1
|
Norekian TP, Moroz LL. The distribution and evolutionary dynamics of dopaminergic neurons in molluscs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600886. [PMID: 38979169 PMCID: PMC11230423 DOI: 10.1101/2024.06.26.600886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Dopamine is one of the most versatile neurotransmitters in invertebrates. It's distribution and plethora of functions is likely coupled to feeding ecology, especially in Euthyneura (the largest clade of molluscs), which presents the broadest spectrum of environmental adaptations. Still, the analyses of dopamine-mediated signaling were dominated by studies of grazers. Here, we characterize the distribution of dopaminergic neurons in representatives of two distinct ecological groups: the sea angel - obligate predatory pelagic mollusc Clione limacina (Pteropoda, Gymnosomata) and its prey - the sea devil Limacina helicina (Pteropoda, Thecosomata) as well as the plankton eater Melibe leonina (Nudipleura, Nudibranchia). By using tyrosine hydroxylase-immunoreactivity (TH-ir) as a reporter, we showed that the dopaminergic system is moderately conservative among euthyneurans. Across all studied species, small numbers of dopaminergic neurons in the central ganglia contrast to significant diversification of TH-ir neurons in the peripheral nervous system, primarily representing sensory-like cells, which predominantly concentrated in the chemotactic areas and projecting afferent axons to the central nervous system. Combined with α-tubulin immunoreactivity, this study illuminates the unprecedented complexity of peripheral neural systems in gastropod molluscs, with lineage-specific diversification of sensory and modulatory functions.
Collapse
Affiliation(s)
| | - Leonid L. Moroz
- Whitney Laboratory, University of Florida, St. Augustine, FL, USA
- Departments of Neuroscience and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Miller MW. Dopamine as a Multifunctional Neurotransmitter in Gastropod Molluscs: An Evolutionary Hypothesis. THE BIOLOGICAL BULLETIN 2020; 239:189-208. [PMID: 33347799 PMCID: PMC8016498 DOI: 10.1086/711293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractThe catecholamine 3,4-dihydroxyphenethylamine, or dopamine, acts as a neurotransmitter across a broad phylogenetic spectrum. Functions attributed to dopamine in the mammalian brain include regulation of motor circuits, valuation of sensory stimuli, and mediation of reward or reinforcement signals. Considerable evidence also supports a neurotransmitter role for dopamine in gastropod molluscs, and there is growing appreciation for its potential common functions across phylogeny. This article reviews evidence for dopamine's transmitter role in the nervous systems of gastropods. The functional properties of identified dopaminergic neurons in well-characterized neural circuits suggest a hypothetical incremental sequence by which dopamine accumulated its diverse roles. The successive acquisition of dopamine functions is proposed in the context of gastropod feeding behavior: (1) sensation of potential nutrients, (2) activation of motor circuits, (3) selection of motor patterns from multifunctional circuits, (4) valuation of sensory stimuli with reference to internal state, (5) association of motor programs with their outcomes, and (6) coincidence detection between sensory stimuli and their consequences. At each stage of this sequence, it is proposed that existing functions of dopaminergic neurons favored their recruitment to fulfill additional information processing demands. Common functions of dopamine in other intensively studied groups, ranging from mammals and insects to nematodes, suggest an ancient origin for this progression.
Collapse
|
3
|
Morgan LD, Mohammed A, Patel BA, Arundell M, Jennert-Burtson K, Hernádi L, Overall A, Bowler LD, O'Hare D, Yeoman MS. Decreased 14-3-3 expression correlates with age-related regional reductions in CNS dopamine and motor function in the pond snail, Lymnaea. Eur J Neurosci 2020; 53:1394-1411. [PMID: 33131114 DOI: 10.1111/ejn.15033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 11/28/2022]
Abstract
Ageing is associated in many organisms with a reduction in motor movements. We have previously shown that the rate of feeding movements of the pond snail, Lymnaea, decreased with age but the underlying cause is not fully understood. Here, we show that dopamine in the cerebro-buccal complex is an important signalling molecule regulating feeding frequency in Lymnaea and that ageing is associated with a decrease in CNS dopamine. A proteomic screen of young and old CNSs highlighted a group of proteins that regulate stress responses. One of the proteins identified was 14-3-3, which can enhance the synthesis of dopamine. We show that the Lymnaea 14-3-3 family exists as three distinct isoforms. The expression of the 29 kDa isoform (14-3-3Lym3) in the cerebro-buccal complex decreased with age and correlated with feeding rate. Using a 14-3-3 antagonist (R18) we were able to reduce the synthesis of L-DOPA and dopamine in ex vivo cerebro-buccal complexes. Together these data suggest that an age-related reduction in 14-3-3 can decrease CNS dopamine leading to a consequential reduction in feeding rate.
Collapse
Affiliation(s)
- Lindsay D Morgan
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Aiyaz Mohammed
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Bhavik Anil Patel
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Martin Arundell
- Department of Bioengineering, College of Science Technology & Medicine, Imperial College, University of London, London, UK
| | - Katrin Jennert-Burtson
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - László Hernádi
- Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
| | - Andrew Overall
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Lucas D Bowler
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Danny O'Hare
- Department of Bioengineering, College of Science Technology & Medicine, Imperial College, University of London, London, UK
| | - Mark S Yeoman
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| |
Collapse
|
4
|
Multiple Local Synaptic Modifications at Specific Sensorimotor Connections after Learning Are Associated with Behavioral Adaptations That Are Components of a Global Response Change. J Neurosci 2020; 40:4363-4371. [PMID: 32366723 DOI: 10.1523/jneurosci.2647-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/21/2022] Open
Abstract
Learning causes local changes in synaptic connectivity and coordinated, global changes affecting many aspects of behavior. How do local synaptic changes produce global behavioral changes? In the hermaphroditic mollusc Aplysia, after learning that food is inedible, memory is expressed as bias to reject a food and to reduce responses to that food. We now show that memory is also expressed as an increased bias to reject even a nonfood object. The increased bias to rejection is partially explained by changes in synaptic connections from primary mechanoafferents to five follower neurons with well defined roles in producing different feeding behaviors. Previously, these mechanoafferents had been shown to play a role in memory consolidation. Connectivity changes differed for each follower neuron: the probability that cells were connected changed; excitation changed to inhibition and vice versa; and connection amplitude changed. Thus, multiple neural changes at different sites underlie specific aspects of a coordinated behavioral change. Changes in the connectivity between mechanoafferents and their followers cannot account for all of the behavioral changes expressed after learning, indicating that additional synaptic sites are also changed. Access to the circuit controlling feeding can help determine the logic and cellular mechanisms by which multiple local synaptic changes produce an integrated, global change in behavior.SIGNIFICANCE STATEMENT How do local changes in synapses affect global behavior? Studies on invertebrate preparations usually examine synaptic changes at specific neural sites, producing a specific behavioral change. However, memory may be expressed by multiple behavioral changes. We report that a change in behavior after learning in Aplysia is accomplished, in part, by regulating connections between mechanoafferents and their synaptic followers. For some followers, the connection probabilities change; for others, the connection signs are reversed; in others, the connection strength is modified. Thus, learning produces changes in connectivity at multiple sites, via multiple synaptic mechanisms that are consistent with the observed behavioral change.
Collapse
|
5
|
Network Degeneracy and the Dynamics of Task Switching in the Feeding Circuit in Aplysia. J Neurosci 2019; 39:8705-8716. [PMID: 31548235 DOI: 10.1523/jneurosci.1454-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 11/21/2022] Open
Abstract
The characteristics of a network are determined by parameters that describe the intrinsic properties of the component neurons and their synapses. Degeneracy occurs when more than one set of parameters produces the same (or very similar) output. It is not clear whether network degeneracy impacts network function or is simply a reflection of the fact that, although it is important for a network to be able to generate a particular output, it is not important how this is achieved. We address this issue in the feeding network of the mollusc Aplysia In this system, there are two stimulation paradigms that generate egestive motor programs: repetition priming and positive biasing. We demonstrate that circuit parameters differ in the 2 cases (e.g., egestive repetition priming requires activity in an interneuron, B20, which is not essential for positive biasing). We show that degeneracy has consequences for task switching. If egestive repetition priming is immediately followed by stimulation of an ingestive input to the feeding central pattern generator, the first few cycles of activity are egestive (not ingestive). In this situation, there is a task switch cost. This "cost" is in part due to the potentiating effect of egestive repetition priming on B20. In contrast, there is no switch cost after positive biasing. Stimulation of the ingestive central pattern generator input immediately triggers ingestive activity. Our results indicate that the mechanisms used to pattern activity can impact network function in that they can determine how readily a network can switch from one configuration to another.SIGNIFICANCE STATEMENT A particular pattern of neural activity can be generated by more than one set of circuit parameters. How or whether this impacts network function is unclear. We address this issue in the feeding network of Aplysia and demonstrate that degeneracy in network function can have consequences for task switching. Namely, we show that, when egestive activity is generated via one set of circuit modifications, an immediate switch to ingestive activity is not possible. In contrast, rapid transitions to ingestive activity are possible if egestive activity is generated via a different set of circuit modifications.
Collapse
|
6
|
Abstract
The neurotransmitter gamma-aminobutyric acid (GABA) is widely distributed in the mammalian central nervous system, where it acts as a major mediator of synaptic inhibition. GABA also serves as a neurotransmitter in a range of invertebrate phyla, including arthropods, echinoderms, annelids, nematodes, and platyhelminthes. This article reviews evidence supporting the neurotransmitter role of GABA in gastropod molluscs, with an emphasis on its presence in identified neurons and well-characterized neural circuits. The collective findings indicate that GABAergic signaling participates in the selection and specification of motor programs, as well as the bilateral coordination of motor circuits. While relatively few in number, GABAergic neurons can influence neural circuits via inhibitory, excitatory, and modulatory synaptic actions. GABA's colocalization with peptidergic and classical neurotransmitters can broaden its integrative capacity. The functional properties of GABAergic neurons in simpler gastropod systems may provide insight into the role of this neurotransmitter phenotype in more complex brains.
