1
|
Zhang H, Wang X, Guo W, Li A, Chen R, Huang F, Liu X, Chen Y, Li N, Liu X, Xu T, Xue Z, Zeng S. Cross-Streams Through the Ventral Posteromedial Thalamic Nucleus to Convey Vibrissal Information. Front Neuroanat 2021; 15:724861. [PMID: 34776879 PMCID: PMC8582278 DOI: 10.3389/fnana.2021.724861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Whisker detection is crucial to adapt to the environment for some animals, but how the nervous system processes and integrates whisker information is still an open question. It is well-known that two main parallel pathways through Ventral posteromedial thalamic nucleus (VPM) ascend to the barrel cortex, and classical theory suggests that the cross-talk from trigeminal nucleus interpolaris (Sp5i) to principal nucleus (Pr5) between the main parallel pathways contributes to the multi-whisker integration in barrel columns. Moreover, some studies suggest there are other cross-streams between the parallel pathways. To confirm their existence, in this study we used a dual-viral labeling strategy and high-resolution, large-volume light imaging to get the complete morphology of individual VPM neurons and trace their projections. We found some new thalamocortical projections from the ventral lateral part of VPM (VPMvl) to barrel columns. In addition, the retrograde-viral labeling and imaging results showed there were the large trigeminothalamic projections from Sp5i to the dorsomedial section of VPM (VPMdm). Our results reveal new cross-streams between the parallel pathways through VPM, which may involve the execution of multi-whisker integration in barrel columns.
Collapse
Affiliation(s)
- Huimin Zhang
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojun Wang
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyan Guo
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Anan Li
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixi Chen
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Huang
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiang Liu
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yijun Chen
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Li
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuli Liu
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Tonghui Xu
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoqun Zeng
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Martin YB, Negredo P, Villacorta-Atienza JA, Avendaño C. Trigeminal intersubnuclear neurons: morphometry and input-dependent structural plasticity in adult rats. J Comp Neurol 2014; 522:1597-617. [PMID: 24178892 DOI: 10.1002/cne.23494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 11/09/2022]
Abstract
Intersubnuclear neurons in the caudal division of the spinal trigeminal nucleus that project to the principal nucleus (Pr5) play an active role in shaping the receptive fields of other neurons, at different levels in the ascending sensory system that processes information originating from the vibrissae. By using retrograde labeling and digital reconstruction, we investigated the morphometry and topology of the dendritic trees of these neurons and the changes induced by long-term experience-dependent plasticity in adult male rats. Primary afferent input was either eliminated by transection of the right infraorbital nerve (IoN), or selectively altered by repeated whisker clipping on the right side. These neurons do not display asymmetries between sides in basic metric and topologic parameters (global number of trees, nodes, spines, or dendritic ends), although neurons on the left tend to have longer terminal segments. Ipsilaterally, both deafferentation (IoN transection) and deprivation (whisker trimming) reduced the density of spines, and the former also caused a global increase in total dendritic length and a relative increase in more complex arbors. Contralaterally, deafferentation reduced more complex dendritic trees, and caused a moderate decline in dendritic length and spatial reach, and a loss of spines in number and density. Deprivation caused a similar, but more profound, effect on spines. Our findings provide original quantitative descriptions of a scarcely known cell population, and show that denervation- or deprivation-derived plasticity is expressed not only by neurons at higher levels of the sensory pathways, but also by neurons in key subcortical circuits for sensory processing.
