal. Hear Res 1998; 123:31-40. [PMID: 9745953 DOI: 10.1016/s0378-5955(98)00096-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Previous studies have shown that galvanic stimulation of semicircular canal organs can modulate their afferent discharge. However, it has not been resolved whether this modulation derived from direct stimulation of hair cells, afferent nerve fibers, some combination of the two, or some as yet unknown path. This problem is addressed in the present study. Experiments were designed first to determine the gross current path necessary for the DC current to modulate afferent firing. These led to the conclusion that the current path had to flow between endolymph and perilymph across the neuroepithelium. Next, the various components in this established path were considered: the afferents, the hair cells, between the hair cells, or some combination of the three. These experiments led to the conclusion that the current pathway was across the hair cells causing transmitter release and thus affecting afferent activity.
Collapse
Affiliation(s)
- C H Norris
- Department of Otolaryngology-Head and Neck Surgery, Tulane University Medical School, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
6
|
Cochran SL. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog. Neuroscience 1995; 68:1147-65. [PMID: 8544989 DOI: 10.1016/0306-4522(95)00200-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the vertebrate neuromuscular junction. The major differences between these two synapses are the neurotransmitters and the higher resting release rate and higher sensitivity of release to increased K+ concentrations of the hair cells over that of motor nerve terminals. These differences reflect the functional roles of the two synapses: the motor nerve terminal response in an all-or-nothing signal consequent from action potential invasion, while the hair cell releases transmitter in a graded fashion, proportionate to the extent of stereocilial deflection. Despite these differences between the two junctions, the similar actions of these elemental cations upon synaptic function at each implies that these ions may participate similarly in the operations of other synapses, independent of the neurotransmitter type.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S L Cochran
- Department of Otolaryngology, University of Texas Medical Branch at Galveston 77555-1063, USA
| |
Collapse
|
7
|
Aubert A, Norris CH, Guth PS. Influence of ATP and ATP agonists on the physiology of the isolated semicircular canal of the frog (Rana pipiens). Neuroscience 1994; 62:963-74. [PMID: 7870316 DOI: 10.1016/0306-4522(94)90487-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the present study, the influence of extracellular ATP and ATP agonists in the physiology of the vestibular organs was examined, using the in vitro model of the isolated semicircular canal of the frog (Rana pipiens). The firing activity of the afferent nerve, the d.c. nerve potential and the transepithelial potential were measured in the absence and presence of mechanical stimulation of the sensory epithelium. Administration of ATP into the perilymphatic compartment, from 10(-12) to 10(-3) M, increased the firing rate of the afferent fibers recorded in the absence of mechanical stimulation. Recordings of the d.c. nerve potential indicated that the afferent fibers were hyperpolarized. The presence of the purine also modified the transepithelial potential. During mechanical stimulation of the sensory epithelium, both the evoked afferent firing and the evoked variation of the d.c. nerve potential were reduced in the presence of ATP. However, ATP did not effect the evoked modulation of the transepithelial potential, evoked by the mechanical stimulation. Administration of the P2x purinoceptor agonists, alpha, beta-methylene-ATP and beta, gamma-methylene-ATP, at concentrations between 10(-12) and 10(-3) M, did not significantly modify the different bioelectrical activities investigated. In contrast, 2-methylthio-ATP, a P2y purinoceptor agonist, more potent and efficacious than ATP in its effect on the spontaneous firing. Concurrently, no modification of the d.c. nerve potential, the transepithelial potential and their variation during mechanical stimulation was observed. In opposition to the ATP effect, the total amplitude of the evoked firing was increased in the presence of 2-methylthio-ATP. These data suggest that extracellular ATP, present in the perilymphatic compartment, may act as a neuromodulator in the vestibular physiology. The effects of the purine appear to be mediated by the activation of a P2y subtype of purinoceptor. The absence of an effect of ATP and 2-methylthio-ATP on the evoked variation of the transepithelial potential suggest that the purine did not affect the processes responsible for the generation of the receptor potential but more likely modified the mechanisms involved in the release of the neurotransmitter from the hair cells and/or acted on the afferent endings.
