1
|
Chen HS, Qu F, He X, Wang Y, Wen WW. Chemical or surgical sympathectomy prevents mechanical hyperalgesia induced by intraplantar injection of bee venom in rats. Brain Res 2010; 1353:86-93. [DOI: 10.1016/j.brainres.2010.07.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 07/18/2010] [Accepted: 07/19/2010] [Indexed: 11/15/2022]
|
2
|
Abstract
Over the past 20 years, a significant effort has been made to define a role for the neuroendocrine system in the regulation of immunity. It was expected that these experimental findings would help to establish a strategy for the development of clinical interventions to either suppress or augment immunological function for disease prevention. However, the translation of these basic experimental findings into clinical interventions has been difficult. Possible explanations for this difficulty are that the findings from human and animal studies do not agree and/or that the results obtained within one species are rarely verified in the other. Our goal in writing this review is to address this issue by summarizing the published findings from human studies and comparing them to published findings from animal studies. Although far from being exhaustive, this review summarizes and discusses at least the past 10 years of findings in which a change in immunity and a change in catecholamine levels and/or stimulation of the beta(2)-adrenergic receptor has been documented.
Collapse
Affiliation(s)
- Virginia M Sanders
- Department of Cell Biology, Neurobiology, & Anatomy, Loyola University Medical Center, Stritch School of Medicine, Maywood, Illinois 60153, USA.
| | | |
Collapse
|
3
|
Straub RH, Cutolo M. Involvement of the hypothalamic--pituitary--adrenal/gonadal axis and the peripheral nervous system in rheumatoid arthritis: viewpoint based on a systemic pathogenetic role. ARTHRITIS AND RHEUMATISM 2001; 44:493-507. [PMID: 11263762 DOI: 10.1002/1529-0131(200103)44:3<493::aid-anr95>3.0.co;2-u] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
From the compendium presented above, the following statements become evident: 1) Inappropriately low secretion of cortisol in relation to inflammation is a typical feature of the inflammatory disease in patients with RA. 2) The secretion of adrenal androgens is significantly reduced, which is a problem in postmenopausal women and elderly men due to a lack of downstream sex hormones. 3) Serum levels of testosterone are markedly reduced in RA. 4) Sympathetic nerve fibers are markedly reduced in the synovial tissue of patients with RA, whereas proinflammatory sensory fibers (substance P) are present. 5) Substance P serves to continuously sense painful stimuli in the periphery, and the nociceptive input from the inflamed joint shows a large amplification in the spinal cord. This leads to continuous pain with stabilization of the afferent sensory input and continuous release of proinflammatory substance P into the lumen of the joint. From these facts it is obvious that alterations of the systemic antiinflammatory feedback systems contribute significantly to the pathogenesis of RA. Disease therapy directed at these alterations must provide a mechanism to replace the adrenal glands (glucocorticoids), the gonadal glands (androgens), and the sympathetic nervous system (adenosine increase by low-dose MTX, sulfasalazine, and salicylates) in order to integrate their immunosuppressive effects at the local site of synovial inflammation. Although local processes of the adaptive immune system are important in pathogenesis in the acute phase of RA, these mechanisms may be less important during the chronic phase of the disease in the absence of a specific trigger. We believe that a defect of systemic antiinflammatory feedback systems is an important factor in the perpetuation of RA. This review reinforces the belief that combined therapeutic approaches on a neuroendocrine immune basis are of crucial importance in a pathogenetically oriented therapy of RA.