Collapse
Affiliation(s)
- Yasmina B Martin
- Department of Anatomy, Histology, & Neuroscience, Autonoma University of Madrid, 28029, Madrid, Spain; Department of Anatomy, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, Spain
| | | | | | | |
Collapse
|
3
|
McGovern AE, Davis-Poynter N, Farrell MJ, Mazzone SB. Transneuronal tracing of airways-related sensory circuitry using herpes simplex virus 1, strain H129. Neuroscience 2012; 207:148-66. [PMID: 22306285 DOI: 10.1016/j.neuroscience.2012.01.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 01/13/2012] [Accepted: 01/15/2012] [Indexed: 10/14/2022]
Abstract
Sensory input from the airways to suprapontine brain regions contributes to respiratory sensations and the regulation of respiratory function. However, relatively little is known about the central organization of this higher brain circuitry. We exploited the properties of the H129 strain of herpes simplex virus 1 (HSV-1) to perform anterograde transneuronal tracing of the central projections of airway afferent nerve pathways. The extrathoracic trachea in Sprague-Dawley rats was inoculated with HSV-1 H129, and tissues along the neuraxis were processed for HSV-1 immunoreactivity. H129 infection appeared in the vagal sensory ganglia within 24 h and the number of infected cells peaked at 72 h. Brainstem nuclei, including the nucleus of the solitary tract and trigeminal sensory nuclei were infected within 48 h, and within 96 h infected cells were evident within the pons (lateral and medial parabrachial nuclei), thalamus (ventral posteromedial, ventral posterolateral, submedius, and reticular nuclei), hypothalamus (paraventricular and lateral nuclei), subthalamus (zona incerta), and amygdala (central and anterior amygdala area). At later times H129 was detected in cortical forebrain regions including the insular, orbital, cingulate, and somatosensory cortices. Vagotomy significantly reduced the number of infected cells within vagal sensory nuclei in the brainstem, confirming the main pathway of viral transport is through the vagus nerves. Sympathetic postganglionic neurons in the stellate and superior cervical ganglia were infected by 72 h, however, there was no evidence for retrograde transynaptic movement of the virus in sympathetic pathways in the central nervous system (CNS). These data demonstrate the organization of key structures within the CNS that receive afferent projections from the extrathoracic airways that likely play a role in the perception of airway sensations.
Collapse
Affiliation(s)
- A E McGovern
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia 4072
| | | | | | | |
Collapse
|
4
|
Devilbiss DM, Waterhouse BD. Phasic and tonic patterns of locus coeruleus output differentially modulate sensory network function in the awake rat. J Neurophysiol 2010; 105:69-87. [PMID: 20980542 DOI: 10.1152/jn.00445.2010] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons of the nucleus locus coeruleus (LC) discharge with phasic bursts of activity superimposed on highly regular tonic discharge rates. Phasic bursts are elicited by bottom-up input mechanisms involving novel/salient sensory stimuli and top-down decision making processes; whereas tonic rates largely fluctuate according to arousal levels and behavioral states. Although it is generally believed that these two modes of activity differentially modulate information processing in LC targets, the unique role of phasic versus tonic LC output on signal processing in cells, circuits, and neural networks of waking animals is not well understood. In the current study, simultaneous recordings of individual neurons within ventral posterior medial thalamus and barrel field cortex of conscious rats provided evidence that each mode of LC output produces a unique modulatory impact on single neuron responsiveness to sensory-driven synaptic input and representations of sensory information across ensembles of simultaneously recorded cells. Each mode of LC activation specifically modulated the relationship between sensory-stimulus intensity and the subsequent responses of individual neurons and neural ensembles. Overall these results indicate that phasic versus tonic modes of LC discharge exert fundamentally different modulatory effects on target neuronal circuits within the rodent trigeminal somatosensory system. As such, each mode of LC output may differentially influence signal processing as a means of optimizing behaviorally relevant neural computations within this sensory network. Likely the ability of the LC system to differentially regulate neural responses and local circuit operations according to behavioral demands extends to other brain regions including those involved in higher cognitive functions.
