1
|
Parittotokkaporn S, Dravid A, Raos BJ, Rosset S, Svirskis D, O'Carroll SJ. Stretchable microchannel-on-a-chip: A simple model for evaluating the effects of uniaxial strain on neuronal injury. J Neurosci Methods 2021; 362:109302. [PMID: 34343573 DOI: 10.1016/j.jneumeth.2021.109302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Axonal injury is a major component of traumatic spinal cord injury (SCI), associated with rapid deformation of spinal tissue and axonal projections. In vitro models enable us to examine these effects and screen potential therapies in a controlled, reproducible manner. NEW METHOD A customized, stretchable microchannel system was developed using polydimethylsiloxane microchannels. Cortical and spinal embryonic rat neurons were cultured within the microchannel structures, allowing a uniaxial strain to be applied to isolated axonal processes. Global strains of up to 52% were applied to the stretchable microchannel-on-a-chip platform leading to local strains of up to 12% being experienced by axons isolated in the microchannels. RESULTS Individual axons exposed to local strains between 3.2% and 8.7% developed beading within 30-minutes of injury. At higher local strains of 9.8% and 12% individual axons ruptured within 30-minutes of injury. Axon bundles, or fascicles, were more resistant to rupture at each strain level, compared to individual axons. At lower local strain of 3.2%, axon bundles inside microchannels and neuronal cells near entrances of them progressively swelled and degenerated over a period of 7 days after injury. COMPARISON WITH EXISTING METHOD(S) This method is simple, reliable and reproducible with good control and measurement of injury tolerance and morphological deformations using standard laboratory equipment. By measuring local strains, we observed that axonal injuries occur at a lower strain magnitude and a lower strain rate than previous methods reporting global strains, which may not accurately reflect the true axonal strain. CONCLUSIONS We describe a novel stretchable microchannel-on-a-chip platform to study the effect of varying local strain on morphological characteristics of neuronal injury.
Collapse
Affiliation(s)
- Sam Parittotokkaporn
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and The Centre for Brain Research, University of Auckland, New Zealand
| | - Anusha Dravid
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Brad J Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Samuel Rosset
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and The Centre for Brain Research, University of Auckland, New Zealand.
| |
Collapse
|
2
|
Simultaneous electrophysiological and morphological assessment of functional damage to neural networks in vitro after 30-300 g impacts. Sci Rep 2019; 9:14994. [PMID: 31628381 PMCID: PMC6802386 DOI: 10.1038/s41598-019-51541-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/26/2019] [Indexed: 11/08/2022] Open
Abstract
An enigma of mild traumatic brain injury are observations of substantial behavior and performance deficits in the absence of bleeding or other observable structural damage. Altered behavior and performance reflect changes in action potential (AP) patterns within neuronal networks, which could result from subtle subcellular responses that affect synaptic efficacy and AP production. The aim of this study was to investigate and quantify network activity changes after simulated concussions in vitro and therewith develop a platform for simultaneous and direct observations of morphological and electrophysiological changes in neural networks. We used spontaneously active networks grown on microelectrode arrays (MEAs) to allow long-term multisite monitoring with simultaneous optical observations before and after impacts delivered by a ballistic pendulum (30 to 300 g accelerations). The monitoring of AP waveshape templates for long periods before and after impact provided an internal control for cell death or loss of cell-electrode coupling in the observed set of neurons. Network activity patterns were linked in real-time to high power phase contrast microscopy. There was no overt loss of glial or neuronal adhesion, even at high-g impacts. All recording experiments showed repeatable spike production responses: a loss of activity with recovery to near reference in 1 hr, followed by a slow activity decay to a stable, level plateau approximately 30–40% below reference. The initial recovery occurred in two steps: a rapid return of activity to an average 24% below reference, forming a level plateau lasting from 5 to 20 min, followed by a climb to within 10% of reference where a second plateau was established for 1 to 2 hrs. Cross correlation profiles revealed changes in firing hierarchy as well as in Phase 1 in spontaneous network oscillations that were reduced by as much as 20% 6–8 min post impact with only a partial recovery at 30 min. We also observed that normally stable nuclei developed irregular rotational motion after impact in 27 out of 30 networks. The evolution of network activity deficits and recovery can be linked with microscopically observable changes in the very cells that are generating the activity. The repeatable electrophysiological impact response profiles and oscillation changes can provide a quantitative basis for systematic evaluations of pharmacological intervention strategies. Future expansion to include fluorescent microscopy should allow detailed investigations of damage mechanisms on the subcellular level.