Collapse
Key Words
- BCI, buccal-cerebral interneuron
- CBC, cerebral-buccal connective
- CBI, cerebral-buccal interneuron
- CNS, central nervous system
- CPG, central pattern generator
- Cr-Aint, cerebral A interneuron
- DA, dopamine
- EPSP, excitatory postsynaptic potential
- FCAP, feeding circuit activating peptide
- GABA, gamma-aminobutyric acid
- GABAli, GABA-like immunoreactivity
- IPSP, inhibitory postsynaptic potential
- PKC, protein kinase C
Collapse
Affiliation(s)
- MARK W. MILLER
- Institute of Neurobiology and Department of Anatomy and Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico 00901
| |
Collapse
|
7
|
Brown JW, Schaub BM, Klusas BL, Tran AX, Duman AJ, Haney SJ, Boris AC, Flanagan MP, Delgado N, Torres G, Rolón-Martínez S, Vaasjo LO, Miller MW, Gillette R. A role for dopamine in the peripheral sensory processing of a gastropod mollusc. PLoS One 2018; 13:e0208891. [PMID: 30586424 PMCID: PMC6306152 DOI: 10.1371/journal.pone.0208891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/27/2018] [Indexed: 11/26/2022] Open
Abstract
Histological evidence points to the presence of dopamine (DA) in the cephalic sensory organs of multiple gastropod molluscs, suggesting a possible sensory role for the neurotransmitter. We investigated the sensory function of DA in the nudipleuran Pleurobranchaea californica, in which the central neural correlates of sensation and foraging behavior have been well characterized. Tyrosine hydroxylase-like immunoreactivity (THli), a signature of the dopamine synthetic pathway, was similar to that found in two other opisthobranchs and two pulmonates previously studied: 1) relatively few (<100) THli neuronal somata were observed in the central ganglia, with those observed found in locations similar to those documented in the other snails but varying in number, and 2) the vast majority of THli somata were located in the peripheral nervous system, were associated with ciliated, putative primary sensory cells, and were highly concentrated in chemotactile sensory organs, giving rise to afferent axons projecting to the central nervous system. We extended these findings by observing that applying a selective D2/D3 receptor antagonist to the chemo- and mechanosensory oral veil-tentacle complex of behaving animals significantly delayed feeding behavior in response to an appetitive stimulus. A D1 blocker had no effect. Recordings of the two major cephalic sensory nerves, the tentacle and large oral veil nerves, in a deganglionated head preparation revealed a decrease of stimulus-evoked activity in the former nerve following application of the same D2/D3 antagonist. Broadly, our results implicate DA in sensation and engender speculation regarding the foraging-based decisions the neurotransmitter may serve in the nervous system of Pleurobranchaea and, by extension, other gastropods.
Collapse
Affiliation(s)
- Jeffrey W. Brown
- Program in Biophysics and Computational Biology, University of Illinois, Urbana, Illinois, United States of America
- College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| | - Brittany M. Schaub
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Bennett L. Klusas
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Andrew X. Tran
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Alexander J. Duman
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Samantha J. Haney
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Abigail C. Boris
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Megan P. Flanagan
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Nadia Delgado
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Grace Torres
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Solymar Rolón-Martínez
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Lee O. Vaasjo
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Mark W. Miller
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Rhanor Gillette
- Program in Biophysics and Computational Biology, University of Illinois, Urbana, Illinois, United States of America
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Molecular & Integrative Physiology and the Neuroscience Program, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
8
|
Zhang G, Yuan WD, Vilim FS, Romanova EV, Yu K, Yin SY, Le ZW, Xue YY, Chen TT, Chen GK, Chen SA, Cropper EC, Sweedler JV, Weiss KR, Jing J. Newly Identified Aplysia SPTR-Gene Family-Derived Peptides: Localization and Function. ACS Chem Neurosci 2018. [PMID: 29543430 DOI: 10.1021/acschemneuro.7b00513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
When individual neurons in a circuit contain multiple neuropeptides, these peptides can target different sets of follower neurons. This endows the circuit with a certain degree of flexibility. Here we identified a novel family of peptides, the Aplysia SPTR-Gene Family-Derived peptides (apSPTR-GF-DPs). We demonstrated apSPTR-GF-DPs, particularly apSPTR-GF-DP2, are expressed in the Aplysia CNS using immunohistochemistry and MALDI-TOF MS. Furthermore, apSPTR-GF-DP2 is present in single projection neurons, e.g., in the cerebral-buccal interneuron-12 (CBI-12). Previous studies have demonstrated that CBI-12 contains two other peptides, FCAP/CP2. In addition, CBI-12 and CP2 promote shortening of the protraction phase of motor programs. Here, we demonstrate that FCAP shortens protraction. Moreover, we show that apSPTR-GF-DP2 also shortens protraction. Surprisingly, apSPTR-GF-DP2 does not increase the excitability of retraction interneuron B64. B64 terminates protraction and is modulated by FCAP/CP2 and CBI-12. Instead, we show that apSPTR-GF-DP2 and CBI-12 increase B20 excitability and B20 activity can shorten protraction. Taken together, these data indicate that different CBI-12 peptides target different sets of pattern-generating interneurons to exert similar modulatory actions. These findings provide the first definitive evidence for SPTR-GF's role in modulation of feeding, and a form of molecular degeneracy by multiple peptide cotransmitters in single identified neurons.
Collapse
Affiliation(s)
- Guo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Wang-ding Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Ferdinand S. Vilim
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Elena V. Romanova
- Beckman Institute for Advanced Science and Technology and Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ke Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Si-yuan Yin
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Zi-wei Le
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Ying-yu Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Ting-ting Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Guo-kai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Song-an Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Elizabeth C. Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jonathan V. Sweedler
- Beckman Institute for Advanced Science and Technology and Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Klaudiusz R. Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, China
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
9
|
Vaasjo LO, Quintana AM, Habib MR, Mendez de Jesus PA, Croll RP, Miller MW. GABA-like immunoreactivity in Biomphalaria: Colocalization with tyrosine hydroxylase-like immunoreactivity in the feeding motor systems of panpulmonate snails. J Comp Neurol 2018; 526:1790-1805. [PMID: 29633264 DOI: 10.1002/cne.24448] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/24/2022]
Abstract
The simpler nervous systems of certain invertebrates provide opportunities to examine colocalized classical neurotransmitters in the context of identified neurons and well defined neural circuits. This study examined the distribution of γ-aminobutyric acid-like immunoreactivity (GABAli) in the nervous system of the panpulmonates Biomphalaria glabrata and Biomphalaria alexandrina, major intermediate hosts for intestinal schistosomiasis. GABAli neurons were localized in the cerebral, pedal, and buccal ganglia of each species. With the exception of a projection to the base of the tentacle, GABAli fibers were confined to the CNS. As GABAli was previously reported to be colocalized with markers for dopamine (DA) in five neurons in the feeding network of the euopisthobranch gastropod Aplysia californica (Díaz-Ríos, Oyola, & Miller, 2002), double-labeling protocols were used to compare the distribution of GABAli with tyrosine hydroxylase immunoreactivity (THli). As in Aplysia, GABAli-THli colocalization was limited to five neurons, all of which were located in the buccal ganglion. Five GABAli-THli cells were also observed in the buccal ganglia of two other intensively studied panpulmonate species, Lymnaea stagnalis and Helisoma trivolvis. These findings indicate that colocalization of the classical neurotransmitters GABA and DA in feeding central pattern generator (CPG) interneurons preceded the divergence of euopisthobranch and panpulmonate taxa. These observations also support the hypothesis that heterogastropod feeding CPG networks exhibit a common universal design.
Collapse
Affiliation(s)
- Lee O Vaasjo
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Alexandra M Quintana
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Mohamed R Habib
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Paola A Mendez de Jesus
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark W Miller
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
10
|
Neveu CL, Costa RM, Homma R, Nagayama S, Baxter DA, Byrne JH. Unique Configurations of Compression and Truncation of Neuronal Activity Underlie l-DOPA-Induced Selection of Motor Patterns in Aplysia. eNeuro 2017; 4:ENEURO.0206-17.2017. [PMID: 29071298 PMCID: PMC5654236 DOI: 10.1523/eneuro.0206-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/05/2017] [Accepted: 09/28/2017] [Indexed: 12/29/2022] Open
Abstract
A key issue in neuroscience is understanding the ways in which neuromodulators such as dopamine modify neuronal activity to mediate selection of distinct motor patterns. We addressed this issue by applying either low or high concentrations of l-DOPA (40 or 250 μM) and then monitoring activity of up to 130 neurons simultaneously in the feeding circuitry of Aplysia using a voltage-sensitive dye (RH-155). l-DOPA selected one of two distinct buccal motor patterns (BMPs): intermediate (low l-DOPA) or bite (high l-DOPA) patterns. The selection of intermediate BMPs was associated with shortening of the second phase of the BMP (retraction), whereas the selection of bite BMPs was associated with shortening of both phases of the BMP (protraction and retraction). Selection of intermediate BMPs was also associated with truncation of individual neuron spike activity (decreased burst duration but no change in spike frequency or burst latency) in neurons active during retraction. In contrast, selection of bite BMPs was associated with compression of spike activity (decreased burst latency and duration and increased spike frequency) in neurons projecting through specific nerves, as well as increased spike frequency of protraction neurons. Finally, large-scale voltage-sensitive dye recordings delineated the spatial distribution of neurons active during BMPs and the modification of that distribution by the two concentrations of l-DOPA.