Collapse
Affiliation(s)
- David M Devilbiss
- Department of Psychology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
5
|
Bokor H, Acsády L, Deschênes M. Vibrissal responses of thalamic cells that project to the septal columns of the barrel cortex and to the second somatosensory area. J Neurosci 2008; 28:5169-77. [PMID: 18480273 PMCID: PMC2631158 DOI: 10.1523/jneurosci.0490-08.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 11/21/2022] Open
Abstract
The rodent somatosensory cortex contains barrel-related and septa-related circuits representing two separate streams of vibrissa information processing that differ in their response patterns and anatomical connections. Whereas barrel-related circuits process lemniscal inputs that transit through the thalamic barreloids, septa-related circuits process paralemniscal inputs and inputs that are relayed through the ventral lateral part of the ventral posterior medial nucleus (VPMvl). Septa-projecting thalamic afferents also target the secondary somatosensory cortical area. Although a number of studies have examined response properties in the lemniscal pathway, and demonstrated that barreloids receive feedback from specific sets of corticothalamic and reticular thalamic neurons, such information is currently lacking for the VPMvl. In the present study, we show that in sharp contrast to the relay cells of the barreloids VPMvl neurons exhibit large multiwhisker receptive fields that are independent of input from the principal trigeminal nucleus. Results also suggest that the topography of receptive fields and response properties in VPMvl rely on converging input from neurons of the interpolaris trigeminal nucleus. Tracer injection and single-cell labeling further reveal that the VPMvl receives input from specific populations of reticular thalamic and corticothalamic neurons. Together, these results confirm the status of the VPMvl as a thalamic relay of an independent parallel pathway of vibrissa information processing. They further indicate that a sensory pathway does not merely consist on a three-neuron chain that links the vibrissae to the cerebral cortex, but that it also involves specific sets of topographically related corticothalamic and reticular thalamic projections.
Collapse
Affiliation(s)
- Hajnalka Bokor
- Institute of Experimental Medicine, National Academy of Sciences, H-1450 Budapest, Hungary, and
- Centre de Recherche Université Laval Robert-Giffard, Laval University, Québec City, Québec, Canada G1J 2G3
| | - László Acsády
- Institute of Experimental Medicine, National Academy of Sciences, H-1450 Budapest, Hungary, and
| | - Martin Deschênes
- Centre de Recherche Université Laval Robert-Giffard, Laval University, Québec City, Québec, Canada G1J 2G3
| |
Collapse
|
6
|
SIMPSON KIMBERLY, WANG YUE, LIN RICKC. Patterns of convergence in rat zona incerta from the trigeminal nuclear complex: light and electron microscopic study. J Comp Neurol 2008; 507:1521-41. [PMID: 18213707 PMCID: PMC2921836 DOI: 10.1002/cne.21624] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In contrast to the restricted receptive field (RF) properties of the ventral posteromedial nucleus (VPM), neurons of the ventral thalamus zona incerta (ZI) have been shown to exhibit multiwhisker responses that vary from the ventral (ZIv) to the dorsal (ZId) subdivision. Differences in activity may arise from the trigeminal nuclear complex (TNC) and result from subnucleus specific inputs via certain cells of origin, axon distribution patterns, fiber densities, bouton sizes, or postsynaptic contact sites. We tested this hypothesis by assessing circuit relationships among TNC, ZI, and VPM. Results from tracer studies show that, 1) relative to ZId, the trigeminal projection to ZIv is denser and arises predominantly from the principalis (PrV) and interpolaris (SpVi) subdivisions; 2) the incertal projection from TNC subnuclei overlaps and covers most of ZIv; 3) two sets of PrV axons terminate in ZI: a major subtype, possessing bouton-like swellings, and a few fine fibers, with minimal specialization; 4) both PrV and SpVi terminals exhibit asymmetric endings and preferentially target dendrites of ZI neurons; 5) small and large neurons in PrV are labeled after retrograde injections into ZI; 6) small PrV cells with incertal projections form a population that is distinct from those projecting to VPM; and 7) approximately 30-50% of large cells in PrV send collaterals to ZI and VPM. These findings suggest that, 1) although information to ZI and VPM is essentially routed along separate TNC circuits, streams of somatosensory code converge in ZI to establish large RFs, and 2) subregional differences in ZI response profiles are attributable in part to TNC innervation density.