Collapse
|
3
|
Estrada-Rojo F, Martínez-Tapia RJ, Estrada-Bernal F, Martínez-Vargas M, Perez-Arredondo A, Flores-Avalos L, Navarro L. Models used in the study of traumatic brain injury. Rev Neurosci 2018; 29:139-149. [PMID: 28888093 DOI: 10.1515/revneuro-2017-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/14/2017] [Indexed: 01/02/2023]
Abstract
Traumatic brain injury (TBI) is a contemporary health problem and a leading cause of mortality and morbidity worldwide. Survivors of TBI frequently experience disabling long-term changes in cognition, sensorimotor function, and personality. A crucial step in understanding TBI and providing better treatment has been the use of models to mimic the event under controlled conditions. Here, we describe the known head injury models, which can be classified as whole animal (in vivo), in vitro, and mathematical models. We will also review the ways in which these models have advanced the knowledge of TBI.
Collapse
Affiliation(s)
- Francisco Estrada-Rojo
- Departamento Fisiologia Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-250, 04510 Ciudad de México, México
| | - Ricardo Jesús Martínez-Tapia
- Departamento Fisiologia Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-250, 04510 Ciudad de México, México
| | - Francisco Estrada-Bernal
- Departamento Fisiologia Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-250, 04510 Ciudad de México, México
| | - Marina Martínez-Vargas
- Departamento Fisiologia Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-250, 04510 Ciudad de México, México
| | - Adán Perez-Arredondo
- Departamento Fisiologia Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-250, 04510 Ciudad de México, México
| | - Luis Flores-Avalos
- Departamento Fisiologia Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-250, 04510 Ciudad de México, México
| | - Luz Navarro
- Departamento Fisiologia Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-250, 04510 Ciudad de México, México
| |
Collapse
|
4
|
Abstract
Traumatic Brain Injury (TBI) remains a significant cause of mortality and morbidity, affecting individuals of all age groups. Much remains to be learned about its complex pathophysiology, with a view to designing effective neuroprotective strategies to protect sublethally injured brain tissue that would otherwise die in secondary injury processes. Experimental in vivo models offer the potential to study TBI in the laboratory, however, treatments that were neuroprotective in animals have, thus far, largely failed to translate in human clinical studies. In vitro models of neurotrauma can be used to study specific pathophysiological cascades — individually and without confounding factors — and to test potential neuroprotective strategies. These in vitro models include transection, compression, barotrauma, acceleration, hydrodynamic, chemical injury and cell-stretch methodologies. Various cell culture systems can also be utilised, including brain-on-a-chip, immortalised cell lines, primary cultures, acute preparations and organotypic cultures. Potential positive outcomes of the increased use of in vitro platforms to study TBI would be the refinement of in vivo experiments, as well as enhanced translation of the results into clinically meaningful neuroprotective strategies for the future. In addition, the replacement of in vivo experiments by suitable in vitro studies would lead to a welcome reduction in the numbers of animal procedures in this ethically-challenging field.