Collapse
Affiliation(s)
- Curtis L Neveu
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Renan M Costa
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Ryota Homma
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Shin Nagayama
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - John H Byrne
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
11
|
Liu Z, Zhou Z, Wang L, Qiu L, Zhang H, Wang H, Song L. CgA1AR-1 acts as an alpha-1 adrenergic receptor in oyster Crassostrea gigas mediating both cellular and humoral immune response. FISH & SHELLFISH IMMUNOLOGY 2016; 58:50-58. [PMID: 27633678 DOI: 10.1016/j.fsi.2016.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/02/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
We have now cloned an alpha-1 adrenergic receptor (A1AR) from the cDNA library of oyster Crassostrea gigas, designating as CgA1AR-1. The full length of CgA1AR-1 was 1149 bp and it encodes a protein of 382 amino acids containing a 7 transmembrane domain, whose putative topology was similar to the A1ARs in higher organisms and shared similarity of 19% with mammalian A1ARs according to the phylogenic analysis. After cell transfection of CgA1AR-1 into HEK293T cells and the incubation with its specific agonist norepinephrine (NE), the concentration of second messenger Ca2+ increased significantly (p < 0.05). But, this increasing of Ca2+ could be inhibited by adding A1AR antagonist DOX. Tissue distribution assays using qRT-PCR suggested that CgA1AR-1 mRNA was ubiquitously expressed in all the major tissues of oyster. LPS stimulation could induce the up-regulation of CgA1AR-1 mRNA in haemocytes from 12 h to 24 h post stimulation. Moreover, the blocking of CgA1AR-1 by DOX before LPS stimulation affected the mRNA expression of oyster TNF (CGI_10005109 and CGI_10006440) in haemocytes, resulting in the rise of haemocyte phagocytic rate and apoptosis index. In addition to cellular immunity, CgA1AR-1 was also involved in humoral immunity of oyster. Inhibition of CgA1AR-1 with DOX could repress the up-regulation of LZY and SOD activities caused by LPS stimulation. These results suggested that CgA1AR-1 acted as an α-1 adrenergic receptor in cetacholaminergic neuroendocrine-immune network mediating both cellular and humoral immune response.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Apoptosis
- Base Sequence
- Calcium/metabolism
- Crassostrea/enzymology
- Crassostrea/genetics
- Crassostrea/immunology
- Cyclic AMP/metabolism
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Hemocytes/immunology
- Immunity, Cellular
- Immunity, Humoral
- Phagocytosis
- Phylogeny
- Receptors, Adrenergic, alpha-1/chemistry
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Sequence Homology, Amino Acid
- Tumor Necrosis Factors/genetics
- Tumor Necrosis Factors/metabolism
Collapse
Affiliation(s)
- Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
12
|
Vallejo D, Habib MR, Delgado N, Vaasjo LO, Croll RP, Miller MW. Localization of tyrosine hydroxylase-like immunoreactivity in the nervous systems of Biomphalaria glabrata and Biomphalaria alexandrina, intermediate hosts for schistosomiasis. J Comp Neurol 2014; 522:2532-52. [PMID: 24477836 PMCID: PMC4043854 DOI: 10.1002/cne.23548] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 11/09/2022]
Abstract
Planorbid snails of the genus Biomphalaria are major intermediate hosts for the digenetic trematode parasite Schistosoma mansoni. Evidence suggests that levels of the neurotransmitter dopamine (DA) are reduced during the course of S. mansoni multiplication and transformation within the snail. This investigation used immunohistochemical methods to localize tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of catecholamines, in the nervous system of Biomphalaria. The two species examined, Biomphalaria glabrata and Biomphalaria alexandrina, are the major intermediate hosts for S. mansoni in sub-Saharan Africa, where more than 90% of global cases of human intestinal schistosomiasis occur. TH-like immunoreactive (THli) neurons were distributed throughout the central nervous system (CNS) and labeled fibers were present in all commissures, connectives, and nerves. Some asymmetries were observed, including a large distinctive neuron (LPeD1) in the pedal ganglion described previously in several pulmonates. The majority of TH-like immunoreactive neurons were detected in the peripheral nervous system (PNS), especially in lip and foot regions of the anterior integument. Independent observations supporting the dopaminergic phenotype of THli neurons included 1) block of LPeD1 synaptic signaling by the D2/3 antagonist sulpiride, and 2) the similar localization of aqueous aldehyde (FaGlu)-induced fluorescence. The distribution of THli neurons indicates that, as in other gastropods, dopamine functions as a sensory neurotransmitter and in the regulation of feeding and reproductive behaviors in Biomphalaria. It is hypothesized that infection could stimulate transmitter release from dopaminergic sensory neurons and that dopaminergic signaling could contribute to modifications of both host and parasite behavior.
Collapse
Affiliation(s)
- Deborah Vallejo
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Blvd del Valle, San Juan, Puerto Rico 00901
| | - Mohammed R. Habib
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
- Theodor Bilharz Research Institute, Giza, Egypt
| | - Nadia Delgado
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Blvd del Valle, San Juan, Puerto Rico 00901
| | - Lee O. Vaasjo
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Blvd del Valle, San Juan, Puerto Rico 00901
| | - Roger P. Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Mark W. Miller
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Blvd del Valle, San Juan, Puerto Rico 00901
| |
Collapse
|
13
|
Svensson E, Proekt A, Jing J, Weiss KR. PKC-mediated GABAergic enhancement of dopaminergic responses: implication for short-term potentiation at a dual-transmitter synapse. J Neurophysiol 2014; 112:22-9. [PMID: 24717352 DOI: 10.1152/jn.00794.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transmitter-mediated homosynaptic potentiation is generally implemented by the same transmitter that mediates the excitatory postsynaptic potentials (EPSPs), e.g., glutamate. When a presynaptic neuron contains more than one transmitter, however, potentiation can in principle be implemented by a transmitter different from that which elicits the EPSPs. Neuron B20 in Aplysia contains both dopamine and GABA. Although only dopamine acts as the fast excitatory transmitter at the B20-to-B8 synapse, GABA increases the size of these dopaminergic EPSPs. We now provide evidence that repeated stimulation of B20 potentiates B20-evoked dopaminergic EPSPs in B8 apparently via a postsynaptic mechanism, and short-term potentiation of this synapse is critical for the establishment and maintenance of an egestive network state. We show that GABA can act postsynaptically to increase dopamine currents that are elicited by direct applications of dopamine to B8 and that dopamine is acting on a 5-HT3-like receptor. This potentiation is mediated by GABAB-like receptors as GABAB-receptor agonists and antagonists, respectively, mimicked and blocked the potentiating actions of GABA. The postsynaptic actions of GABA rely on a G protein-mediated activation of PKC. Our results suggest that the postsynaptic action of cotransmitter-mediated potentiation may contribute to the maintenance of the egestive state of Aplysia feeding network and, in more general terms, may participate in the plasticity of networks that mediate complex behaviors.
Collapse
Affiliation(s)
- Erik Svensson
- Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York
| | - Alex Proekt
- Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York
| | - Jian Jing
- Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York
| | - Klaudiusz R Weiss
- Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
14
|
Pfister G, Rieb J, Avramov M, Rock T, Griebler C, Schramm KW. Detection of catecholamines in single specimens of groundwater amphipods. Anal Bioanal Chem 2013; 405:5571-82. [DOI: 10.1007/s00216-013-6952-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/26/2013] [Accepted: 03/26/2013] [Indexed: 11/25/2022]
|
15
|
Latent modulation: a basis for non-disruptive promotion of two incompatible behaviors by a single network state. J Neurosci 2013; 33:3786-98. [PMID: 23447591 DOI: 10.1523/jneurosci.5371-12.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Behavioral states often preferentially enhance specific classes of behavior and suppress incompatible behaviors. In the nervous system, this may involve upregulation of the efficacy of neural modules that mediate responses to one stimulus and suppression of modules that generate antagonistic or incompatible responses to another stimulus. In Aplysia, prestimulation of egestive inputs [esophageal nerve (EN)] facilitates subsequent EN-elicited egestive responses and weakens ingestive responses to ingestive inputs [Cerebral-Buccal Interneuron (CBI-2)]. However, a single state can also promote incompatible behaviors in response to different stimuli. This is the case in Aplysia, where prestimulation of CBI-2 inputs not only enhances subsequent CBI-2-elicited ingestive responses, but also strengthens EN-elicited egestive responses. We used the modularly organized feeding network of Aplysia to characterize the organizational principles that allow a single network state to promote two opposing behaviors, ingestion and egestion, without the two interfering with each other. We found that the CBI-2 prestimulation-induced state upregulates the excitability of neuron B65 which, as a member of the egestive module, increases the strength of egestive responses. Furthermore, we found that this upregulation is likely mediated by the actions of the neuropeptides FCAP (Feeding Circuit Activating Peptide) and CP2 (Cerebral Peptide 2). This increased excitability is mediated by a form of modulation that we refer to as "latent modulation" because it is established during stimulation of CBI-2, which does not activate B65. However, when B65 is recruited into EN-elicited egestive responses, the effects of the latent modulation are expressed as a higher B65 firing rate and a resultant strengthening of the egestive response.
Collapse
|
16
|
Functional differentiation of a population of electrically coupled heterogeneous elements in a microcircuit. J Neurosci 2013; 33:93-105. [PMID: 23283325 DOI: 10.1523/jneurosci.3841-12.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although electrical coupling is present in many microcircuits, the extent to which it will determine neuronal firing patterns and network activity remains poorly understood. This is particularly true when the coupling is present in a population of heterogeneous, or intrinsically distinct, circuit elements. We examine this question in the Aplysia californica feeding motor network in five electrically coupled identified cells, B64, B4/5, B70, B51, and a newly identified interneuron B71. These neurons exhibit distinct activity patterns during the radula retraction phase of motor programs. In a subset of motor programs, retraction can be flexibly extended by adding a phase of network activity (hyper-retraction). This is manifested most prominently as an additional burst in the radula closure motoneuron B8. Two neurons that excite B8 (B51 and B71) and one that inhibits it (B70) are active during hyper-retraction. Consistent with their near synchronous firing, B51 and B71 showed one of the strongest coupling ratios in this group of neurons. Nonetheless, by manipulating their activity, we found that B51 preferentially acted as a driver of B64/B71 activity, whereas B71 played a larger role in driving B8 activity. In contrast, B70 was weakly coupled to other neurons and its inhibition of B8 counteracted the excitatory drive to B8. Finally, the distinct firing patterns of the electrically coupled neurons were fine-tuned by their intrinsic properties and the largely chemical cross-inhibition between some of them. Thus, the small microcircuit of the Aplysia feeding network is advantageous in understanding how a population of electrically coupled heterogeneous neurons may fulfill specific network functions.
Collapse
|
17
|
Yang B, Ni J, Zeng Z, Shi B, You W, Ke C. Cloning and characterization of the dopamine like receptor in the oyster Crassostrea angulata: expression during the ovarian cycle. Comp Biochem Physiol B Biochem Mol Biol 2012; 164:168-75. [PMID: 23274282 DOI: 10.1016/j.cbpb.2012.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 01/11/2023]
Abstract
We cloned and characterized a complete cDNA encoding a dopamine receptor (DAR) named Ca-DA1R from Fujian oyster, Crassostrea angulata. The 2843 bp long cDNA sequence includes a 916-bp 5'-UTR, the 1197 bp ORF which encodes a putative protein of 399 amino acids, and a 729 bp 3'-UTR. The Ca-DA1R sequence possesses typical characteristics of a D1 receptor: two main features being a short third intracellular loop and a long inner COOH-terminal tail domain. Using a real-time PCR approach, expression profiles of Ca-DA1R were analyzed in adult tissues and during the four stages of ovarian development. Ca-DA1R was expressed ubiquitously, although transcript levels varied between tissues, with higher mRNA levels detected in the ovary, labial palps and mantle. During the four stages of ovarian development, Ca-DA1R mRNA expression level was higher in the proliferation stage than in the other three stages during the ovary cycle. In situ hybridization results reveal that the Ca-DA1R mRNA is mainly expressed in the epithelium of the gonoducts. These observations suggest that Ca-DA1R binding of DA probably plays an important role in early ovarian development and via regulating oocyte locomotion cooperates with the 5-HT receptor system during the ovarian cycle in C. angulata.
