1
|
Grabiec U, Hohmann T, Hammer N, Dehghani F. Organotypic Hippocampal Slice Cultures As a Model to Study Neuroprotection and Invasiveness of Tumor Cells. J Vis Exp 2017. [PMID: 28872113 DOI: 10.3791/55359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In organotypic hippocampal slice cultures (OHSC), the morphological and functional characteristics of both neurons and glial cells are well preserved. This model is suitable for addressing different research questions that involve studies on neuroprotection, electrophysiological experiments on neurons, neuronal networks or tumor invasion. The hippocampal architecture and neuronal activity in multisynaptic circuits are well conserved in OHSC, even though the slicing procedure itself initially lesions and leads to formation of a glial scar. The scar formation alters presumably the mechanical properties and diffusive behavior of small molecules, etc. Slices allow the monitoring of time dependent processes after brain injury without animal surgery, and studies on interactions between various brain-derived cell types, namely astrocytes, microglia and neurons under both physiological and pathological conditions. An ambivalent aspect of this model is the absence of blood flow and immune blood cells. During the progression of the neuronal injury, migrating immune cells from the blood play an important role. As those cells are missing in slices, the intrinsic processes in the culture may be observed without external interference. Moreover, in OHSC the composition of the medium-external environment is precisely controlled. A further advantage of this method is the lower number of sacrificed animals compared to standard preparations. Several OHSC can be obtained from one animal making simultaneous studies with multiple treatments in one animal possible. For these reasons, OHSC are well suited to analyze the effects of new protective therapeutics after tissue damage or during tumor invasion. The protocol presented here describes a preparation method of OHSC that allows generating highly reproducible, well preserved slices that can be used for a variety of experimental research, like neuroprotection or tumor invasion studies.
Collapse
Affiliation(s)
- Urszula Grabiec
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg;
| | - Tim Hohmann
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg
| | | | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg
| |
Collapse
|
2
|
Kim H, Kim E, Park M, Lee E, Namkoong K. Organotypic hippocampal slice culture from the adult mouse brain: a versatile tool for translational neuropsychopharmacology. Prog Neuropsychopharmacol Biol Psychiatry 2013; 41:36-43. [PMID: 23159795 DOI: 10.1016/j.pnpbp.2012.11.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/05/2012] [Accepted: 11/07/2012] [Indexed: 01/09/2023]
Abstract
One of the most significant barriers towards translational neuropsychiatry would be an unavailability of living brain tissues. Although organotypic brain tissue culture could be a useful alternative enabling observation of temporal changes induced by various drugs in living brain tissues, a proper method to establish a stable organotypic brain slice culture system using adult (rather than neonatal) hippocampus has been still elusive. In this study, we evaluated our simple method using the serum-free culture medium for successful adult organotypic hippocampal slice culture. Several tens of hippocampal slices from a single adult mouse (3-5 months old) were cultured in serum-free versus serum-containing conventional culture medium for 30 days and underwent various experiments to validate the effects of the existence of serum in the culture medium. Neither the excessive regression of neuronal viability nor metabolic deficiency was observed in the serum-free medium culture in contrast to the serum-containing medium culture. Despite such viability, newly generated immature neurons were scarcely detected in the serum-free culture, suggesting that the original neurons in the brain slice persist rather than being replaced by neurogenesis. Key structural features of in vivo neural tissue constituting astrocytes, neural processes, and pre- and post-synapses were also well preserved in the serum-free culture. In conclusion, using the serum-free culture medium, the adult hippocampal slice culture system will serve as a promising ex vivo tool for various fields of neuroscience, especially for studies on aging-related neuropsychiatric disorders or for high throughput screening of potential agents working against such disorders.