Collapse
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
5
|
Hill Lucas J, Emery DG, Rosenberg LJ. REVIEW ■ : Physical Injury of Neurons: Important Roles for Sodium and Chloride Ions. Neuroscientist 2016. [DOI: 10.1177/107385849700300208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There is growing evidence that ions other than Ca2+ play important roles in the deterioration of neuronal elements in both gray and white matter after physical injury. This review features information gathered with a tissue culture model of dendrite transection regarding the contributions of Na+ and CI- to ultrastructural damage and neuronal death. This information and the results of other in vitro investigations of physical and ischemic/excitotoxic injuries indicate that elevation of internal Na+ is an early event that may contribute significantly to neuronal injury through effects on Na+-driven transport mechanisms. Proposed deleterious consequences include cytoplasmic acidification, reduced mitochondrial energy production, and elevation of intracellular Ca2+ and extracellular excitatory amino acids to toxic levels. Prevention of Na+ entry into neurons after injury has been found to limit ultrastructural damage, prevent death, and preserve electrophysiological function. Although the role of CI- in neuronal injury is less well defined, there is also evidence that elevation of intracellular CI- contributes to structural damage, particularly to the smooth endoplasmic reticulum. In terventions that limit Na+- and CI--mediated damage to injured neurons may have utility in neurosurgery and as acute phase treatments for nervous system trauma and other pathological states. NEURO SCIENTIST 3:89-101, 1997
Collapse
Affiliation(s)
- Jen Hill Lucas
- Department of Physiology The Ohio State University Columbus,
Ohio
| | - Dennis G. Emery
- Department of Zoology and Genetics lowa State University
Ames, Iowa
| | | |
Collapse
|
6
|
Combes RD. A critical review of anaesthetised animal models and alternatives for military research, testing and training, with a focus on blast damage, haemorrhage and resuscitation. Altern Lab Anim 2014; 41:385-415. [PMID: 24329746 DOI: 10.1177/026119291304100508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Military research, testing, and surgical and resuscitation training, are aimed at mitigating the consequences of warfare and terrorism to armed forces and civilians. Traumatisation and tissue damage due to explosions, and acute loss of blood due to haemorrhage, remain crucial, potentially preventable, causes of battlefield casualties and mortalities. There is also the additional threat from inhalation of chemical and aerosolised biological weapons. The use of anaesthetised animal models, and their respective replacement alternatives, for military purposes -- particularly for blast injury, haemorrhaging and resuscitation training -- is critically reviewed. Scientific problems with the animal models include the use of crude, uncontrolled and non-standardised methods for traumatisation, an inability to model all key trauma mechanisms, and complex modulating effects of general anaesthesia on target organ physiology. Such effects depend on the anaesthetic and influence the cardiovascular system, respiration, breathing, cerebral haemodynamics, neuroprotection, and the integrity of the blood-brain barrier. Some anaesthetics also bind to the NMDA brain receptor with possible differential consequences in control and anaesthetised animals. There is also some evidence for gender-specific effects. Despite the fact that these issues are widely known, there is little published information on their potential, at best, to complicate data interpretation and, at worst, to invalidate animal models. There is also a paucity of detail on the anaesthesiology used in studies, and this can hinder correct data evaluation. Welfare issues relate mainly to the possibility of acute pain as a side-effect of traumatisation in recovered animals. Moreover, there is the increased potential for animals to suffer when anaesthesia is temporary, and the procedures invasive. These dilemmas can be addressed, however, as a diverse range of replacement approaches exist, including computer and mathematical dynamic modelling of the human body, cadavers, interactive human patient simulators for training, in vitro techniques involving organotypic cultures of target organs, and epidemiological and clinical studies. While the first four of these have long proven useful for developing protective measures and predicting the consequences of trauma, and although many phenomena and their sequelae arising from different forms of trauma in vivo can be induced and reproduced in vitro, non-animal approaches require further development, and their validation and use need to be coordinated and harmonised. Recommendations to these ends are proposed, and the scientific and welfare problems associated with animal models are addressed, with the future focus being on the use of batteries of complementary replacement methods deployed in integrated strategies, and on greater transparency and scientific cooperation.
Collapse
|
7
|
LaPlaca MC, Meaney DF. Perspectives on the Role of Bioengineering in Neurotrauma Research. J Neurotrauma 2011; 28:2201-2. [DOI: 10.1089/neu.2011.9944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Michelle C. LaPlaca
- Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Abstract
The rising awareness of the long-term health problems associated with concussions re-emphasizes the need for understanding the mechanical etiology of concussions. This article reviews past studies defining the common mechanisms for mild traumatic brain injury and summarizes efforts to convert the external input to the head (force, acceleration, and velocity) into estimates of motions and deformations of the brain that occur during mild traumatic brain injury. Studies of how these mechanical conditions contribute to the cellular mechanisms of damage in mild traumatic brain injury are reviewed. Finally, future directions for improving understanding concussion biomechanics are discussed.