Collapse
Affiliation(s)
- KIMBERLY SIMPSON
- Department of Anatomy, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - YUE WANG
- Department of Anatomy, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - RICK C.S. LIN
- Department of Anatomy, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
7
|
Devilbiss DM, Page ME, Waterhouse BD. Locus ceruleus regulates sensory encoding by neurons and networks in waking animals. J Neurosci 2006; 26:9860-72. [PMID: 17005850 PMCID: PMC6674489 DOI: 10.1523/jneurosci.1776-06.2006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Substantial evidence indicates that the locus ceruleus (LC)-norepinephrine (NE) projection system regulates behavioral state and state-dependent processing of sensory information. Tonic LC discharge (0.1-5.0 Hz) is correlated with levels of arousal and demonstrates an optimal firing rate during good performance in a sustained attention task. In addition, studies have shown that locally applied NE or LC stimulation can modulate the responsiveness of neurons, including those in the thalamus, to nonmonoaminergic synaptic inputs. Many recent investigations further indicate that within sensory relay circuits of the thalamus both general and specific features of sensory information are represented within the collective firing patterns of like-modality neurons. However, no studies have examined the impact of NE or LC output on the discharge properties of ensembles of functionally related cells in intact, conscious animals. Here, we provide evidence linking LC neuronal discharge and NE efflux with LC-mediated modulation of single-neuron and neuronal ensemble representations of sensory stimuli in the ventral posteriomedial thalamus of waking rats. As such, the current study provides evidence that output from the LC across a physiologic range modulates single thalamic neuron responsiveness to synaptic input and representation of sensory information across ensembles of thalamic neurons in a manner that is consistent with the well documented actions of LC output on cognition.
Collapse
Affiliation(s)
- David M Devilbiss
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
8
|
Chakrabarti S, Alloway KD. Differential origin of projections from SI barrel cortex to the whisker representations in SII and MI. J Comp Neurol 2006; 498:624-36. [PMID: 16917827 DOI: 10.1002/cne.21052] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have previously shown that projections from SI barrel cortex to the MI whisker representation originate primarily from columns of neurons that are aligned with the layer IV septa. SI barrel cortex also projects to SII cortex, but the origin of these projections has not been characterized with respect to the barrel and septal compartments. To address this issue, we injected retrograde tracers into the SII whisker representation and then reconstructed the location of the labeled neurons in SI with respect to the layer IV barrels. In some animals, two different tracers were injected into the whisker representations of SII and MI to detect double-labeled neurons that would indicate that some SI neurons project to both of these cortical areas. We found that the projections to SII cortex originate from sites that are uniformly distributed throughout the extragranular layers of barrel cortex. In cases in which different tracers were injected in SII and MI, double-labeled neurons appeared above and below the layer IV septal compartment and at sites aligned with the boundaries of the layer IV barrels. To the extent that the columns of neurons aligned with the barrel and septal compartments represent functionally distinct circuits, these results indicate that SII receives information from both circuits, whereas MI receives inputs primarily from the septal circuits.
Collapse
Affiliation(s)
- Shubhodeep Chakrabarti
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-2255, USA
| | | |
Collapse
|
9
|
Abstract
The startle response is an important mammalian model for studying the cellular mechanisms of emotions and of learning. It consists of contractions of facial and skeletal muscles in response to sudden acoustic, tactile or vestibular stimuli. Whereas the acoustic startle pathway is well described, only a few recent studies have investigated the tactile startle pathway. It was proposed that there is a direct projection from the principal sensory nucleus to the central sensorimotor interface of the startle response, which is formed by the giant neurons in the caudal pontine reticular formation. We explored this projection in greater detail in vitro. Anterograde tracing in rat brain slices confirmed projections with large axon terminals from the ventral part of the principal sensory nucleus to the lateral caudal pontine reticular formation. Electrophysiological studies revealed a monosynaptic glutamatergic connection between principal sensory nucleus neurons and caudal pontine reticular formation giant neurons. The synapses displayed paired-pulse facilitation at high-frequency stimulation, and homosynaptic depression at 1 Hz stimulation. The latter form of plasticity is thought to underlie habituation of the startle response. Furthermore, postsynaptic currents in caudal pontine reticular formation giant neurons evoked by principal sensory nucleus neuron stimulation summed in a linear way with signals evoked by stimulation of auditory afferents. Synaptic plasticity and summation of synaptic currents correspond well with in vivo data previously published by other groups. We thus presume that these synapses mediate trigeminal input to the startle pathway.