Collapse
Affiliation(s)
- Hyunjeong Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
3
|
Mewes A, Franke H, Singer D. Organotypic brain slice cultures of adult transgenic P301S mice--a model for tauopathy studies. PLoS One 2012; 7:e45017. [PMID: 22984603 PMCID: PMC3439393 DOI: 10.1371/journal.pone.0045017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/14/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Organotypic brain slice cultures represent an excellent compromise between single cell cultures and complete animal studies, in this way replacing and reducing the number of animal experiments. Organotypic brain slices are widely applied to model neuronal development and regeneration as well as neuronal pathology concerning stroke, epilepsy and Alzheimer's disease (AD). AD is characterized by two protein alterations, namely tau hyperphosphorylation and excessive amyloid β deposition, both causing microglia and astrocyte activation. Deposits of hyperphosphorylated tau, called neurofibrillary tangles (NFTs), surrounded by activated glia are modeled in transgenic mice, e.g. the tauopathy model P301S. METHODOLOGY/PRINCIPAL FINDINGS In this study we explore the benefits and limitations of organotypic brain slice cultures made of mature adult transgenic mice as a potential model system for the multifactorial phenotype of AD. First, neonatal (P1) and adult organotypic brain slice cultures from 7- to 10-month-old transgenic P301S mice have been compared with regard to vitality, which was monitored with the lactate dehydrogenase (LDH)- and the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays over 15 days. Neonatal slices displayed a constant high vitality level, while the vitality of adult slice cultures decreased significantly upon cultivation. Various preparation and cultivation conditions were tested to augment the vitality of adult slices and improvements were achieved with a reduced slice thickness, a mild hypothermic cultivation temperature and a cultivation CO(2) concentration of 5%. Furthermore, we present a substantial immunohistochemical characterization analyzing the morphology of neurons, astrocytes and microglia in comparison to neonatal tissue. CONCLUSION/SIGNIFICANCE Until now only adolescent animals with a maximum age of two months have been used to prepare organotypic brain slices. The current study provides evidence that adult organotypic brain slice cultures from 7- to 10-month-old mice independently of the transgenic modification undergo slow programmed cell death, caused by a dysfunction of the neuronal repair systems.
Collapse
Affiliation(s)
- Agneta Mewes
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig, Leipzig, Germany
| | - Heike Franke
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - David Singer
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
4
|
Su T, Paradiso B, Long YS, Liao WP, Simonato M. Evaluation of cell damage in organotypic hippocampal slice culture from adult mouse: a potential model system to study neuroprotection. Brain Res 2012; 1385:68-76. [PMID: 21303673 DOI: 10.1016/j.brainres.2011.01.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/04/2010] [Accepted: 01/31/2011] [Indexed: 12/20/2022]
Abstract
The use of organotypic hippocampal slice culture (OHSC) has become a powerful tool for studying cell damage in different neuropathological states, since it reproduces the basic morphological and functional properties of hippocampal neuronal network. However, the conventional OHSCs are established from postnatal animals rather than adult. Here we reevaluated the features of cell death in adult OHSC in detail and found potential utility for the study of neuroprotection. Organotypic culture of hippocampal slices from adult mice under conventional conditions led to a time-dependent and reproducible cell death. Around 6days in vitro (DIV), slices lost 50% of the cells, based on LDH release assessment. The cell death was greater than 90% after DIV 15. The cell loss was linearly correlated (r=0.944, P<0.01) with the time in culture. The electrophysiological responses to the stimulus in the cultured adult slices were accordingly reduced. The cell degeneration during adult OHSC might be utilized as a tool for studying neuroprotective effects in drug development. To illustrate this potential use, adult OHSCs were challenged with brain-derived neurotrophic factor (BDNF). We found that the continuous supplementation of 300ng/ml BDNF promoted cell survival of adult OHSC. Using immunohistochemistry and Western blot analyses of neuronal markers, we also demonstrated the pro-survival effects of BDNF on neurons in the adult OHSC system. It is suggested that OHSCs from adult mice might provide an alternative model system for neuronal degeneration, suitable for studying physiological factors and pharmacological compounds contributing to neuronal survival.
Collapse
Affiliation(s)
- Tao Su
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | | | | | | | | |
Collapse
|
5
|
Wilhelmi E, Schöder UH, Benabdallah A, Sieg F, Breder J, Reymann KG. Organotypic brain-slice cultures from adult rats: approaches for a prolonged culture time. Altern Lab Anim 2002; 30:275-83. [PMID: 12106005 DOI: 10.1177/026119290203000304] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Animal experiments are widely used in neurobiological and neuropharmacological research. Today, juvenile brain organotypic slice cultures have partially replaced in vivo experiments, but there is no adequate in vitro counterpart for the adult brain. The present study was aimed at the long-term culture of physiologically intact hippocampal slices from adult rats, by improving the conditions for preparation and culture, and the development of a new culture medium. A cerebrospinal fluid (CSF)-like medium was used, which was modified with a variety of supplements, including energy precursors, free-radical scavengers, and compounds known to inhibit neurotoxicity. The population spike amplitude (PSA) was used as a measure of viability, and amplitudes larger than 1mV indicated viable cultures. The addition of MK-801 during slice preparation improved PSA values during the first two days in vitro (DIV). Ascorbic acid and insulin prolonged the culture time up to DIV 4. FK-506 and vitamin E, alone or in combination, supported slice culture up to DIV 5. An increase in ATP, unless combined with vitamin E, and/or insulin, increased culture time up to DIV 6. Vitamins B(1), B(2), B(12) and D(2) had no effect. The modified CSF-like medium developed in this study permits the culture of adult hippocampal tissue for at least 6 days.