Collapse
|
9
|
|
10
|
Chen YC, Smith DH, Meaney DF. In-vitro approaches for studying blast-induced traumatic brain injury. J Neurotrauma 2009; 26:861-76. [PMID: 19397424 DOI: 10.1089/neu.2008.0645] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Traumatic brain injury caused by explosive or blast events is currently divided into four phases: primary, secondary, tertiary, and quaternary blast injury. These phases of blast-induced traumatic brain injury (bTBI) are biomechanically distinct, and can be modeled in both in-vivo and in-vitro systems. The purpose of this review is to consider the mechanical phases of bTBI, how these phases are reproduced with in-vitro models, and to review findings from these models to assess how each phase of bTBI can be examined in more detail. Highlighted are some important gaps in the literature that may be addressed in the future to better identify the exact contributing mechanisms for bTBI. These in-vitro models, viewed in combination with in-vivo models and clinical studies, can be used to assess both the mechanisms and possible treatments for this type of trauma.
Collapse
Affiliation(s)
- Yung Chia Chen
- Departments of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
11
|
|
12
|
Bottlang M, Sommers MB, Lusardi TA, Miesch JJ, Simon RP, Xiong ZG. Modeling neural injury in organotypic cultures by application of inertia-driven shear strain. J Neurotrauma 2007; 24:1068-77. [PMID: 17600521 DOI: 10.1089/neu.2006.3772] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro models of traumatic brain injury (TBI) are indispensable to explore the effects of mechanotrauma on neurological injury cascades and injury thresholds. This study characterizes a novel in vitro model of neural shear injury, which for the first time subjects organotypic cultures to inertia-driven shear strain. In this model, organotypic cultures preserved a high level of biological heterogeneity and spatial cytoarchitecture, while inertia-driven shear strain represented a tissue-level insult typical for closed head TBI in vivo. For neural injury simulation, organotypic hippocampal cultures derived from rats were inserted in an inertial loading module, which was subjected to impacts at five graded impact velocities ranging from 2 to 10 m/sec. The mechanical insult was quantified by measuring the transient shear deformation of the culture surface during impact with a high-speed camera. The resultant cell death was quantified with propidium iodide (PI) staining 24 hours following shear injury. Increasing impact velocities of 2, 4.6, 6.6, 8.1, and 10.4 m/sec caused graded peak shear elongation of 2.0 +/- 0.9%, 5.4 +/- 3.8%, 15.1 +/- 14.6%, 25.4 +/- 14.7%, and 56.3 +/- 51.3%, respectively. Cell death in response to impact velocities of 6.6 m/sec or less was not significantly higher than baseline cell death in sham cultures (4.4 +/- 1.5%). Higher impact velocities of 8.1 and 10.4 m/sec resulted in a significant increase in cell death to 19.9 +/- 12.9% and 36.7 +/- 14.2%, respectively (p < 0.001). The neural shear injury model delivered a gradable, defined mechanotrauma and thereby provides a novel tool for investigation of biological injury cascades in organotypic cultures.
Collapse
Affiliation(s)
- Michael Bottlang
- Biomechanics Laboratory, Legacy Research Center, Portland, Oregon 97232, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Serbest G, Horwitz J, Barbee K. The effect of poloxamer-188 on neuronal cell recovery from mechanical injury. J Neurotrauma 2005; 22:119-32. [PMID: 15665607 DOI: 10.1089/neu.2005.22.119] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neuronal injury resulting from mechanical deformation is poorly characterized at the cellular level. The immediate structural consequences of the mechanical loading lead to a variety of inter- and intra-cellular signaling events that interact on multiple time and length scales. Thus, it is often difficult to establish cause-and-effect relationships such that appropriate treatment strategies can be devised. In this report, we showed that treating mechanically injured neuronal cells with an agent that promotes the resealing of disrupted plasma membranes rescues them from death at 24 h post-injury. A new in vitro model was developed to allow uniform mechanical loading conditions with precisely controlled magnitude and onset rate of loading. Injury severity increased monotonically with increasing peak shear stress and was strongly dependent on the rate of loading as assessed with the MTT cell viability assay, 24 h post-injury. Mechanical injury produced an immediate disruption of membrane integrity as indicated by a rapid and transient release of LDH. For the most severe injury, cell viability decreased approximately 40% with mechanical trauma compared to sham controls. Treatment of cells with Poloxamer 188 at 15 min post-injury restored long-term viability to control values. These data establish membrane integrity as a novel therapeutic target in the treatment of neuronal injury.