Collapse
Affiliation(s)
- Bingye Yang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China
| | | | | | | | | | | |
Collapse
|
18
|
Norepinephrine depresses the nitric oxide production in the ascidian hemocytes. J Invertebr Pathol 2012; 111:182-5. [PMID: 22820407 DOI: 10.1016/j.jip.2012.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 07/06/2012] [Accepted: 07/11/2012] [Indexed: 11/22/2022]
Abstract
Norepinephrine (NE) is a neuro-hormone released by vertebrates and invertebrates during acute stress, and can influence their immune function. We found that NE depressed the production of nitric oxide (NO) by the hemocytes of ascidians. Our results with a fluorescent indicator for NO in assays using both NE and either α or β-antagonist revealed that NE down-regulated NO production by the ascidian hemocytes. Our data suggest that NE may be acting via specific hemocyte receptors to induce a decrease in immune function.
Collapse
|
19
|
Crisp KM, Gallagher BR, Mesce KA. Mechanisms contributing to the dopamine induction of crawl-like bursting in leech motoneurons. ACTA ACUST UNITED AC 2012; 215:3028-36. [PMID: 22660774 DOI: 10.1242/jeb.069245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Dopamine (DA) activates fictive crawling behavior in the medicinal leech. To identify the cellular mechanisms underlying this activation at the level of crawl-specific motoneuronal bursting, we targeted potential cAMP-dependent events that are often activated through DA(1)-like receptor signaling pathways. We found that isolated ganglia produced crawl-like motoneuron bursting after bath application of phosphodiesterase inhibitors (PDIs) that upregulated cAMP. This bursting persisted in salines in which calcium ions were replaced with equimolar cobalt or nickel, but was blocked by riluzole, an inhibitor of a persistent sodium current. PDI-induced bursting contained a number of patterned elements that were statistically similar to those observed during DA-induced fictive crawling, except that one motoneuron (CV) exhibited bursting during the contraction rather than the elongation phase of crawling. Although DA and the PDIs produced similar bursting profiles, intracellular recordings from motoneurons revealed differences in altered membrane properties. For example, DA lowered motoneuron excitability whereas the PDIs increased resting discharge rates. We suggest that PDIs (and DA) activate a sodium-influx-dependent timing mechanism capable of setting the crawl rhythm and that multiple DA receptor subtypes are involved in shaping and modulating the phase relationships and membrane properties of cell-specific members of the crawl network to generate crawling.
Collapse
Affiliation(s)
- Kevin M Crisp
- Biology Department and Neuroscience Program, St Olaf College, 1520 St Olaf Avenue, Northfield, MN 55057, USA.
| | | | | |
Collapse
|
20
|
López-Doval JC, Kukkonen JVK, Rodrigo P, Muñoz I. Effects of indomethacin and propranolol on Chironomus riparius and Physella (Costatella) acuta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 78:110-115. [PMID: 22153307 DOI: 10.1016/j.ecoenv.2011.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 11/06/2011] [Accepted: 11/15/2011] [Indexed: 05/31/2023]
Abstract
New analytical methods are available for detecting novel xenobiotic compounds in freshwater systems. Pharmaceuticals are suspected of having effects on freshwater biota at very low concentrations, although the nature of these effects remains unclear. Previous data from the Llobregat River revealed a positive statistical relationship between the biomass of benthic macroinvertebrates and the presence of certain non-steroidal anti-inflammatory drugs (NSAIDs) and beta-blockers. Here, experiments were conducted with the midge Chironomus riparius and the freshwater snail Physella (Costatella) acuta in sediments and water, respectively. The sediments and water were treated with the pharmaceuticals propranolol and indomethacin, with the aims of assaying the effects of these compounds on the organisms and testing the statistical relationships observed in field. The variables measured were survival; C. riparius biomass; and the carbon/nitrogen ratio, lipid content and fertility of freshwater snails. Indomethacin in treated sediments induced an increase in C. riparius biomass, whereas propranolol inhibited growth, albeit at marginal statistical significance. By contrast, indomethacin in water had no effect on any of the parameters measured in P. acuta.
Collapse
Affiliation(s)
- J C López-Doval
- Department of Ecology, University of Barcelona, Av. Diagonal, 645, 08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
21
|
Coordination of distinct motor structures through remote axonal coupling of projection interneurons. J Neurosci 2011; 31:15438-49. [PMID: 22031890 DOI: 10.1523/jneurosci.3741-11.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Complex behaviors often require coordinated movements of dissimilar motor structures. The underlying neural mechanisms are poorly understood. We investigated cycle-by-cycle coordination of two dissimilar feeding structures in Aplysia californica: the external lips and the internal radula. During feeding, the lips open while the radula protracts. Lip and radula motoneurons are located in the cerebral and buccal ganglia, respectively, and radula motoneurons are controlled by a well characterized buccal central pattern generator (CPG). Here, we examined whether the three electrically coupled lip motoneurons C15/16/17 are controlled by the buccal CPG or by a previously postulated cerebral CPG. Two buccal-cerebral projection interneurons, B34 and B63, which are part of the buccal CPG and mediate radula protraction, monosynaptically excite C15/16/17. Recordings from the B34 axon in the cerebral ganglion demonstrate its direct electrical coupling with C15/16/17, eliminating the need for a cerebral CPG. Moreover, when the multifunctional buccal CPG generates multiple forms of motor programs due to the activation of two inputs, the command-like neuron CBI-2 and the esophageal nerve (EN), C15/16 exhibit activity patterns that are distinct from C17. These distinct activity patterns result from combined activity of B34 and B63 and their differential excitation of C15/16 versus C17. In more general terms, we identified neuronal mechanisms that allow a single CPG to coordinate the phasing and activity of remotely located motoneurons innervating distinct structures that participate in the production of different motor outputs. We also demonstrated that axodendritic electrical coupling by projection interneurons plays a pivotal role in coordinating activity of these remotely located neurons.
Collapse
|
22
|
Nargeot R, Simmers J. Neural mechanisms of operant conditioning and learning-induced behavioral plasticity in Aplysia. Cell Mol Life Sci 2011; 68:803-16. [PMID: 21042832 PMCID: PMC11114654 DOI: 10.1007/s00018-010-0570-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 01/17/2023]
Abstract
Associative learning in goal-directed behaviors, in contrast to reflexive behaviors, can alter processes of decision-making in the selection of appropriate action and its initiation, thereby enabling animals, including humans, to gain a predictive understanding of their external environment. In the mollusc Aplysia, recent studies on appetitive operant conditioning in which the animal learns about the positive consequences of its behavior have provided insights into this form of associative learning which, although ubiquitous, remains mechanistically poorly understood. The findings support increasing evidence that central circuit- and cell-wide sites other than chemical synaptic connections, including electrical coupling and membrane conductances controlling intrinsic neuronal excitability and underlying voltage-dependent plateauing or oscillatory mechanisms, may serve as the neural substrates for behavioral plasticity resulting from operant conditioning. Aplysia therefore continues to provide a model system for understanding learning and memory formation that enables establishing the neurobiological links between behavioral, network, and cellular levels of analysis.
Collapse
Affiliation(s)
- Romuald Nargeot
- Laboratoire Mouvement, Adaptation, Cognition, Université Bordeaux 2, 146 rue Léo Saignat, Bordeaux, France.
| | | |
Collapse
|
23
|
Repetition priming of motoneuronal activity in a small motor network: intercellular and intracellular signaling. J Neurosci 2010; 30:8906-19. [PMID: 20592213 DOI: 10.1523/jneurosci.1287-10.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The characteristics of central pattern generator (CPG) outputs are subject to extensive modulation. Previous studies of neuromodulation largely focused on immediate actions of neuromodulators, i.e., actions that were exerted at the time when either neuromodulators were present or neuromodulatory inputs to the CPG were active. However, neuromodulatory actions are known to persist when neuromodulators are no longer present. In Aplysia, stimulation of cerebral-buccal interneuron-2 (CBI-2), which activates the feeding CPG, produces a repetition priming of motor programs. This priming is reflected in an increase of firing of motoneurons. As CBI-2 contains two neuromodulatory peptides, FCAP (feeding circuit-activating peptide) and CP2 (cerebral peptide 2), we hypothesized that repetition priming may involve persistent peptidergic neuromodulation. We find that these peptides produce priming-like effects, i.e., they increase the firing of radula-opening (B48) and radula-closing (B8) motoneurons during motor programs. Proekt et al. (2004, 2007) showed that repetition priming of neuron B8 is implemented by modulatory inputs that B8 receives from the CPG. In contrast, our current findings indicate that priming of B48 may be implemented by a direct peptidergic modulation of its intrinsic characteristics via a pathway that activates cAMP. We suggest that the direct versus indirect, i.e., CPG-dependent, repetition priming may be related to the type of input that individual motoneurons receive from the CPG. We suggest that in motoneurons that are driven by concurrent excitation-inhibition, repetition priming is indirect as it is preferentially implemented via modulation of the output of CPGs. In contrast, in motoneurons that are driven by alternating excitation-inhibition, direct modulation of motoneurons may be preferentially used.
Collapse
|
24
|
Gonzalez-Riopedre M, Barcia R, Ramos-Martínez JI. Implication of PKC isozymes in the release of biogenic amines by mussel hemocytes: effect of PDGF, IL-2, and LPS. ACTA ACUST UNITED AC 2009; 311:727-34. [PMID: 19722220 DOI: 10.1002/jez.566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The innate immune system of marine mussels (Mytilus galloprovincialis) is operated by phagocytic cells termed hemocytes. Lipopolysaccharide (LPS), interleukin-2 (IL-2), or platelet-derived growth factor (PDGF) increase biogenic amine synthesis in these cells, and the enzymes Ca(2+)-independent protein kinase C (PKC) (p105/108) and Ca(2+)-dependent PKC (p60) are involved in these processes. Stimulation by PDGF induces a down-regulation process affecting the form p108 of the Ca(2+)-independent PKC. In addition, PDGF produces the increase of expression of p60 in the membrane fraction. IL-2 induces the disappearance of p108 from the membrane but does not affect the presence of p60 in cytosol or membrane. For its part, LPS activates exclusively p60 by a down-regulation mechanism. The ensemble of results suggests that each agonist starts a pathway that implicates the PKC isoenzymes that mediate the regulation of the activities dopa decarboxylase, dopamine beta-hydroxilase, and phenyletanolamine N-methyltranferase, which lead to different actions related to biogenic amine synthesis.