Collapse
Affiliation(s)
- Susanne Schmid
- Animal Physiology, Zool. Institute, University of Tuebingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany.
| | | | | |
Collapse
|
10
|
Abstract
This study investigated the organization of a vibrissal pathway that arises from the interpolar division of the spinal trigeminal complex (SP5i), transits through the ventral posterior medial nucleus (VPM), and innervates the somatosensory cortical areas in the rat. Using Fluoro-Gold and biotinylated dextran amine, respectively, as retrograde and anterograde tracers, the following organization plan was disclosed. The SP5i projection arises from a population of small-sized neurons that selectively innervate the ventral lateral part of VPM. In cytochrome oxidase-stained material, this region does not display any barreloid arrangement, but Fluoro-Gold injections in single barrel columns labeled rods of cells that extend caudally into the ventral lateral division of VPM. Thus, on the basis of retrograde labeling, barreloids were divided into core and tail compartments, which correspond to the rod segments running across the dorsal and ventral lateral parts of VPM, respectively. Double-labeling experiments revealed that SP5i afferents innervate the tail of barreloids. The anterograde labeling of thalamocortical axons show that most "core cells" project to a single barrel column, whereas some "tail cells" give rise to branching axons that innervate the second somatosensory area and the dysgranular zone of the barrel field. Injections that straddled the transition zone between the core and tail regions disclosed cells projecting to a single barrel column and to the surrounding dysgranular zone. These results suggest that the projection of "barreloids cells" to the granular and/or dysgranular zones relates to the class of prethalamic input(s) they receive.
Collapse
|
11
|
Abstract
This study investigated the axonal projections of whisker-sensitive cells of the spinal trigeminal subnuclei (SP5) in rat oral, interpolar, and caudal divisions (SP5o, SP5i, and SP5c, respectively). The labeling of small groups of trigeminothalamic axons with biotinylated dextran amine disclosed the following classes of axons. 1) Few SP5o cells project to the thalamus: They innervate the caudal part of the posterior group (Po) and the region intercalated between the anterior pretectal and the medial geniculate nuclei. These fibers also branch profusely in the tectum. 2) Two types of ascending fibers arise from SP5i: Type I fibers are thick and distribute to the Po and to other regions of the midbrain, i.e., the prerubral field, the deep layers of the superior colliculus, the anterior pretectal nucleus, and the ventral part of the zona incerta. Type II fibers are thin; branch sparsely in the tectum; and form small-sized, bushy arbors in the ventral posterior medial nucleus (VPM). Accordingly, a statistical analysis of the distribution of antidromic invasion latencies of 96 SP5i cells to thalamic stimulation disclosed two populations of neurons: fast-conducting cells, which invaded at a mean latency of 1.23 +/- 0. 62 msec, and slow-conducting cells, which invaded at a mean latency of 2.97 +/- 0.62 msec. 3) The rostral part of SP5c contains cells with thalamic projections similar to that of type II SP5i neurons, whereas the caudal part did not label thalamic fibers in this study. A comparison of SP5i projections and PR5 projections in the VPM revealed that the former are restricted to ventral-lateral tier of the nucleus, whereas the latter terminate principally in the upper two tiers of the VPM. These results suggest a functional compartmentation of thalamic barreloids that is defined by the topographic distribution of PR5 and type II SP5i afferents.