Collapse
Affiliation(s)
- Gulyeter Serbest
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
14
|
Morrison B, Saatman KE, Meaney DF, McIntosh TK. In vitro central nervous system models of mechanically induced trauma: a review. J Neurotrauma 1998; 15:911-28. [PMID: 9840765 DOI: 10.1089/neu.1998.15.911] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Injury is one of the leading causes of death among all people below the age of 45 years. In the United States, traumatic brain injury (TBI) and spinal cord injury (SCI) together are responsible for an estimated 90,000 disabled persons annually. To improve treatment of the patient and thereby decrease the associated mortality, morbidity, and cost, several in vivo models of central nervous system (CNS) injury have been developed and characterized over the past two decades. To complement the ability of these in vivo models to reproduce the sequelae of human CNS injury, in vitro models of neuronal injury have also been developed. Despite the inherent simplifications of these in vitro systems, many aspects of the posttraumatic sequelae are faithfully reproduced in cultured cells, including ultrastructural changes, ionic derangements, alterations in electrophysiology, and free radical generation. This review presents a number of these in vitro systems, detailing the mechanical stimuli, the types of tissue injured, and the in vivo injury conditions most closely reproduced by the models. The data generated with these systems is then compared and contrasted with data from in vivo models of CNS injury. We believe that in vitro models of mechanical injury will continue to be a valuable tool to study the cellular consequences and evaluate the potential therapeutic strategies for the treatment of traumatic injury of the CNS.
Collapse
Affiliation(s)
- B Morrison
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | | | | | | |
Collapse
|
15
|
Mukhin AG, Ivanova SA, Knoblach SM, Faden AI. New in vitro model of traumatic neuronal injury: evaluation of secondary injury and glutamate receptor-mediated neurotoxicity. J Neurotrauma 1997; 14:651-63. [PMID: 9337127 DOI: 10.1089/neu.1997.14.651] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The multiplicity and complexity of secondary injury processes following brain trauma in vivo make it difficult to elucidate the roles of specific injury mechanisms. As with other areas of CNS injury, such as ischemia, this has led to the development of in vitro models. Here we describe a new trauma model, in which standardized trauma is delivered to neuronal/glial cultures using a special mechanical device that produces concentric circular cuts in the cell layer. Changes in the number of circles (from 1 to 6) allows variation of injury severity. Comparison studies of cell death induced by such trauma in glial and neuronal/glial cultures demonstrated that glial cells are relatively resistant to this injury, and that the cell death after trauma to neuronal/glial cultures reflects primarily neuronal death. Consistent with other in vivo and in vitro studies, glutamate receptor antagonists MK 801 and MCPG were neuroprotective. Thus, this model appears useful for studying glutamatergic mechanisms involved in secondary injury, and may prove useful for evaluating certain pharmacological strategies for CNS trauma.
Collapse
Affiliation(s)
- A G Mukhin
- Georgetown Institute for Cognitive and Computational Sciences and Department of Neurology, Georgetown University Medical Center, Washington, D.C. 20007-2197, USA
| | | | | | | |
Collapse
|
16
|
LaPlaca MC, Thibault LE. An in vitro traumatic injury model to examine the response of neurons to a hydrodynamically-induced deformation. Ann Biomed Eng 1997; 25:665-77. [PMID: 9236979 DOI: 10.1007/bf02684844] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel in vitro system was developed to examine the effects of traumatic mechanical loading on individual cells. The cell shearing injury device (CSID) is a parallel disk viscometer that applies fluid shear stress with variable onset rate. The CSID was used in conjunction with microscopy and biochemical techniques to obtain a quantitative expression of the deformation and functional response of neurons to injury. Analytical and numerical approximations of the shear stress at the bottom disk were compared to determine the contribution of secondary flows. A significant portion of the shear stress was directed in the r-direction during start-up, and therefore the full Navier-Stokes equation was necessary to accurately describe the transient shear stress. When shear stress was applied at a high rate (800 dyne cm-2 sec-1) to cultured neurons, a range of cell membrane strains (0.01 to 0.53) was obtained, suggesting inhomogeneity in cellular response. Functionally, cytosolic calcium and extracellular lactate dehydrogenase levels increased in response to high strain rate (> 1 sec-1) loading, compared with quasistatic (< 1 sec-1) loading. In addition, a subpopulation of the culture subjected to rapid deformation subsequently died. These strain rates are relevant to those shown to occur in traumatic injury, and, as such, the CSID is an appropriate model for studying the biomechanics and pathophysiology of neuronal injury.