Collapse
Affiliation(s)
- R H Straub
- Department of Internal Medicine I, University Hospital, Regensburg, Germany
| | | |
Collapse
|
4
|
Abstract
Retrograde tracing with Fluoro-Gold (FG) was used to identify the complete population of knee joint sympathetic postganglionic efferents in the lumbar sympathetic chain of adult female Wistar rats. In 6 rats, the total number and distribution of FG-labelled neurons in the lumbar sympathetic chain was determined. The rat knee joint is supplied by an average of 187+/-57 sympathetic afferents with the majority at the L3 and L4 levels. Immunohistochemistry using antibodies specific for tyrosine hydroxylase (TH), somatostatin (SS) or vasoactive intestinal polypeptide (VIP) revealed that 33 % of knee joint sympathetic afferents contained TH, 42 % contained VIP, and none contained somatostatin. Retrograde tracing with FG provided accurate and reproducible labelling of the joint-innervating subpopulation of sympathetic efferent neurons. This model lends itself to the further study of the molecular responses of this neuronal population in the various disorders and conditions affecting joints.
Collapse
Affiliation(s)
- MEL G.
CATRE
- Department of Surgery, University of Toronto, Canada
| | - PAUL T.
SALO
- McCaig Centre for Joint Injury and Arthritis Research, Department of Surgery, University of Calgary, Canada
- Correspondence to Dr P. T. Salo, Heritage Medical Research Building, 3330 Hospital Drive N. W., Calgary, Alberta T2N 4N1, Canada. Fax: +001 403 270-0617; e-mail:
| |
Collapse
|
5
|
Seabrook GR, Bowery BJ, Heavens R, Brown N, Ford H, Sirinathsinghi DJ, Borkowski JA, Hess JF, Strader CD, Hill RG. Expression of B1 and B2 bradykinin receptor mRNA and their functional roles in sympathetic ganglia and sensory dorsal root ganglia neurones from wild-type and B2 receptor knockout mice. Neuropharmacology 1997; 36:1009-17. [PMID: 9257945 DOI: 10.1016/s0028-3908(97)00065-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bradykinin has been implicated in nociception and inflammation. To examine the relative significance of B1 and B2 bradykinin receptor subtypes in sympathetic and sensory ganglia, the electrophysiological effects of bradykinin analogues and the expression of receptor subtype mRNA were examined in wild-type and "B2 knockout" mice from which the B2 receptor gene had been deleted. In wild-type mice the B2 receptor agonist bradykinin depolarized superior cervical ganglia (SCG) and activated inward currents in dorsal root ganglia (DRG) neurones. Responses to the B1 receptor agonist, [des-Arg10]-kallidin, were seen only in SCG that had been pre-treated with interleukins and the peptidase inhibitor captopril, but not in DRG neurones. The up-regulation of responses to [des-Arg10]-kallidin and substance P were blocked by indomethacin and, thus, were dependent upon cyclo-oxygenase activity. The effects of bradykinin were abolished in SCG and DRG's from B2 knockout mice and this was correlated with the absence of B2 receptor mRNA in ganglia from these animals. However, despite the presence of B1 receptor mRNA in interleukin treated SCG from B2 knockout mice, no depolarizing effects of the B1 receptor agonist [des-Arg10]-kallidin were observed. The successful elimination of bradykinin responses and B2 mRNA in sympathetic and sensory ganglia from B2 knockout mice, confirms that B2 receptors are the predominant functional bradykinin receptor subtype in these tissues and that B1 receptor mRNA is expressed in both sympathetic and sensory ganglia from these animals.