Collapse
Affiliation(s)
- P Veinante
- Centre de Recherche Université Laval-Robert Giffard, Hôpital Robert Giffard, Québec G1J 2G3, Canada
| | | | | |
Collapse
|
12
|
Deschênes M, Veinante P, Zhang ZW. The organization of corticothalamic projections: reciprocity versus parity. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 28:286-308. [PMID: 9858751 DOI: 10.1016/s0165-0173(98)00017-4] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
All neocortical areas receive inputs from and project back to the thalamus. It is often said that the corticothalamic projections are organized in a way that reciprocates the spatial distribution of thalamocortical pathways. The present review examines to what extent this rule of reciprocity is actually supported by the most recent neuroanatomical data, particularly those relating to the central organization of the vibrissal sensory system in the rat. A critical survey of previous studies is made and new results are presented concerning the fine-grained organization of corticothalamic projections in this sensory system. Together, prior results and the present set of new data confirm the existence of both, reciprocal and nonreciprocal patterns of corticothalamic connectivity. This conclusion leads us to propose that the spatial organization of corticothalamic connections complies with a more fundamental rule, the rule of parity, from which reciprocity follows as a general, but not obligatory consequence. The rule of parity states that the distribution of corticothalamic projections across and within the thalamic nuclei is determined by the branching patterns of the different classes of prethalamic afferents. The anatomical, developmental and physiological consequences of this rule are discussed. The rule of parity suggests that, according to the behavioral context, both prethalamic and corticothalamic pathways may function in a feedback mode.
Collapse
Affiliation(s)
- M Deschênes
- Centre de Recherche Université Laval-Robert Giffard, Hôpital Robert Giffard, 2601 de la Canardière, Beauport, Québec, Canada.
| | | | | |
Collapse
|
13
|
|
14
|
Luo P, Dessem D. Inputs from identified jaw-muscle spindle afferents to trigeminothalamic neurons in the rat: a double-labeling study using retrograde HRP and intracellular biotinamide. J Comp Neurol 1995; 353:50-66. [PMID: 7714249 DOI: 10.1002/cne.903530107] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Projections from physiologically identified jaw-muscle spindle afferents onto trigeminothalamic neurons were studied in the rat. Trigeminothalamic neurons were identified by means of retrograde transport of horseradish peroxidase from the ventroposteromedial nucleus of the thalamus. Labeled neurons were found contralaterally in the supratrigeminal region (Vsup), the trigeminal principal sensory nucleus, the ventrolateral part of the trigeminal subnucleus oralis, the spinal trigeminal subnuclei interpolaris and caudalis, the reticular formation, and an area ventral to the trigeminal motor nucleus (Vmo) and medial to the trigeminal principal sensory nucleus (AVM). Jaw-muscle spindle afferents were physiologically identified by their increased firing during stretching of the jaw muscles and intracellularly injected with biotinamide. Axon collaterals and boutons from jaw-muscle spindle afferents were found in Vmo; Vsup; the dorsomedial part of the trigeminal principal sensory nucleus (Vpdm); the dorsomedial part of the spinal trigeminal subnuclei oralis, interpolaris (Vidm) and caudalis; the parvicellular reticular formation (PCRt); and the mesencephalic trigeminal nucleus. Trigeminothalamic neurons in Vsup, Vpdm, Vidm, PCRt, and AVM were associated with axon collaterals and boutons from intracellularly stained jaw-muscle spindle afferents. Trigeminothalamic neurons in Vsup, Vpdm, Vidm, and PCRt were closely apposed by one to 14 intracellularly labeled boutons from jaw-muscle spindle afferents, suggesting a powerful input to some trigeminothalamic neurons. These data demonstrate that muscle length and velocity feedback from jaw-muscle spindle afferents is projected to the contralateral thalamus via multiple regions of the trigeminal system and implicates these pathways in the projection of trigeminal proprioceptive information to the cerebral cortex.
Collapse
Affiliation(s)
- P Luo
- Department of Physiology, University of Maryland Dental School, Baltimore, Maryland 21201-1586, USA
| | | |
Collapse
|
15
|
O'Leary DD, Ruff NL, Dyck RH. Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems. Curr Opin Neurobiol 1994; 4:535-44. [PMID: 7812142 DOI: 10.1016/0959-4388(94)90054-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review covers recent progress in three major areas of investigation in somatosensory systems: development, developmental plasticity and functional reorganization. Important findings relate to the development of periphery-related patterning in thalamic afferents to somatosensory cortex, the controversial role of neural activity in the development and plasticity of periphery-related afferent patterning in the brainstem and cortex, experience-dependent reorganizations in adult somatosensory cortex, and the locus of these changes.
Collapse
Affiliation(s)
- D D O'Leary
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, California 92037
| | | | | |
Collapse
|