Collapse
Affiliation(s)
- M C LaPlaca
- Department of Bioengineering, University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|
17
|
LaPlaca MC, Lee VM, Thibault LE. An in vitro model of traumatic neuronal injury: loading rate-dependent changes in acute cytosolic calcium and lactate dehydrogenase release. J Neurotrauma 1997; 14:355-68. [PMID: 9219851 DOI: 10.1089/neu.1997.14.355] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We developed a new in vitro model of neuronal injury using NT2-N cells to examine the effects of hydrodynamic loading rate on intraneuronal calcium dynamics and lactate dehydrogenase (LDH) release. Our apparatus consisted of a parallel disk viscometer which induced fluid shear stress with well-defined magnitudes and loading rates to cultured cells. We found that the deformation response of the cells was dependent on the severity of the insult, with increased cellular strains generated for higher shear stresses at a constant loading rate. Peak intracellular free calcium concentration correlated with strain, suggesting that mechanical deformation may regulate calcium response. Slowly applied fluid shear stress elicited no response, whereas high loading rates resulted in peak calcium increases 2.9 to 3.6 times baseline values as injury severity was increased. LDH release measured within 5 min after the insult correlated with loading rate. In addition, LDH release continued to increase out to 24 h following high loading rate conditions, demonstrating that the application of fluid shear stress led to prolonged cell damage. The acute response in NT2-N cells subjected to an insult with the CSID is dependent on the loading rate, and these results suggest that initial membrane deformation may trigger subsequent events.
Collapse
Affiliation(s)
- M C LaPlaca
- Department of Bioengineering, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
18
|
Craenen G, Jeftinija S, Grants I, Lucas JH. The role of excitatory amino acids in hypothermic injury to mammalian spinal cord neurons. J Neurotrauma 1996; 13:809-18. [PMID: 9002066 DOI: 10.1089/neu.1996.13.809] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hypothermia has been reported to be beneficial in CNS physical injury and ischemia. We previously reported that posttraumatic cooling to 17 degrees C for 2 h increased survival of mouse spinal cord (SC) neurons subjected to physical injury (dendrite transection) but that cooling below 17 degrees C caused a lethal NMDA receptor-linked stress to both lesioned and uninjured neurons. The present study tested whether cooling below 17 degrees C increases extracellular levels of excitatory amino acids (EAA). SC cultures were placed at 10 degrees C or 37 degrees C. Glutamate (Glu) and aspartate (Asp) levels were higher in the medium of the cooled cultures after 0.5 h (23 +/- 4 nM/microgram vs. 4 +/- 1 nM/microgram and 4 +/- 1 nM/microgram vs. 1 +/- 0 nM/microgram, respectively). The concentration of each EAA then declined and reached a plateau at 2-4 h that was still significantly higher than control levels (p < 0.0001, two-factor ANOVA, three cultures per group). Other amino acids (glycine, asparagine, glutamine, serine) showed an opposite pattern, with higher levels in the 37 degrees C group. Both NMDA and non-NMDA antagonists prevented the lethal cold injury. Survival of SC neurons cooled at 10 degrees C for 2 h and rewarmed for 22 h was 58% +/- 25% in the control group, 94% +/- 5% in the CNQX-treated group, 97% +/- 5% in the DAPV-treated group, and 99% +/- 2% in the group treated with both antagonists [p < 0.0006, one factor ANOVA, five cultures (> 120 neurons) per group]. These results show that death of neurons cooled to 10 degrees C is caused by elevated extracellular Glu and Asp and requires activation of both the NMDA and non-NMDA receptor subtypes.