Collapse
MESH Headings
- Action Potentials/drug effects
- Animals
- Cytokines/pharmacology
- Dose-Response Relationship, Drug
- Ganglia, Spinal/metabolism
- Ganglia, Sympathetic/metabolism
- In Situ Hybridization
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurons, Afferent/metabolism
- Patch-Clamp Techniques
- RNA, Messenger/metabolism
- Receptor, Bradykinin B1
- Receptor, Bradykinin B2
- Receptors, Bradykinin/drug effects
- Receptors, Bradykinin/metabolism
Collapse
Affiliation(s)
- G R Seabrook
- Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Harlow, Essex, U.K
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Davis CL, Naeem S, Phagoo SB, Campbell EA, Urban L, Burgess GM. B1 bradykinin receptors and sensory neurones. Br J Pharmacol 1996; 118:1469-76. [PMID: 8832074 PMCID: PMC1909652 DOI: 10.1111/j.1476-5381.1996.tb15562.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The location of the B1 bradykinin receptors involved in inflammatory hyperalgesia was investigated. 2. No specific binding of the B1 bradykinin receptor ligand [3H]-des-Arg10-kallidin was detected in primary cultures of rat dorsal root ganglion neurones, even after treatment with interleukin-1 beta (100 iu ml-1). 3. In dorsal root ganglion neurones, activation of B2 bradykinin receptors stimulated polyphosphoinositidase C. In contrast, B1 bradykinin receptor agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM) failed to activate polyphosphoinositidase C, even in neurones that had been treated with interleukin-1 beta (100 iu ml-1), prostaglandin E2 (1 microM) or prostaglandin I2 (1 microM). 4. Dorsal root ganglion neurones removed from rats (both neonatal and 14 days old) that had been pretreated with inflammatory mediators (Freund's complete adjuvant, or carrageenan) failed to respond to B1 bradykinin receptor selective agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM). 5. Bradykinin (25 nM to 300 nM) evoked ventral root responses when applied to peripheral receptive fields or central terminals of primary afferents in the neonatal rat spinal cord and tail preparation. In contrast, des-Arg9-bradykinin (50 nM to 500 nM) failed to evoke ventral root depolarizations in either control rats or in animals that developed inflammation following ultraviolet irradiation of the tail skin. 6. The results of the present study imply that the B1 bradykinin receptors that contribute to hypersensitivity in models of persistent inflammatory hyperalgesia are located on cells other than sensory neurones where they may be responsible for releasing mediators that sensitize or activate the nociceptors.
Collapse
Affiliation(s)
- C L Davis
- Sandoz Institute for Medical Research, London
| | | | | | | | | | | |
Collapse
|
7
|
Cambridge H, Ajuebor MN, Brain SD. Investigation of 6-hydroxydopamine-induced plasma extravasation in rat skin. Eur J Pharmacol 1996; 301:151-7. [PMID: 8773459 DOI: 10.1016/0014-2999(96)00062-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Perfusion of 6-hydroxydopamine into the rat knee and trachea induces plasma extravasation, possibly by tissue-specific mechanisms involving sympathetic and sensory nerves respectively, and we aimed to identify the mediators which contribute to this response in skin. 6-Hydroxydopamine (both hydrobromide and hydrochloride salts), dose dependently increased plasma extravasation into rat dorsal skin, however, when compared to bradykinin or the tachykinin NK1 receptor agonist GR73632, high concentrations of 6-hydroxydopamine (1-10 mumol/site) were required. The response to 6-hydroxydopamine was not inhibited in chemically sympathectomised rats (6-hydroxydopamine, 300 mg/kg i.p. over 7 days) but was significantly reduced by co-administration with the histamine (H1) and the 5-HT receptor antagonists mepyramine and methysergide and in skin sites pre-injected with compound 48/80 (4 micrograms, -18 h) to degranulate dermal mast cells. The response was not inhibited by co-injection of the tachykinin NK1 receptor antagonist SRI40333 or by the cyclo-oxygenase inhibitor indomethacin (5 mg kg-1 i.p., -30 min) except at the lowest dose of 6-hydroxydopamine (1 mumol/site). We conclude that 6-hydroxydopamine is not a potent or selective mediator of increased vascular permeability in rat skin but, at high concentrations, may induce oedema formation via release of vasoactive amines from mast cells, augmented by generation of prostaglandins.