Collapse
Affiliation(s)
- A Aubert
- Department of Otolaryngology, Head and Neck Surgery, Tulane University, School of Medicine, New Orleans, LA 70112-2699
| | | | | |
Collapse
|
8
|
Aubert A, Bernard C, Vaudry H. Effects of modifications of extracellular and intracellular calcium concentrations on the bioelectrical activity of the isolated frog semicircular canal. Brain Res 1993; 607:301-6. [PMID: 8097666 DOI: 10.1016/0006-8993(93)91520-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the inner ear, calcium appears to play a major role in different processes including mechanoelectrical transduction, adaptation during prolonged stimulation and electrical resonance. The aim of the present study was to investigate the effect of an increase of the cytosolic calcium content and a reduction of the perilymphatic concentration of calcium, on the bioelectrical activity of the isolated frog semicircular canal. Under resting conditions, the spontaneous activity of the afferent fibers and the difference of potential between the endolymphatic and perilymphatic compartments, called endolymphatic potential, were recorded. When the sensory epithelium was mechanically stimulated three additional parameters were investigated: the variations of the endolymphatic potential (ampullar direct current), the variations of the ampullar nerve potential (nerve direct current) and the frequency of the evoked afferent spikes. Increase of the intracellular calcium concentration by administration of the calcium ionophore A23187 (3 x 10(-6) M, 20 min) into the perilymphatic compartment, caused a biphasic effect on the spontaneous activity of the ampullar nerve which increased rapidly, reaching a maximum within 15 min, and then gradually declined to stabilize at 74% of the control 1 h after withdrawal of A23187. A23187 did not induce any modifications of the endolymphatic potential, the ampullar direct current or the frequency of the evoked afferent spikes. In contrast, A23187 induced a significant reduction of the nerve direct current which decreased by 31% of the control 1 h after withdrawal of the ionophore. Gradual reduction of the perilymphatic concentration of calcium (from 2 to 1 mM) induced a dose-dependent increase of the spontaneous activity of the ampullar nerve and the frequency of the evoked afferent spikes. Reduction of the perilymphatic calcium concentration from 1.6 to 1.2 mM caused a transient increase of the endolymphatic potential, while 1 mM Ca2+ induced a decrease to 88% of the control. The nerve direct current slightly increased for calcium concentrations ranging from 1.8 to 1.4 mM and decreased in the presence of 1.2 mM CaCl2. These data suggest that an increase of calcium into the cytosol induces an alteration of the mechanisms responsible for the spontaneous release of the afferent neurotransmitter and the electrogenic spreading of the postsynaptic potentials. In contrast, an excess of calcium does not impair the mechanisms involved in the generation of the action potentials. Our results also suggest that reduction of the perilymphatic calcium concentration may lead to modifications of the physical and electrical properties of the cell membranes of the labyrinthine epithelium and/or the ampullar afferent fibers.
Collapse
Affiliation(s)
- A Aubert
- European Institute for Peptide Research, CNRS URA 650, UA INSERM, University of Rouen, Mont-Saint-Aignan, France
| | | | | |
Collapse
|
9
|
Abstract
Previous results demonstrated that nimodipine, an L-type of Ca2+ channel antagonist, abolished the negative summating potential (SP) recorded from anesthetized guinea pigs (Bobbin et al., 1990), suggesting that Ca2+ is involved in generation of the negative SP. Therefore we examined the effect of changing concentrations of perilymph Ca2+ on this cochlear potential. Perilymph spaces of guinea pig cochleae were perfused with artificial perilymph solutions containing zero mM Ca2+, zero mM Ca2+ with 2 mM EGTA, 30 mM Mg2+ and increasing levels of Ca2+ (2, 4, 8, 16 mM) at a rate of 2.5 microliters/min for 10 min. Immediately after each period of perfusion the compound action potential of the auditory nerve (CAP), cochlear microphonics (CM) and the negative SP evoked by 10 kHz tone bursts of varying intensities were recorded from a wire inserted in the basal turn scala vestibuli. Decreasing the level of Ca2+ decreased the magnitude of the negative SP, whereas increasing the level of Ca2+ progressively increased the magnitude of the negative SP. Mg2+ (30 mM) suppressed the CAP to the same extent as zero mM Ca2+ with 2 mM EGTA, but only slightly increased the magnitude of the negative SP. These results support the hypothesis that Ca2+ and L-type Ca2+ channels are involved in the function of the hair cells and the generation of the negative SP. Mg2+ appears to be a selective antagonist of the Ca2+ channel involved in transmitter release.
Collapse
Affiliation(s)
- R P Bobbin
- Louisiana State University Medical School, Kresge Hearing Research Laboratory of the South, Department of Otorhinolaryngology and Biocommunication, New Orleans 70112-2234
| | | | | |
Collapse
|
10
|
Abstract
Transduction by the inner hair cells is hypothesized to be modulated through a change in the length of the outer hair cells (OHC). It has been suggested that the slow change occurring in OHC length is mediated by an actin-myosin system requiring Ca2+ and ATP. This study was designed to systematically examine the effects of lowering extracellular Ca2+ on OHC length. OHCs were isolated from guinea pig cochleae, mechanically dissociated and dispersed, and placed in a Hank's balanced salt solution (HBS). Exposing the cells to a Ca(2+)-free HBS supplemented with 200 microns EDTA produced a shortening in OHC length with a concomitant increase in cell width. The shortening was reversed successfully by bathing the cells in 8 mM Ca2+. We speculate that the decrease in length due to lowering extracellular Ca2+ may be caused by a relaxation of a circumferential contractile mechanism which is thought to cause elongation of intact OHCs (Slepecky, 1989; Dulon et al., 1990).
Collapse
Affiliation(s)
- A M Pou
- Kresge Hearing Research Laboratoy of the South, Department of Otorhinolaryngology and Biocommunication, Louisiana State University Medical Center, New Orleans 70112-2234
| | | | | | | |
Collapse
|