Collapse
Affiliation(s)
- G Craenen
- Department of Physiology, Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
19
|
Kolenda H, Gremmelt A, Rading S, Braun U, Markakis E. Ketamine for analgosedative therapy in intensive care treatment of head-injured patients. Acta Neurochir (Wien) 1996; 138:1193-9. [PMID: 8955439 DOI: 10.1007/bf01809750] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ketamine was supposed to be contra-indicated in head injured patients although it possesses numerous advantages over other commonly used analgosedative drugs. Referring to these potential advantages and the lack of definitive data about its effect upon ICP, CPP or neurological development, we conducted a prospective study in which moderate or severely head injured patients (n = 35) were prospectively allocated to receive treatment either with a combination of ketamine or midazolam or fentanyl and midazolam. The initial dose was 6.5 mg/kg/day midazolam, 65 mg/kg/day ketamine or 65 micrograms/kg/day fentanyl and was later adjusted due to clinical requirements for a period of 3 to 14 days. Comparably high dosages of ketamine [corrected] have been found necessary (104 mg/kg/day). Four patients from the ketamine group (n = 17) and 5 from the control group (n = 18) were withdrawn during treatment due to persistent ICP above 25 mm Hg, countermeasured by barbiturate coma. Two more patients were withdrawn due to development of cardiovascular arrest (ketamine group) and multi organ failure. A comparison of the remaining patients revealed a lower requirement of catecholamines (significant on first day, p<0.05), an on average 8 mm Hg higher cerebral perfusion pressure and a 2 mm Hg higher intracranial pressure in the study [corrected] group. Enteral food intake was better in the study group. The outcome was comparable in both groups with or without inclusion of withdrawn patients.
Collapse
Affiliation(s)
- H Kolenda
- Department of Neurosurgery, University Clinic of Göttingen, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
20
|
Cargill RS, Thibault LE. Acute alterations in [Ca2+]i in NG108-15 cells subjected to high strain rate deformation and chemical hypoxia: an in vitro model for neural trauma. J Neurotrauma 1996; 13:395-407. [PMID: 8863195 DOI: 10.1089/neu.1996.13.395] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The short-term (less than 2 min) alterations in the intracellular free calcium concentration in differentiated NG108-15 (neuroblastoma cross glioma) cells exposed to dynamic mechanical deformation with and without superimposed chemical hypoxia were determined. A previously developed device, modified for these studies, was used to apply deformations at a magnitude and rate representative of those experienced by neural tissue in Traumatic Brain Injury. Chemical hypoxia was imposed using a combination of 2-deoxy-D-glucose and salicylate, anaerobic and aerobic metabolic blockers, respectively. Real time measurement of intracellular free calcium concentration using Fura-2 and a custom epifluorescence microscopy system provided a quantitative index of cell response. At high rates of deformation (approximately 10 sec-1), increases in intracellular free calcium concentration were exponentially related to the magnitude of the applied deformation. Chemical hypoxia had no effect on this acute response. At low rates of deformation, small increases in intracellular free calcium concentration were independent of the magnitude of the deformation. These findings indicate that strategies for reducing severity of TBI should focus on minimizing the rate of deformation of neural cells. Together with data from animal, physical, and finite element models, these data can be employed in the development of physiologic injury tolerance criteria for the whole head.
Collapse
Affiliation(s)
- R S Cargill
- Department of Bioengineering, University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|
21
|
Sattler R, Tymianski M, Feyaz I, Hafner M, Tator CH. Voltage-sensitive calcium channels mediate calcium entry into cultured mammalian sympathetic neurons following neurite transection. Brain Res 1996; 719:239-46. [PMID: 8782889 DOI: 10.1016/0006-8993(96)00125-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Calcium ion entry following mechanical neurite transection was examined in cultured sympathetic neurons loaded with the Ca2+ indicator fluo-3. Neurite transection produced a rapid [Ca2+]i rise in the cell soma which preceded any [Ca2+]i rise in the neurite (n = 30). Blocking sodium channels with tetrodotoxin had no effect on the Ca2+ rise, but inactivating voltage-sensitive Ca2+ channels by bath-applying 140 mM potassium prior to the transection, and the simultaneous application of nimodipine and omega-conotoxin GVIA, blockers of L-type and N-type Ca2+ channels, respectively, considerably attenuated the Ca2+ rise in the soma and neurites. These data contradict the intuitive hypothesis that Ca2+ entry following mechanical neurite transection occurs via non-specific influx pathways produced by cell-membrane disruption and provide direct evidence in mammalian neurons that immediate, traumatically-induced, increases in neuronal [Ca2+]i are amenable to pharmacological manipulation.