Collapse
Affiliation(s)
- H Cambridge
- Pharmacology Group, King's College, London, UK
| | | | | |
Collapse
|
8
|
Babbedge R, Dray A, Urban L. Bradykinin depolarises the rat isolated superior cervical ganglion via B2 receptor activation. Neurosci Lett 1995; 193:161-4. [PMID: 7478173 DOI: 10.1016/0304-3940(95)11690-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Experiments were undertaken to characterise the action of kinins on sympathetic neurones of the rat superior cervical ganglion (SCG) by use of in vitro grease-gap, extracellular recording techniques in conjunction with selective agonists and antagonists for B1 and B2 bradykinin (BK) receptors. Superfusion of BK (10 nM to 10 microM) to the ganglion produced a concentration-related depolarisation (pD2 = 7.02 +/- 0.04, n = 7) which was inhibited by the selective B2 antagonist HOE 140 (10-100 nM), but not by the B1 antagonist Leu8desArg9 BK (1 microM), indomethacin (7 microM) or the nitric oxide synthase inhibitor L-NG-nitroarginine methyl ester (300 microM). DesArg9BK (10 nM to 10 microM) had no effect on membrane potential. Pre-treatment of animals with intravenous bacterial lipopolysaccharide (LPS, 3 mg kg-1) failed to induce B1 receptor-mediated depolarisations of SCG neurones, or change responses to BK (P > 0.05, n = 4). These experiments highlight and characterise the action of BK as a neuromodulator of sympathetic neurones via B2 receptor activation.
Collapse
Affiliation(s)
- R Babbedge
- Sandoz Institute for Medical Research, London, UK
| | | | | |
Collapse
|
9
|
Seabrook GR, Bowery BJ, Hill RG. Bradykinin receptors in mouse and rat isolated superior cervical ganglia. Br J Pharmacol 1995; 115:368-72. [PMID: 7670739 PMCID: PMC1908315 DOI: 10.1111/j.1476-5381.1995.tb15887.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. The ability of bradykinin and its analogues to depolarize rat and mouse superior cervical ganglia was studied by use of in vitro grease-gap recording techniques, and the ability of antagonists selective for bradykinin receptor subtypes to block their effects was examined. 2. Bradykinin (3 microM) depolarized ganglia from both species, although the magnitude of the maximal response was less in mouse (15 +/- 5%, n = 7) than rat tissue (33 +/- 6%, n = 7), relative to muscarine (1 microM). 3. Interleukin 1 beta (30 u ml-1 for 18 h at 37 degrees C) increased the depolarization caused by bradykinin (3 microM) in mouse ganglia from 15% to 54% (P < 0.001, n = 12). Responses to the B1 receptor agonist, [des-Arg10]-kallidin (3 microM) were similarly potentiated but this was only detected after inhibition of peptidase activity with 10 microM captopril (4% to 35%, n = 5). 4. In ganglia from both species the rank order of agonist potency was bradykinin = [Lys0]-bradykinin >> [des-Arg10]-kallidin. However, like responses to [des-Arg10]-kallidin in mouse tissue, both the potency of bradykinin and the maximal depolarization achieved (EC50 = 912 nM; 80%, n = 11) was enhanced following inhibition of angiotensin converting enzyme with 10 microM captopril (EC50 = 50 nM; 135%, n = 4). 5. Responses to bradykinin were selectively antagonized by the B2 receptor antagonist, Hoe 140 but not by the B1 antagonist, [Leu8]-bradykinin1-8. From Schild analysis the pA2 value for Hoe 140 in mouse tissue was 9.65, although the slope of the regression line was significantly greater than unity, indicating non-competitive kinetics (slope = 1.88 +/- 0.18, n = 9). The depolarization caused by [Lys0]-bradykinin was also antagonized by Hoe 140 (3 nM).6. Thus the predominant bradykinin receptor in mouse superior cervical ganglia is compatible with a B2 subtype. Furthermore the depolarizations caused by B1 and B2 agonists in this tissue can be increased following exposure to interleukin l beta, and by blocking peptide degradation with captopril.