Collapse
Affiliation(s)
- Eckbert Wilhelmi
- Research Institute Applied Neurosciences gGmbH (FAN), Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Savas A, Warnke PC, Ginap T, Feuerstein TJ, Ostertag CB. The effects of continuous and single-dose radiation on choline uptake in organotypic tissue slice cultures of rabbit hippocampus. Neurol Res 2001; 23:669-75. [PMID: 11547941 DOI: 10.1179/016164101101199018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The objective of the present study was to determine the time-dependent course of choline uptake in mature organotypic slice cultures of rabbit hippocampal formation and to assess the effects of continuous and single high-dose irradiation on choline uptake in cultivated slices in vitro. Transverse slices of hippocampus were dynamically incubated in a cerebrospinal fluid-like culture medium for 72 h. To study the changes in choline uptake longitudinally, the slice cultures were processed with 0.1 microM [3H]-choline, and tritium accumulation was counted. Two different gamma irradiation sources (125I seeds and a clinical 60Co source) were used as representative models of interstitial radiosurgery and other radiosurgical techniques. A total dose of approximately 6000 cGy was delivered to the brain slices in one session or in a continuous, relatively low-dose rate fashion, and their effects on high-affinity choline uptake were examined. In another set of experiments with 125I, 5 microM hemicholinium-3 was used in choline uptake procedures as a competitive high-affinity choline uptake inhibitor. The results can be summarized as follows: (1) in the control group of the hippocampal tissue culture, there was a significant increase in tritium accumulation values from 0 to 48 h and a decrease thereafter; (2) continuous 125I irradiation caused a highly significant depression of the accumulation of tritium compared to that observed in the control group throughout its application for 72 h; (3) there was no significant change in the accumulation of tritium in the slices after single high-dose rate irradiation with a 60Co source; and (4) 5 microM hemicholinium significantly depressed the accumulation of tritium in both the control and the 125I-irradiated groups, and there was no longer a difference between 125I-irradiated and control groups when both groups were treated with hemicholinium. These results demonstrate that the delivery of continuous but relatively low-dose rate gamma irradiation is more efficacious than single high-dose external irradiation on high-affinity choline uptake in hippocampal nervous tissue. The results also indicate that continuous irradiation specifically affected the high-affinity energy-dependent choline uptake mechanism, whereas nonspecific choline uptake did not seem to be disturbed.
Collapse
Affiliation(s)
- A Savas
- Abteilung Stereotaktische Neurochirurgie, Neurochirurgische Klinik, Neurozentrum, Albert-Ludwigs-Universität Freiburg, Medizinische Fakultät, Germany.
| | | | | | | | | |
Collapse
|
7
|
Xiang Z, Hrabetova S, Moskowitz SI, Casaccia-Bonnefil P, Young SR, Nimmrich VC, Tiedge H, Einheber S, Karnup S, Bianchi R, Bergold PJ. Long-term maintenance of mature hippocampal slices in vitro. J Neurosci Methods 2000; 98:145-54. [PMID: 10880828 DOI: 10.1016/s0165-0270(00)00197-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cultures of primary neurons or thin brain slices are typically prepared from immature animals. We introduce a method to prepare hippocampal slice cultures from mature rats aged 20-30 days. Mature slice cultures retain hippocampal cytoarchitecture and synaptic connections up to 3 months in vitro. Spontaneous epileptiform activity is rarely observed suggesting long-term retention of normal neuronal excitability and of excitatory and inhibitory synaptic networks. Picrotoxin, a GABAergic Cl(-) channel antagonist, induced characteristic interictal-like bursts that originated in the CA3 region, but not in the CA1 region. These data suggest that mature slice cultures displayed long-term retention of GABAergic inhibitory synapses that effectively suppressed synchronized burst activity via recurrent excitatory synapses of CA3 pyramidal cells. Mature slice cultures lack the reactive synaptogenesis, spontaneous epileptiform activity, and short life span that limit the use of slice cultures isolated from immature rats. Mature slice cultures are anticipated to be a useful addition for the in vitro study of normal and pathological hippocampal function.