Collapse
Affiliation(s)
- M Gonzalez-Riopedre
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Campus of Lugo School of Veterinary, 27002 Lugo, Spain
| | | | | |
Collapse
|
25
|
Effects on feeding rate and biomarker responses of marine mussels experimentally exposed to propranolol and acetaminophen. Anal Bioanal Chem 2009; 396:649-56. [DOI: 10.1007/s00216-009-3182-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/16/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
|
26
|
Martínez-Rubio C, Serrano GE, Miller MW. Localization of biogenic amines in the foregut of Aplysia californica: catecholaminergic and serotonergic innervation. J Comp Neurol 2009; 514:329-42. [PMID: 19330814 PMCID: PMC4023389 DOI: 10.1002/cne.21991] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study examined the catecholaminergic and serotonergic innervation of the foregut of Aplysia californica, a model system in which the control of feeding behaviors can be investigated at the cellular level. Similar numbers (15-25) of serotonin-like-immunoreactive (5HTli) and tyrosine hydroxylase-like-immunoreactive (THli) fibers were present in each (bilateral) esophageal nerve (En), the major source of pregastric neural innervation in this system. The majority of En 5HTli and THli fibers originated from the anterior branch (En(2)), which innervates the pharynx and the anterior esophagus. Fewer fibers were present in the posterior branch (En(1)), which innervates the majority of the esophagus and the crop. Backfills of the two En branches toward the central nervous system (CNS) labeled a single, centrifugally projecting serotonergic fiber, originating from the metacerebral cell (MCC). The MCC fiber projected only to En(2). No central THli neurons were found to project to the En. Surveys of the pharynx and esophagus revealed major differences between their patterns of catecholaminergic (CA) and serotonergic innervation. Whereas THli fibers and cell bodies were distributed throughout the foregut, 5HTli fibers were present in restricted plexi, and no 5HTli somata were detected. Double-labeling experiments in the periphery revealed THli neurons projecting toward the buccal ganglion via En(2). Other afferents received dense perisomatic serotonergic innervation. Finally, qualitative and quantitative differences were observed between the buccal motor programs (BMPs) produced by stimulation of the two En branches. These observations increase our understanding of aminergic contributions to the pregastric regulation of Aplysia feeding behaviors.
Collapse
Affiliation(s)
- Clarissa Martínez-Rubio
- Institute of Neurobiology and Department of Anatomy and Neurobiology,
University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
00901
| | - Geidy E. Serrano
- Institute of Neurobiology and Department of Anatomy and Neurobiology,
University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
00901
| | - Mark W. Miller
- Institute of Neurobiology and Department of Anatomy and Neurobiology,
University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
00901
| |
Collapse
|
27
|
Chen M, Yang H, Xu B, Wang F, Liu B. Catecholaminergic responses to environmental stress in the hemolymph of zhikong scallopChlamys farreri. ACTA ACUST UNITED AC 2008; 309:289-96. [DOI: 10.1002/jez.458] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Levitan D, Lyons LC, Perelman A, Green CL, Motro B, Eskin A, Susswein AJ. Training with inedible food in Aplysia causes expression of C/EBP in the buccal but not cerebral ganglion. Learn Mem 2008; 15:412-6. [PMID: 18509115 DOI: 10.1101/lm.970408] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Training with inedible food in Aplysia increased expression of the transcription factor C/EBP in the buccal ganglia, which primarily have a motor function, but not in the cerebral or pleural ganglia. C/EBP mRNA increased immediately after training, as well as 1-2 h later. The increased expression of C/EBP protein lagged the increase in mRNA. Stimulating the lips and inducing feeding responses do not lead to long-term memory and did not cause increased C/EBP expression. Blocking polyADP-ribosylation, a process necessary for long-term memory after training, did not affect the increased C/EBP mRNA expression in the buccal ganglia.
Collapse
Affiliation(s)
- David Levitan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | | | |
Collapse
|
29
|
Hurwitz I, Ophir A, Korngreen A, Koester J, Susswein AJ. Currents contributing to decision making in neurons B31/B32 of Aplysia. J Neurophysiol 2007; 99:814-30. [PMID: 18032563 DOI: 10.1152/jn.00972.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Biophysical properties of neurons contributing to the ability of an animal to decide whether or not to respond were examined. B31/B32, two pairs of bilaterally symmetrical Aplysia neurons, are major participants in deciding to initiate a buccal motor program, the neural correlate of a consummatory feeding response. B31/B32 respond to an adequate stimulus after a delay, during which time additional stimuli influence the decision to respond. B31/B32 then respond with a ramp depolarization followed by a sustained soma depolarization and axon spiking that is the expression of a commitment to respond to food. Four currents contributing to decision making in B31/B32 were characterized, and their functional effects were determined, in current- and voltage-clamp experiments and with simulations. Inward currents arising from slow muscarinic transmission were characterized. These currents contribute to the B31/B32 depolarization. Their slow activation kinetics contribute to the delay preceding B31/B32 activity. After the delay, inward currents affect B31/B32 in the context of two endogenous inactivating outward currents: a delayed rectifier K+ current (I(K-V)) and an A-type K+ current (I(K-A)), as well as a high-threshold noninactivating outward current (I(maintained)). Hodgkin-Huxley kinetic analyses were performed on the outward currents. Simulations using equations from these analyses showed that I(K-V) and I(K-A) slow the ramp depolarization preceding the sustained depolarization. The three outward currents contribute to braking the B31/B32 depolarization and keeping the sustained depolarization at a constant voltage. The currents identified are sufficient to explain the properties of B31/B32 that play a role in generating the decision to feed.
Collapse
Affiliation(s)
- Itay Hurwitz
- Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | | | | | | | | |
Collapse
|
30
|
Sasaki K, Due MR, Jing J, Weiss KR. Feeding CPG in Aplysia directly controls two distinct outputs of a compartmentalized interneuron that functions as a CPG element. J Neurophysiol 2007; 98:3796-801. [PMID: 17913984 DOI: 10.1152/jn.00965.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the context of motor program generation in Aplysia, we characterize several functional aspects of intraneuronal compartmentalization in an interganglionic interneuron, CBI-5/6. CBI-5/6 was shown previously to have a cerebral compartment (CC) that includes a soma that does not generate full-size action potentials and a buccal compartment (BC) that does. We find that the synaptic connections made by the BC of CBI-5/6 in the buccal ganglion counter the activity of protraction-phase neurons and reinforce the activity of retraction-phase neurons. In buccal motor programs, the BC of CBI-5/6 fires phasically, and its premature activation can phase advance protraction termination and retraction initiation. Thus the BC of CBI-5/6 can act as an element of the central pattern generator (CPG). During protraction, the CC of CBI-5/6 receives direct excitatory inputs from the CPG elements, B34 and B63, and during retraction, it receives antidromically propagating action potentials that originate in the BC of CBI-5/6. Consequently, in its CC, CBI-5/6 receives depolarizing inputs during both protraction and retraction, and these depolarizations can be transmitted via electrical coupling to other neurons. In contrast, in its BC, CBI-5/6 uses spike-dependent synaptic transmission. Thus the CPG directly and differentially controls the program phases in which the two compartments of CBI-5/6 may transmit information to its targets.
Collapse
Affiliation(s)
- Kosei Sasaki
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
31
|
Cao A, Ramos-Martínez JI, Barcia R. In hemocytes from Mytilus galloprovincialis Lmk., treatment with corticotropin or growth factors conditions catecholamine release. Int Immunopharmacol 2007; 7:1395-402. [PMID: 17761343 DOI: 10.1016/j.intimp.2007.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/09/2007] [Accepted: 07/10/2007] [Indexed: 11/21/2022]
Abstract
The cells in charge of the innate immune response in the sea mussel Mytilus galloprovincialis Lmk. are the hemocytes, which have the capacity to release catecholamines when subjected to stressing conditions. Hemocytes were kept in culture before stimulation. That is, their behaviour was not studied immediately after extraction from the mollusc, as happens in most studies. This avoids the interference and variability caused by the conditions in which mussels may be when collected. This work describes the great variability found in the pattern of catecholamine release when the hemocytes are stimulated with either corticotropins or growth factors. Dopamine, adrenaline and noradrenaline release differs with each of the inducers assayed, with stimulation time and with the season of hemocyte collection. One of the results presented is particularly remarkable; such is the great amount of adrenaline and noradrenaline released to the medium when the hemocytes obtained in summer are stimulated with transforming growth factor-beta1 (TGF-beta1) for 60 min.
Collapse
Affiliation(s)
- Asunción Cao
- Departamento de Bioquímica y Biología Molecular, Universidad de Santiago de Compostela, Facultad de Veterinaria, Campus de Lugo, E-27002 Lugo, Spain
| | | | | |
Collapse
|
32
|
Serrano GE, Martínez-Rubio C, Miller MW. Endogenous motor neuron properties contribute to a program-specific phase of activity in the multifunctional feeding central pattern generator of Aplysia. J Neurophysiol 2007; 98:29-42. [PMID: 17392419 DOI: 10.1152/jn.01062.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multifunctional central pattern generators (CPGs) are circuits of neurons that can generate manifold actions from a single effector system. This study examined a bilateral pair of pharyngeal motor neurons, designated B67, that participate in the multifunctional feeding network of Aplysia californica. Fictive buccal motor programs (BMPs) were elicited with four distinct stimulus paradigms to assess the activity of B67 during ingestive versus egestive patterns. In both classes of programs, B67 fired during the phase of radula protraction and received a potent inhibitory postsynaptic potential (IPSP) during fictive radula retraction. When programs were ingestive, the retraction phase IPSP exhibited a depolarizing sag and was followed by a postinhibitory rebound (PIR) that could generate a postretraction phase of impulse activity. When programs were egestive, the depolarizing sag potential and PIR were both diminished or were not present. Examination of the membrane properties of B67 disclosed a cesium-sensitive depolarizing sag, a corresponding I(h)-like current, and PIR in its responses to hyperpolarizing pulses. Direct IPSPs originating from the influential CPG retraction phase interneuron B64 were also found to activate the sag potential and PIR of B67. Dopamine, a modulator that can promote ingestive behavior in this system, enhanced the sag potential, I(h)-like current, and PIR of B67. Finally, a pharyngeal muscle contraction followed the radula retraction phase of ingestive, but not egestive motor patterns. It is proposed that regulation of the intrinsic properties of this motor neuron can contribute to generating a program-specific phase of motor activity.