Collapse
Affiliation(s)
- G R Seabrook
- Merck Sharp & Dohme Research Laboratories, Neuroscience Research Centre, Harlow, Essex
| | | | | |
Collapse
|
10
|
Jones S, Brown DA, Milligan G, Willer E, Buckley NJ, Caulfield MP. Bradykinin excites rat sympathetic neurons by inhibition of M current through a mechanism involving B2 receptors and G alpha q/11. Neuron 1995; 14:399-405. [PMID: 7857647 DOI: 10.1016/0896-6273(95)90295-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bradykinin (BK) is a peptide mediator released in inflammation that potently excites sympathetic neurons. We have studied the mechanism of this excitation in dissociated rat sympathetic neurons and found that at low nanomolar (EC50 = 0.9 nM) concentrations, BK inhibited the M-type K+ current IK(M). Studies with the selective antagonist Hoe140 revealed that this effect was mediated via the B2 receptor subtype, and mRNA encoding this receptor was identified in these neurons by RT-PCR. IK(M) inhibition was unaffected by Pertussis toxin or microinjection of antibodies to G alpha o but was selectively inhibited by microinjection of antibodies to G alpha q/11. Thus, BK is the most potent M current inhibitor yet described in mammalian neurons, and BK inhibition of M current is mediated by a G protein pathway similar to that activated by muscarinic acetylcholine receptors.
Collapse
Affiliation(s)
- S Jones
- Wellcome Laboratory for Molecular Pharmacology, Department of Pharmacology, University College London, England
| | | | | | | | | | | |
Collapse
|
11
|
Mathison R, Davison JS. The involvement of sympathetic nerves in plasma extravasation induced by prostaglandin E2 and substance P. Brain Res 1994; 644:251-6. [PMID: 7519525 DOI: 10.1016/0006-8993(94)91687-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effects of intravenous injection of prostaglandin E2 (PGE2), substance P (SP) and a metabolically stable SP analogue, [pGlu5,Me-Phe8,Sar9]-SP (5-11) on plasma extravasation of albumin in the rat after blockade of prostaglandin synthesis with indomethacin or chemical sympathectomy with guanethidine were studied. Blood pressure was decreased by all agonists, but only the hypotensive effects of SP were enhanced by pretreatment with indomethacin and guanethidine. The increase in plasma extravasation induced by PGE2 in the tongue, skin and lungs was blocked by both guanethidine and indomethacin. Pretreatment of the rats with guanethidine or indomethacin increased extravasation induced by SP in the tongue-tip, dorsal skin and foot, but decreased the enhanced permeability in the pinna, and did not alter the actions of the peptide in other tissues. In contrast, both guanethidine and indomethacin pretreatment increased vascular permeability responses to [pGlu5,Me-Phe8,Sar9]-SP (5-11) administration in 9 and 14 of 16 tissues examined, respectively. Thus, intact sympathetic nerves and functional cycloxygenase activity exert inhibitory constraints on the vascular permeability effects of intravenously administered SP or its analogue. On the other hand the integrity of the sympathetic nerves and prostaglandin synthesis are required for PGE2-induced increases in vascular leak.
Collapse
Affiliation(s)
- R Mathison
- Department of Medical Physiology, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | |
Collapse
|
12
|
Abstract
There is compelling evidence linking bradykinin (BK) with the pathophysiological processes that accompany tissue damage and inflammation, especially the production of pain and hyperalgesia. Several mechanisms have been proposed to account for hyperalgesia including the direct activation of nociceptors as well as sensitization of nociceptors through the production of prostanoids or the release of other mediators. In keeping with this, antagonists of the BK B2 receptor are efficacious analgesic and anti-inflammatory agents in acute inflammatory pain. More recently it has been suggested that when inflammation is prolonged, BK B1 receptors, which are not expressed in healthy tissues to a significant degree, also play an important role in the maintenance of hyperalgesia. This may be one of a number of adaptive mechanisms that occur peripherally and centrally following the prolonged activation of nociceptors during inflammation or injury.
Collapse
Affiliation(s)
- A Dray
- Sandoz Institute for Medical Research, London, UK
| | | |
Collapse
|
13
|
Barber A, Gottschlich R. Opioid agonists and antagonists: an evaluation of their peripheral actions in inflammation. Med Res Rev 1992; 12:525-62. [PMID: 1513187 DOI: 10.1002/med.2610120505] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- A Barber
- Department of CNS Research, E. Merck, Darmstadt, Germany
| | | |
Collapse
|