Collapse
Affiliation(s)
- R Sattler
- Department of Applied Cell Biology, Technical University of Mannheim, Germany
| | | | | | | | | |
Collapse
|
22
|
Kolenda H, Gremmelt A, Rading S, Braun U, Markakis E. Ketamine for analgosedative therapy in intensive care treatment of head-injured patients. Acta Neurochir (Wien) 1996. [PMID: 8955439 DOI: 10.1007/bf01809750.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ketamine was supposed to be contra-indicated in head injured patients although it possesses numerous advantages over other commonly used analgosedative drugs. Referring to these potential advantages and the lack of definitive data about its effect upon ICP, CPP or neurological development, we conducted a prospective study in which moderate or severely head injured patients (n = 35) were prospectively allocated to receive treatment either with a combination of ketamine or midazolam or fentanyl and midazolam. The initial dose was 6.5 mg/kg/day midazolam, 65 mg/kg/day ketamine or 65 micrograms/kg/day fentanyl and was later adjusted due to clinical requirements for a period of 3 to 14 days. Comparably high dosages of ketamine [corrected] have been found necessary (104 mg/kg/day). Four patients from the ketamine group (n = 17) and 5 from the control group (n = 18) were withdrawn during treatment due to persistent ICP above 25 mm Hg, countermeasured by barbiturate coma. Two more patients were withdrawn due to development of cardiovascular arrest (ketamine group) and multi organ failure. A comparison of the remaining patients revealed a lower requirement of catecholamines (significant on first day, p<0.05), an on average 8 mm Hg higher cerebral perfusion pressure and a 2 mm Hg higher intracranial pressure in the study [corrected] group. Enteral food intake was better in the study group. The outcome was comparable in both groups with or without inclusion of withdrawn patients.
Collapse
Affiliation(s)
- H Kolenda
- Department of Neurosurgery, University Clinic of Göttingen, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
23
|
Whatley VJ, Harris RA. The cytoskeleton and neurotransmitter receptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1996; 39:113-43. [PMID: 8894846 DOI: 10.1016/s0074-7742(08)60665-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The neuronal cytoskeleton consists of microtubules and microfilaments that can interact with membrane proteins including neurotransmitter receptors and ion channels. Ligand-gated ion channels, such as nicotinic acetylcholine receptors, glycine receptors, glutamate receptors and gamma-aminobutryic acidA (GABAA) receptors, are known to cluster in plasma membranes. Studies suggest that postsynaptic ligand-gated channels form clusters that are anchored in the plasma membrane by interacting with cytoskeletal components and these clusters may serve to optimize delivery of neurotransmitters to the channels. Other findings indicate that the interaction of clustered ligand-gated ion channels with cytoskeletal components may also play a role in channel function. For example, studies suggest that the interaction of microtubules with GABAA receptors regualtes GABA binding affinity. Regulation of neurotransmitter function may be significant in the study of neuropathological processes, such as Alzheimer's disease, neurotrauma, and experimental epilepsy, in which the cytoskeleton is vulnerable to disruption.
Collapse
Affiliation(s)
- V J Whatley
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, USA
| | | |
Collapse
|
24
|
Abstract
Repetitive cyclic loading of a nerve has been proposed as a pathogenic factor in the development of occupational compression neuropathies. Little is known about the basic response of peripheral nerve to cyclic compression. We investigated the hypothesis that cyclic compression is more detrimental to nerve function than constant compression. We measured the amplitudes and velocities of distally evoked action potentials in the presence of constant or cyclic compression of the tibial nerve in rats. Seven groups were subjected to constant or cyclic compression for 6 h by a computer controlled, hydraulically activated compression chamber. Nerves were compressed with 0 (control group), 30, 60, or 90 mm Hg of constant pressure or 0-30, 20-50, or 30-60 mm Hg of cyclic compression for approximately 20,000 compression cycles. Action potentials were recorded every 15 min. The effects of cyclic compression on nerve conduction were equivalent to the effects of constant compression at the average applied pressure. Cyclic loading itself does not appear to be an important pathogenic factor in the development of nerve conduction block.
Collapse
Affiliation(s)
- R M Szabo
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento
| | | |
Collapse
|
25
|
Affiliation(s)
- G J Lees
- Department of Psychiatry and Behavioural Science, School of Medicine, University of Auckland, New Zealand
| |
Collapse
|