Collapse
Affiliation(s)
- Geidy E Serrano
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, San Juan, Puerto Rico.
| | | | | |
Collapse
|
33
|
Baxter DA, Byrne JH. Feeding behavior of Aplysia: a model system for comparing cellular mechanisms of classical and operant conditioning. Learn Mem 2007; 13:669-80. [PMID: 17142299 DOI: 10.1101/lm.339206] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Feeding behavior of Aplysia provides an excellent model system for analyzing and comparing mechanisms underlying appetitive classical conditioning and reward operant conditioning. Behavioral protocols have been developed for both forms of associative learning, both of which increase the occurrence of biting following training. Because the neural circuitry that mediates the behavior is well characterized and amenable to detailed cellular analyses, substantial progress has been made toward a comparative analysis of the cellular mechanisms underlying these two forms of associative learning. Both forms of associative learning use the same reinforcement pathway (the esophageal nerve, En) and the same reinforcement transmitter (dopamine, DA). In addition, at least one cellular locus of plasticity (cell B51) is modified by both forms of associative learning. However, the two forms of associative learning have opposite effects on B51. Classical conditioning decreases the excitability of B51, whereas operant conditioning increases the excitability of B51. Thus, the approach of using two forms of associative learning to modify a single behavior, which is mediated by an analytically tractable neural circuit, is revealing similarities and differences in the mechanisms that underlie classical and operant conditioning.
Collapse
Affiliation(s)
- Douglas A Baxter
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, Houston, Texas 77030, USA.
| | | |
Collapse
|
34
|
Díaz-Ríos M, Miller MW. Target-specific regulation of synaptic efficacy in the feeding central pattern generator of Aplysia: potential substrates for behavioral plasticity? THE BIOLOGICAL BULLETIN 2006; 210:215-29. [PMID: 16801496 DOI: 10.2307/4134559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The contributions to this symposium are unified by their focus on the role of synaptic plasticity in sensorimotor learning. Synaptic plasticities are also known to operate within the central pattern generator (CPG) circuits that produce repetitive motor programs, where their relation to adaptive behavior is less well understood. This study examined divergent synaptic plasticity in the signaling of an influential interneuron, B20, located within the CPG that controls consummatory feeding-related behaviors in Aplysia. Previously, B20 was shown to contain markers for catecholamines and GABA (Díaz-Ríos et al., 2002), and its rapid synaptic signaling to two follower motor neurons, B16 and B8, was found to be mediated by dopamine (Díaz-Ríos and Miller, 2005). In this investigation, two incremental forms of increased synaptic efficacy, facilitation and summation, were both greater in the signaling from B20 to B8 than in the signaling from B20 to B16. Manipulation of the membrane potentials of the two postsynaptic motor neurons did not affect facilitation of excitatory postsynaptic potentials (EPSPs) to either follower cell. Striking levels of summation in B8, however, were eliminated at hyperpolarized membrane potentials and could be attributed to distinctive membrane properties of this postsynaptic cell. GABA and the GABAB agonist baclofen increased facilitation and summation of EPSPs from B20 to B8, but not to B16. The enhanced facilitation was not affected when the membrane potential of B8 was pre-set to hyperpolarized levels, but GABAergic effects on summation were eliminated by this manipulation. These observations demonstrate a target-specific amplification of synaptic efficacy that can contribute to channeling the flow of divergent information from an intrinsic interneuron within the buccal CPG. They further suggest that GABA, acting as a cotransmitter in B20, could induce coordinated and target-specific pre- and postsynaptic modulation of these signals. Finally, we speculate that target-specific plasticity and its modulation could be efficient, specific, and flexible substrates for learning-related modifications of CPG function.
Collapse
Affiliation(s)
- Manuel Díaz-Ríos
- Institute of Neurobiology and Department of Anatomy, University of Puerto Rico, 201 Blvd. del Valle, San Juan, Puerto Rico 00901
| | | |
Collapse
|
35
|
Serrano GE, Miller MW. Conditional rhythmicity and synchrony in a bilateral pair of bursting motor neurons in Aplysia. J Neurophysiol 2006; 96:2056-71. [PMID: 16738215 DOI: 10.1152/jn.00282.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This investigation examined the activity of a bilateral pair of motor neurons (B67) in the feeding system of Aplysia californica. In isolated ganglia, B67 firing exhibited a highly stereotyped bursting pattern that could be attributed to an underlying TTX-resistant driver potential (DP). Under control conditions, this bursting in the two B67 neurons was infrequent, irregular, and asynchronous. However, bath application of the neuromodulator dopamine (DA) increased the duration, frequency, rhythmicity, and synchrony of B67 bursts. In the absence of DA, depolarization of B67 with injected current produced rhythmic bursting. Such depolarization-induced rhythmic burst activity in one B67, however, did not entrain its contralateral counterpart. Moreover, when both B67s were depolarized to potentials that produced rhythmic bursting, their synchrony was significantly lower than that produced by DA. In TTX, dopamine increased the DP duration, enhanced the amplitude of slow signaling between the two B67s, and increased DP synchrony. A potential source of dopaminergic signaling to B67 was identified as B65, an influential interneuron with bilateral buccal projections. Firing B65 produced bursts in the ipsilateral and contralateral B67s. Under conditions that attenuated polysynaptic activity, firing B65 evoked rapid excitatory postsynaptic potentials in B67 that were blocked by sulpiride, an antagonist of synaptic DA receptors in this system. Finally, firing a single B65 was capable of producing a prolonged period of rhythmic synchronous bursting of the paired B67s. It is proposed that modulatory dopaminergic signaling originating from B65 during consummatory behaviors can promote rhythmicity and bilateral synchrony in the paired B67 motor neurons.
Collapse
Affiliation(s)
- Geidy E Serrano
- Institute of Neurobiology and Department of Anatomy, University of Puerto Rico, San Juan, Puerto Rico
| | | |
Collapse
|
36
|
Reyes FD, Mozzachiodi R, Baxter DA, Byrne JH. Reinforcement in an in vitro analog of appetitive classical conditioning of feeding behavior in Aplysia: blockade by a dopamine antagonist. Learn Mem 2005; 12:216-20. [PMID: 15930499 DOI: 10.1101/lm.92905] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In a recently developed in vitro analog of appetitive classical conditioning of feeding in Aplysia, the unconditioned stimulus (US) was electrical stimulation of the esophageal nerve (En). This nerve is rich in dopamine (DA)-containing processes, which suggests that DA mediates reinforcement during appetitive conditioning. To test this possibility, methylergonovine was used to antagonize DA receptors. Methylergonovine (1 nM) blocked the pairing-specific increase in fictive feeding that is usually induced by in vitro classical conditioning. The present results and previous observation that methylergonovine also blocks the effects of contingent reinforcement in an in vitro analog of appetitive operant conditioning suggest that DA mediates reinforcement for appetitive associative conditioning of feeding in Aplysia.
Collapse
Affiliation(s)
- Fredy D Reyes
- W.M. Keck Center for Neurobiology of Learning and Memory, Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
37
|
Zhurov Y, Weiss KR, Brezina V. Tight or loose coupling between components of the feeding neuromusculature of Aplysia? J Neurophysiol 2005; 94:531-49. [PMID: 15917315 DOI: 10.1152/jn.01338.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Like other complex behaviors, the cyclical, rhythmic consummatory feeding behaviors of Aplysia-biting, swallowing, and rejection of unsuitable food-are produced by a complex neuromuscular system: the animal's buccal mass, with numerous pairs of antagonistic muscles, controlled by the firing of numerous motor neurons, all driven by the motor programs of a central pattern generator (CPG) in the buccal ganglia. In such a complex neuromuscular system, it has always been assumed that the activities of the various components must necessarily be tightly coupled and coordinated if successful functional behavior is to be produced. However, we have recently found that the CPG generates extremely variable motor programs from one cycle to the next, and so very variable motor neuron firing patterns and contractions of individual muscles. Here we show that this variability extends even to higher-level parameters of the operation of the neuromuscular system such as the coordination between entire antagonistic subsystems within the buccal neuromusculature. In motor programs elicited by stimulation of the esophageal nerve, we have studied the relationship between the contractions of the accessory radula closer (ARC) muscle, and the firing patterns of its motor neurons B15 and B16, with those of its antagonist, the radula opener (I7) muscle, and its motor neuron B48. There are two separate B15/B16-ARC subsystems, one on each side of the animal, and these are indeed very tightly coupled. Tight coupling can, therefore, be achieved in this neuromuscular system where required. Yet there is essentially no coupling at all between the contractions of the ARC muscles and those of the antagonistic radula opener muscle. We interpret this result in terms of a hypothesis that ascribes a higher-order benefit to such loose coupling in the neuromusculature. The variability, emerging in the successive feeding movements made by the animal, diversifies the range of movements and thereby implements a trial-and-error search through the space of movements that might be successful, an optimal strategy for the animal in an unknown, rapidly changing feeding environment.
Collapse
Affiliation(s)
- Yuriy Zhurov
- Department of Physiology and Biophysics, Box 1218, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, New York 10029, USA
| | | | | |
Collapse
|
38
|
Díaz-Ríos M, Miller MW. Rapid Dopaminergic Signaling by Interneurons That Contain Markers for Catecholamines and GABA in the Feeding Circuitry of Aplysia. J Neurophysiol 2005; 93:2142-56. [PMID: 15537820 DOI: 10.1152/jn.00003.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Consummatory feeding behaviors in Aplysia californica are controlled by a polymorphic central pattern generator (CPG) circuit. Previous investigations have demonstrated colocalization of markers for GABA and catecholamines within two interneurons, B20 and B65, that participate in configuring the functional output of this CPG. This study examined the contributions of GABA and dopamine (DA) to rapid synaptic signaling from B20 and B65 to follower cells that implement their specification of motor programs. Pharmacological tests did not substantiate the participation of GABA in the mediation of the excitatory postsynaptic potentials (EPSPs) from either B20 or B65. However, GABA and the GABAB receptor agonist baclofen were found to modify these signals in a target-specific manner. Several observations indicated that DA acts as the neurotransmitter mediating fast EPSPs from B20 to two radula closer motor neurons B8 and B16. In both motor neurons, application of DA produced depolarizing responses associated with decreased input resistance and increased excitation. B20-evoked EPSPs in both follower cells were occluded by exogenous dopamine and blocked by the DA antagonist sulpiride. While dopamine occlusion and sulpiride block of convergent signaling to B8 from B65 resembled that of B20, both of these actions were less potent on the rapid signaling from B65 to the multifunctional and widely acting interneuron B4/5. These findings indicate that dopamine mediates divergent (B20 to B16 and B8) and convergent (B20 and B65 to B8) rapid EPSPs from two influential CPG interneurons in which it is colocalized with GABA-like immunoreactivity.