Collapse
Affiliation(s)
- Z Xiang
- Department of Physiology and Pharmacology, State University of New York-Downstate Medical Center, Box 29, 450 Clarkson Avenue, Brooklyn, New York 11203, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Berger R, Djuricic B, Jensen A, Hossmann KA, Paschen W. Ontogenetic differences in energy metabolism and inhibition of protein synthesis in hippocampal slices during in vitro ischemia and 24 h of recovery. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 91:281-91. [PMID: 8852380 DOI: 10.1016/0165-3806(95)00196-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study was designed to clarify whether ontogenetic differences in the vulnerability of the brain towards hypoxic-ischemic insults are only caused by the low cerebral energy demand of immature animals or whether there are additional mechanisms, such as protein synthesis (PSR), that may be involved in this phenomenon. We therefore measured tissue levels of adenylates and PSR in hippocampal slices from immature (E40) and mature (E60) guinea pigs fetuses and from adult guinea pigs during in vitro ischemia and 24 h of recovery using a recently modified method. Hippocampal slices were incubated in a temperature controlled flow-through chamber, gassed with 95% O2/5% CO2. In vitro ischemia was induced by transferring slices to a glucose-free artificial cerebrospinal fluid (aCSF) equilibrated with 95% N2/5% CO2. The duration of ischemia ranged from 10 to 40 min. Adenylates were measured by HPLC after extraction with perchloric acid. PSR was evaluated as the incorporation rate of [14C]leucine into proteins. Under control conditions, tissue levels in adenylates did not change, whereas PSR increased slightly in hippocampal slices from mature fetuses and adult animals during a 24-h control incubation period. In slices from immature fetuses ATP levels were only maintained for 2 h. During in vitro ischemia the decline in ATP, total adenylate pool, and adenylate energy charge was much slower in slices from immature fetuses than in slices from mature fetuses or adults. After in vitro ischemia, ATP and the total adenylate pool did not completely recover in mature fetuses and adults, whereas adenylate energy charge almost returned to control values independently of the developmental stage. Two hours after in vitro ischemia PSR was undisturbed in slices from immature fetuses, but severely inhibited in slices from mature fetuses and adults. With ongoing recovery, PSR in mature fetuses returned to control values, while in adults it was still inhibited even 24 h after in vitro ischemia. From these results we conclude that hippocampal slices prepared from mature guinea pig fetuses as well as from adult guinea pigs can be held metabolically stable during long-term incubation using a recently modified technique. However, in slices from immature fetuses a stable energy state could not be maintained for more than 2 h. We further conclude that postischemic disturbances in PSR closely reflect the ontogenetic changes in the vulnerability of the brain to ischemia and that low energy metabolism is certainly not the only cause of the increased vulnerability of the fetal brain to ischemia.
Collapse
Affiliation(s)
- R Berger
- Department of Experimental Neurology, Max-Planck Institute for Neurological Research, Cologne, Germany
| | | | | | | | | |
Collapse
|
9
|
Popov VA. Spontaneous potentiation of focal potentials of the CA1 field in long-surviving hippocampal slices of the rat in the absence of electrical stimulation. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1995; 25:33-41. [PMID: 7777143 DOI: 10.1007/bf02359247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The changes in the efficiency of the synaptic transmission in the Schaffer collaterals-field CA1 neurons pathways following prolonged deprivation of afferentation, the cessation (up to four hours) of stimulation of the tested input with brief series of tests every hour (the control afferent inputs, were stimulated throughout the entire experiment at a frequency of 0.05/sec), were investigated in surviving slices of the hippocampus of rats. The evoked focal potentials, population spikes (PS) and population excitatory postsynaptic potentials (pEPSP) were recorded. The prolonged cessation of stimulation led to a significant (p < 0.001) increase in the amplitude of the PS (up to 208% in relation to the baseline level). This phenomenon of potentiation was specific in relation to input and exhibited the properties of "E-S potentiation". A hypothesis is advanced regarding the association of mechanisms responsible for the development of "deprivational" potentiation and of the late phase of long-term posttetanic potentiation.
Collapse
Affiliation(s)
- V A Popov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow
| |
Collapse
|
10
|
Djuricic B, Berger R, Paschen W. Protein synthesis and energy metabolism in hippocampal slices during extended (24 hours) recovery following different periods of ischemia. Metab Brain Dis 1994; 9:377-89. [PMID: 7898404 DOI: 10.1007/bf02098884] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hippocampal slices were successfully maintained for 24 hours in vitro in a flow-through chamber by using a modified artificial CSF (amino acids included). Measurement of energy metabolism parameters (adenine nucleotides) and the slice response to KCl-induced depolarization (release of GABA and aspartate) indicated that hippocampal slices were metabolically stable for at least 24 hours. The preparation was used to study recovery of protein synthesis after different periods of in vitro ischemia (5, 10, or 15 min). Protein synthesis inhibition was only partly reversed after 15 min of ischemia, but fully reversible after 5- or 10-min ischemia at 24 hours of recovery. Furthermore, the model was used to study a possible role of glutamate in postischemic inhibition of protein synthesis. Glutamate receptor agonists (glutamate or quinolinic acid) or antagonist (kynurenic acid) were applied during ischemia. Neither treatment affected the late (24 hours) outcome of ischemia, arguing against the critical role of glutamate in ischemic cell damage. The present approach allows use of the hippocampal slice preparation in the study of delayed effects of ischemia of different duration.
Collapse
Affiliation(s)
- B Djuricic
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | | | |
Collapse
|