Collapse
Affiliation(s)
- Manuel Díaz-Ríos
- Institute of Neurobiology and Department of Anatomy, University of Puerto Rico, 201 Blvd del Valle, San Juan, Puerto Rico 00901
| | | |
Collapse
|
39
|
Faccioni-Heuser MC, Zancan DM, Achaval M. Monoamines in the pedal plexus of the land snail Megalobulimus oblongus (Gastropoda, Pulmonata). Braz J Med Biol Res 2004; 37:1043-53. [PMID: 15264012 DOI: 10.1590/s0100-879x2004000700014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In molluscs, the number of peripheral neurons far exceeds those found in the central nervous system. Although previous studies on the morphology of the peripheral nervous system exist, details of its organization remain unknown. Moreover, the foot of the terrestrial species has been studied less than that of the aquatic species. As this knowledge is essential for our experimental model, the pulmonate gastropod Megalobulimus oblongus, the aim of the present study was to investigate monoamines in the pedal plexus of this snail using two procedures: glyoxylic acid histofluorescence to identify monoaminergic structures, and the unlabeled antibody peroxidase anti-peroxidase method using antiserum to detect the serotonergic component of the plexus. Adult land snails weighing 48-80 g, obtained from the counties of Barra do Ribeiro and Charqueadas (RS, Brazil), were utilized. Monoaminergic fibers were detected throughout the pedal musculature. Blue fluorescence (catecholamines, probably dopamine) was observed in nerve branches, pedal and subepithelial plexuses, and in the pedal muscle cells. Yellow fluorescence (serotonin) was only observed in thick nerves and in muscle cells. However, when immunohistochemical methods were used, serotonergic fibers were detected in the pedal nerve branches, the pedal and subepithelial plexuses, the basal and lateral zones of the ventral integument epithelial cells, in the pedal ganglion neurons and beneath the ventral epithelium. These findings suggest catecholaminergic and serotonergic involvement in locomotion and modulation of both the pedal ganglion interneurons and sensory information. Knowledge of monoaminergic distribution in this snail s foot is important for understanding the pharmacological control of reflexive responses and locomotive behavior.
Collapse
Affiliation(s)
- M C Faccioni-Heuser
- Laboratório de Histofisiologia Comparada, Departamento de ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
40
|
Proekt A, Brezina V, Weiss KR. Dynamical basis of intentions and expectations in a simple neuronal network. Proc Natl Acad Sci U S A 2004; 101:9447-52. [PMID: 15197252 PMCID: PMC438996 DOI: 10.1073/pnas.0402002101] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 05/12/2004] [Indexed: 11/18/2022] Open
Abstract
Selection of behavioral responses to external stimuli is strongly influenced by internal states, such as intentions and expectations. These internal states are often attributed to higher-order brain functions. Yet here we show that even in the simple feeding network of Aplysia, external stimuli do not directly specify which motor output is expressed; instead, the motor output is specified by the state of the network at the moment of stimulation. The history-dependence of this network state manifests itself in the same way as do intentions and expectations in the behavior of higher animals. Remarkably, we find that activity-dependent plasticity of a synapse within the network itself, rather than some higher-order network, mediates one important aspect of the change in the network state. Through this mechanism, changes in the network state become an automatic consequence of the generation of behavior. Altogether, our findings suggest that intentions and expectations may emerge within behavior-generating networks themselves from the plasticity of the very processes that generate the behavior.
Collapse
Affiliation(s)
- Alex Proekt
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
41
|
Shetreat-Klein AN, Cropper EC. Afferent-induced changes in rhythmic motor programs in the feeding circuitry of aplysia. J Neurophysiol 2004; 92:2312-22. [PMID: 15175374 DOI: 10.1152/jn.00137.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A manipulation often used to determine whether a neuron plays a role in the generation of a motor program involves injecting current into the cell during rhythmic activity to determine whether activity is modified. We perform this type of manipulation to study the impact of afferent activity on feeding-like motor programs in Aplysia. We trigger biting-like programs and manipulate sensory neurons that have been implicated in producing the changes in activity that occur when food is ingested, i.e., when bites are converted to bite-swallows. Sensory neurons that are manipulated are the radula mechanoafferent B21 and the retraction proprioceptor B51. Data suggest that both cells are peripherally activated during radula closing/retraction when food is ingested. We found that phasic subthreshold depolarization of a single sensory neuron can significantly prolong radula closing/retraction, as determined by recording both from interneurons (e.g., B64), and motor neurons (e.g., B15 and B8). Additionally, afferent activity produces a delay in the onset of the subsequent radula opening/protraction, and increases the firing frequency of motor neurons. These are the changes in activity that are seen when food is ingested. These results add to the growing data that implicate B21 and B51 in bite to bite-swallow conversions and indicate that afferent activity is important during feeding in Aplysia.
Collapse
Affiliation(s)
- Avniel N Shetreat-Klein
- Dept. Physiology/Biophysics, Box 1218, Mt. Sinai Medical School, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
42
|
Hernádi L, Hiripi L, Dyakonova V, Gyori J, Vehovszky A. Thee effect of food intake on the central monoaminergic system in the snail, Lymnaea stagnalis. ACTA BIOLOGICA HUNGARICA 2004; 55:185-94. [PMID: 15270234 DOI: 10.1556/abiol.55.2004.1-4.23] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the effect of food intake on the serotonin and dopamine levels of the CNS as well as on the spontaneous firing activity of the CGC in isolated preparations from starved, feeding and satiated animals. Furthermore we investigated the effects of 1 microM serotonin and/or dopamine and their mixture on the firing activity of the CGC. The HPLC assay of serotonin and dopamine showed that during food intake both the serotonin and dopamine levels of the CNS increased whereas in satiated animals their levels were not significantly more than the control levels. Recording from the CGC in isolated CNS preparation from starved, feeding or satiated animals showed that feeding increased the firing frequency of the CGC compared to the starved control. The application of 1 microM dopamine decreased the firing frequency whereas the application of 1 microM serotonin increased the firing frequency of the CGC. We conclude that during food intake the external and internal food stimuli increase the activity of the central monoaminergic system and also increase the levels of monoamines in the CNS. Furthermore, we also suggest that the increased dopamine and serotonin levels both affect the activity of the serotonergic neurons during the different phases of feeding.
Collapse
Affiliation(s)
- L Hernádi
- Department of Experimental Zoology, Balaton Limnological Research Institute, Hungarian Academy of Sciences, PO Box 35, H-8237 Tihany, Hungary.
| | | | | | | | | |
Collapse
|
43
|
Barrière G, Mellen N, Cazalets JR. Neuromodulation of the locomotor network by dopamine in the isolated spinal cord of newborn rat. Eur J Neurosci 2004; 19:1325-35. [PMID: 15016090 DOI: 10.1111/j.1460-9568.2004.03210.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have analysed the action of the neuromodulatory catecholamine, dopamine (DA), on the lumbar locomotor network using an isolated in vitro newborn rat spinal cord preparation. We have also attempted to determine the respective contribution of the D1- and D2-like receptors on the dopamine-mediated effects. Bath application of DA-induced slow locomotor-like rhythmic activity (cycle-period 20-30 s) in ventral motor roots. Bursts were alternating between segmental right and left side and between ipsilateral flexor and extensor units. This rhythm was blocked by D1 (SCH-23390) and D2 (raclopride, sulpiride) receptor antagonists, but was unaffected by the dopamine-beta-hydroxylase blocker, fusaric acid, thereby ruling out indirect noradrenaline-mediated effects. The D1 agonist, SKF-81297 induced prolonged slow rhythmic bursting, while the selective D2 agonists, quinpirole and quinelorane, had no effect. DA and the D1 agonist, SKF-81297 also increased the period and burst amplitude of N-methyl-d-l-aspartate-induced locomotor activity. The effects of dopamine and SKF-81297 on the N-methyl-d-l-aspartate-induced rhythm were long-lasting; persisting for 1 hour after washout. The DA action was blocked by MDL-12 330 A, an inhibitor of adenylate cyclase, suggesting the involvement of cAMP. Together these results indicate that dopamine can exert neuromodulatory actions on mammalian motor networks via short-lasting permissive influences and a newly reported, long-lasting modulation of motor network activity.
Collapse
Affiliation(s)
- Grégory Barrière
- CNRS UMR 5543, Physiologie et Physiopathologie de la Signalisation Cellulaire, Université Victor Segalen Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | |
Collapse
|
44
|
Due MR, Jing J, Weiss KR. Dopaminergic contributions to modulatory functions of a dual-transmitter interneuron in Aplysia. Neurosci Lett 2004; 358:53-7. [PMID: 15016433 DOI: 10.1016/j.neulet.2003.12.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Revised: 11/12/2003] [Accepted: 12/12/2003] [Indexed: 11/25/2022]
Abstract
The feeding central pattern generator of Aplysia produces motor programs that can differ in the degree to which they are ingestive or egestive. A number of pattern-generating interneurons that play an important role in shaping motor programs have been identified. One of these interneurons, B65, is unusual in that it contains two classical neurotransmitters, dopamine and gamma-aminobutyric acid. Here, we study the role of one of these transmitters, dopamine, using a combination of pharmacological and electrophysiological means. We show that B65 uses dopamine to elicit fast synaptic potentials in several follower neurons. Furthermore, we demonstrate that the dopamine antagonist sulpiride mimics the effect of bilateral B65 hyperpolarization on egestive motor programs. Thus our data suggest that dopaminergic transmission serves to increase the degree of egestiveness of motor programs, and decrease the duration of the protraction phase.
Collapse
Affiliation(s)
- Michael R Due
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, Box 1218, New York, NY 10029, USA
| | | | | |
Collapse
|
45
|
Cao A, Ramos-Martínez JI, Barcia R. In vitro effects of LPS, IL-2, PDGF and CRF on haemocytes of Mytilus galloprovincialis Lmk. FISH & SHELLFISH IMMUNOLOGY 2004; 16:215-225. [PMID: 15123325 DOI: 10.1016/s1050-4648(03)00080-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2002] [Revised: 05/01/2003] [Accepted: 05/28/2003] [Indexed: 05/24/2023]
Abstract
The cells in charge of the innate immune response in the marine mussel Mytilus galloprovincialis Lmk. are the haemocytes. These cells respond in different ways to agents such as lipopolysaccharide (LPS), interleukin-2 (IL-2), platelet-derived growth factor (PDGF) and corticotropin releasing factor (CRF). After stimulation of the haemocytes, the expression of molecules reactive with monoclonal antibodies raised to the alpha chain of the IL-2 receptor, present in their membrane, differed depending on the agent used. The same happened with regard to the levels of dopamine, adrenaline and noradrenaline released to the medium by the haemocytes. It should also be noted that no catecholamine release was detected and the level of expression of IL-2Ralpha showed no significant variation in cultured cells that had not been treated with inducers. These facts would indicate that most haemocytes were in the same starting condition at the moment that the stimulation was performed. Therefore, cultured haemocytes can be a highly reliable model in the study of the innate immune system.
Collapse
Affiliation(s)
- Asunción Cao
- Departamento de Bioquímica y Biología Molecular, Universidad de Santiago de Compostela, Facultad de Veterinaria, Campus de Lugo, E-27002 Lugo, Spain
| | | | | |
Collapse
|
46
|
Dembrow NC, Jing J, Proekt A, Romero A, Vilim FS, Cropper EC, Weiss KR. A newly identified buccal interneuron initiates and modulates feeding motor programs in aplysia. J Neurophysiol 2003; 90:2190-204. [PMID: 12801904 DOI: 10.1152/jn.00173.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite considerable progress in characterizing the feeding central pattern generator (CPG) in Aplysia, the full complement of neurons that generate feeding motor programs has not yet been identified. The distribution of neuropeptide-containing neurons in the buccal and cerebral ganglia can be used as a tool to identify additional elements of the feeding circuitry by providing distinctions between otherwise morphologically indistinct neurons. For example, our recent study revealed a unique and potentially interesting unpaired PRQFVamide (PRQFVa)-containing neuron in the buccal ganglion. In this study, we describe the morphological and electrophysiological characterization of this novel neuron, which we designate as B50. We found that activation of B50 is capable of producing organized rhythmic output of the feeding CPG. The motor programs elicited by B50 exhibit some similarities as well as differences to motor programs elicited by the command-like cerebral-to-buccal interneuron CBI-2. In addition to activating the feeding CPG, B50 may act as a program modulator.
Collapse
Affiliation(s)
- N C Dembrow
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Hurwitz I, Kupfermann I, Weiss KR. Fast synaptic connections from CBIs to pattern-generating neurons in Aplysia: initiation and modification of motor programs. J Neurophysiol 2003; 89:2120-36. [PMID: 12686581 DOI: 10.1152/jn.00497.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Consummatory feeding movements in Aplysia californica are organized by a central pattern generator (CPG) in the buccal ganglia. Buccal motor programs similar to those organized by the CPG are also initiated and controlled by the cerebro-buccal interneurons (CBIs), interneurons projecting from the cerebral to the buccal ganglia. To examine the mechanisms by which CBIs affect buccal motor programs, we have explored systematically the synaptic connections from three of the CBIs (CBI-1, CBI-2, CBI-3) to key buccal ganglia CPG neurons (B31/B32, B34, and B63). The CBIs were found to produce monosynaptic excitatory postsynaptic potentials (EPSPs) with both fast and slow components. In this report, we have characterized only the fast component. CBI-2 monosynaptically excites neurons B31/B32, B34, and B63, all of which can initiate motor programs when they are sufficiently stimulated. However, the ability of CBI-2 to initiate a program stems primarily from the excitation of B63. In B31/B32, the size of the EPSPs was relatively small and the threshold for excitation was very high. In addition, preventing firing in either B34 or B63 showed that only a block in B63 firing prevented CBI-2 from initiating programs in response to a brief stimulus. The connections from CBI-2 to the buccal ganglia neurons showed a prominent facilitation. The facilitation contributed to the ability of CBI-2 to initiate a BMP and also led to a change in the form of the BMP. The cholinergic blocker hexamethonium blocked the fast EPSPs induced by CBI-2 in buccal ganglia neurons and also blocked the EPSPs between a number of key CPG neurons within the buccal ganglia. CBI-2 and B63 were able to initiate motor patterns in hexamethonium, although the form of a motor pattern was changed, indicating that non-hexamethonium-sensitive receptors contribute to the ability of these cells to initiate bursts. By contrast to CBI-2, CBI-1 excited B63 but inhibited B34. CBI-3 excited B34 and not B63. The data indicate that CBI-1, -2, and -3 are components of a system that initiates and selects between buccal motor programs. Their behavioral function is likely to depend on which combination of CBIs and CPG elements are activated.
Collapse
Affiliation(s)
- Itay Hurwitz
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York City, New York 10029, USA
| | | | | |
Collapse
|
48
|
Robie A, Díaz-Ríos M, Miller MW. A population of pedal-buccal projection neurons associated with appetitive components of Aplysia feeding behavior. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2003; 189:231-44. [PMID: 12664099 DOI: 10.1007/s00359-003-0396-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2002] [Revised: 09/05/2002] [Accepted: 01/11/2003] [Indexed: 11/24/2022]
Abstract
Backfills of the cerebral-buccal connective (CBC) of Aplysia californica revealed a cluster of five to seven pedal-buccal projection neurons in the anterolateral quadrant of the ventral surface of each pedal ganglion. Intra- and extracellular recordings showed that the pedal-buccal projection neurons shared common electrophysiological properties and synaptic inputs. However, they exhibited considerable heterogeneity with respect to their projection patterns. All pedal-buccal projection neurons that were tested received a slow excitatory postsynaptic potential from the ipsi- and contralateral cerebral-pedal regulator (C-PR) neuron, a cell that is thought to play a key role in the generation of a food-induced arousal state. Tests were conducted to identify potential synaptic follower neurons of the pedal-buccal projection neurons in the cerebral and buccal ganglia, but none were detected. Finally, nerve recordings revealed projections from the pedal-buccal projection neurons in the nerves associated with the buccal ganglion. In tests designed to determine the functional properties of these peripheral projections, no evidence was obtained supporting a mechanosensory or proprioceptive role and no movements were observed when they were fired. It is proposed that peripheral elements utilized in consummatory phases of Aplysia feeding may be directly influenced by a neuronal pathway that is activated during the food-induced arousal state.
Collapse
Affiliation(s)
- Alice Robie
- Institute of Neurobiology, University of Puerto Rico, 201 Blvd. del Valle, 00901, San Juan, Puerto Rico
| | | | | |
Collapse
|
49
|
Nitric oxide is necessary for multiple memory processes after learning that a food is inedible in aplysia. J Neurosci 2002. [PMID: 12417683 DOI: 10.1523/jneurosci.22-21-09581.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) signaling was inhibited via N(omega)-nitro-L-arginine methyl ester (L-NAME) during and after training Aplysia that a food is inedible. Treating animals with L-NAME 10 min before the start of training blocked the formation of three separable memory processes: (1) short-term, (2) intermediate-term, and (3) long-term memory. The treatment also attenuated, but did not block, a fourth memory process, very short-term memory. L-NAME had little or no effect on feeding behavior per se or on most aspects of the animals' behavior while they were being trained, indicating that the substance did not cause a pervasive modulation or poisoning of many aspects of feeding and other behaviors. Application of L-NAME within 1 min after the training had no effect on short- or long-term memory, indicating that NO signaling was not needed during memory consolidation. Treating animals with the NO scavenger 2-phenyl-4,4,5,5-tetramethyl-imidazdine-1-oxy-3-oxide before training also blocked long-term memory. Memory was not blocked by D-NAME, or by the simultaneous treatment with L-NAME and the NO donor S-nitroso-N-acetyl-penicillamine, confirming that the effect of L-NAME is attributable to its effect as a competitive inhibitor of L-arginine for NO synthase in the production of NO rather than to possible effects at other sites. These data indicate that NO signaling during training plays a critical role in the formation of multiple memory processes.
Collapse
|
50
|
Narusuye K, Nagahama T. Cerebral CBM1 neuron contributes to synaptic modulation appearing during rejection of seaweed in Aplysia kurodai. J Neurophysiol 2002; 88:2778-95. [PMID: 12424312 DOI: 10.1152/jn.00757.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Japanese species Aplysia kurodai feeds well on Ulva but rejects Gelidium with distinctive rhythmic patterned movements of the jaws and radula. We have previously shown that the patterned jaw movements during the rejection of Gelidium might be caused by long-lasting suppression of the monosynaptic transmission from the multiaction MA neurons to the jaw-closing (JC) motor neurons in the buccal ganglia and that the modulation might be directly produced by some cerebral neurons. In the present paper, we have identified a pair of catecholaminergic neurons (CBM1) in bilateral cerebral M clusters. The CBM1, probably equivalent to CBI-1 in A. californica, simultaneously produced monosynaptic excitatory postsynaptic potentials (EPSPs) in the MA and JC neurons. Firing of the CBM1 reduced the size of the inhibitory postsynaptic currents (IPSCs) in the JC neuron, evoked by the MA spikes, for >100 s. Moreover, the application of dopamine mimicked the CBM1 modulatory effects and pretreatment with a D1 antagonist, SCH23390, blocked the modulatory effects induced by dopamine. It could also largely block the modulatory effects induced by the CBM1 firing. These results suggest that the CBM1 may directly modulate the synaptic transmission by releasing dopamine. Moreover, we explored the CBM1 spike activity induced by taste stimulation of the animal lips with seaweed extracts by the use of calcium imaging. The calcium-sensitive dye, Calcium Green-1, was iontophoretically loaded into a cell body of the CBM1 using a microelectrode. Application of either Ulva or Gelidium extract to the lips increased the fluorescence intensity, but the Gelidium extract always induced a larger change in fluorescence compared with the Ulva extract, although the solution used induced the maximum spike responses of the CBM1 for each of the seaweed extracts. When the firing frequency of the CBM1 activity after taste stimulation was estimated, the Gelidium extract induced a spike activity of ~30 spikes/s while the Ulva extract induced an activity of ~20 spikes/s, consistent with the effective firing frequency (>25 spikes/s) for the synaptic modulation. These results suggest that the CBM1 may be one of the cerebral neurons contributing to the modulation of the basic feeding circuits for rejection induced by the taste of seaweeds such as Gelidium.
Collapse
Affiliation(s)
- Kenji Narusuye
- Department of Biology, Faculty of Science, Kobe University, Kobe 657-8501, Japan
| | | |
Collapse
|