1
|
Lisgaras CP, de la Prida LM, Bertram E, Cunningham M, Henshall D, Liu AA, Gnatkovsky V, Balestrini S, de Curtis M, Galanopoulou AS, Jacobs J, Jefferys JGR, Mantegazza M, Reschke CR, Jiruska P. The role of electroencephalography in epilepsy research-From seizures to interictal activity and comorbidities. Epilepsia 2025. [PMID: 39913107 DOI: 10.1111/epi.18282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/07/2025]
Abstract
Electroencephalography (EEG) has been instrumental in epilepsy research for the past century, both for basic and translational studies. Its contributions have advanced our understanding of epilepsy, shedding light on the pathophysiology and functional organization of epileptic networks, and the mechanisms underlying seizures. Here we re-examine the historical significance, ongoing relevance, and future trajectories of EEG in epilepsy research. We describe traditional approaches to record brain electrical activity and discuss novel cutting-edge, large-scale techniques using micro-electrode arrays. Contemporary EEG studies explore brain potentials beyond the traditional Berger frequencies to uncover underexplored mechanisms operating at ultra-slow and high frequencies, which have proven valuable in understanding the principles of ictogenesis, epileptogenesis, and endogenous epileptogenicity. Integrating EEG with modern techniques such as optogenetics, chemogenetics, and imaging provides a more comprehensive understanding of epilepsy. EEG has become an integral element in a powerful suite of tools for capturing epileptic network dynamics across various temporal and spatial scales, ranging from rapid pathological synchronization to the long-term processes of epileptogenesis or seizure cycles. Advancements in EEG recording techniques parallel the application of sophisticated mathematical analyses and algorithms, significantly augmenting the information yield of EEG recordings. Beyond seizures and interictal activity, EEG has been instrumental in elucidating the mechanisms underlying epilepsy-related cognitive deficits and other comorbidities. Although EEG remains a cornerstone in epilepsy research, persistent challenges such as limited spatial resolution, artifacts, and the difficulty of long-term recording highlight the ongoing need for refinement. Despite these challenges, EEG continues to be a fundamental research tool, playing a central role in unraveling disease mechanisms and drug discovery.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, Orangeburg, New York, USA
| | | | | | - Mark Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Anli A Liu
- Langone Medical Center, New York University, New York, New York, USA
- Department of Neurology, School of Medicine, New York University, New York, New York, USA
- Neuroscience Institute, Langone Medical Center, New York University, New York, New York, USA
| | - Vadym Gnatkovsky
- Department of Epileptology, University Hospital Bonn (UKB), Bonn, Germany
| | - Simona Balestrini
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCSS, Florence, Italy
- University of Florence, Florence, Italy
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Julia Jacobs
- Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Alberta Health Services & University of Calgary, Calgary, Canada
| | - John G R Jefferys
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Massimo Mantegazza
- Université Côte d'Azur, Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
- Inserm U1323, Valbonne-Sophia Antipolis, France
| | - Cristina R Reschke
- FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Brown BR, Hund SJ, Easley KA, Singer EL, Shuttleworth CW, Carlson AP, Jones SC. Proof-of-Concept Validation of Noninvasive Detection of Cortical Spreading Depolarization with High Resolution Direct Current-Electroencephalography. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.11.12.24311133. [PMID: 39606369 PMCID: PMC11601781 DOI: 10.1101/2024.11.12.24311133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background/Objective Cortical spreading depolarization (SD) is increasingly recognized as a major contributor to secondary brain injury. Noninvasive SD monitoring would enable the institution of SD-based therapeutics. Our primary objective is to establish proof-of-concept validation that scalp DC-potentials can provide noninvasive SD detection by comparing scalp direct-current (DC)-shifts from a high-density electrode array to SDs detected by gold-standard electrocorticography (ECoG). Our secondary objective is to assess usability and artifact tolerance. Methods An 83×58 mm thermoplastic elastomer array with 29 6-mm diameter Ag/AgCl 1-cm spaced electrodes, the CerebroPatch™ Proof-of-Concept Prototype, was adhesively placed on the forehead with an intervening electrode gel interface to record DC-electroencephalography in normal volunteers and severe acute brain injury patients in the neuro-intensive care unit some with and some without invasive ECoG electrodes. The scalp and ECoG voltages were collected by a Moberg® Advanced ICU Amplifier. Artifacts were visually identified and usability issues were recorded. SD was scored on ECoG based on DC-shifts with associated high-frequency suppression and propagation. A six-parameter Gaussian plus quadratic baseline model was used to estimate ECoG and scalp electrode time-courses and scalp-voltage heat-map movies. The similarity of the noninvasive scalp and invasive ECoG DC-shift time-courses was compared via the Gaussian fit parameters and confirmed if the Coefficient-of-Determination was >0.80. Results Usability and artifact issues obscured most scalp Prototype device data of the 140 ECoG-coded SDs during 11 days in one sub-arachnoid hemorrhage patient. Twenty-six of these DC-shifts were in readable, artifact-free portions of scalp recordings and 24 of these had a >0.80 Coefficient-of-Determination (0.98[0.02], median[IQR]) between invasive ECoG and noninvasive Prototype device DC-shifts. Reconstructed heat-map movies of the scalp DC-potentials showed a 5-cm extent, -460 μV peak region that persisted for ~70 sec. These data suggest that these scalp DC-shifts (peak -457±69 μV [mean±StD], full-width-half maximum 70.9±5.92 sec, area 18.7±2.76 cm2) depicted in the heat-map movies represent noninvasively detected SDs. Conclusions These results using 26 SDs as the observational units suggest that noninvasive SD detection is possible using scalp DC-potential signals with a high spatial resolution EEG array. Although the high artifact burden data and low usability records were limiting, negative results, they serve as an important entrepreneurial recipe for a future, re-designed device that would reduce artifacts and improve usability for DC-EEG SD detection needed to enable multi-modal monitoring for secondary brain injury.
Collapse
Affiliation(s)
- Benjamin R. Brown
- CerebroScope, the dba entity of SciencePlusPlease LLC, 4165 Blair St., Pittsburgh, PA 15207-1508, USA
| | - Samuel J. Hund
- CerebroScope, the dba entity of SciencePlusPlease LLC, 4165 Blair St., Pittsburgh, PA 15207-1508, USA
| | - Kirk A. Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Eric L. Singer
- CerebroScope, the dba entity of SciencePlusPlease LLC, 4165 Blair St., Pittsburgh, PA 15207-1508, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Andrew P. Carlson
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Stephen C. Jones
- CerebroScope, the dba entity of SciencePlusPlease LLC, 4165 Blair St., Pittsburgh, PA 15207-1508, USA
| |
Collapse
|
3
|
Sætra MJ, Mori Y. An electrodiffusive network model with multicompartmental neurons and synaptic connections. PLoS Comput Biol 2024; 20:e1012114. [PMID: 39531480 PMCID: PMC11584141 DOI: 10.1371/journal.pcbi.1012114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 11/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Most computational models of neurons assume constant ion concentrations, disregarding the effects of changing ion concentrations on neuronal activity. Among the models that do incorporate ion concentration dynamics, simplifications are often made that sacrifice biophysical consistency, such as neglecting the effects of ionic diffusion on electrical potentials or the effects of electric drift on ion concentrations. A subset of models with ion concentration dynamics, often referred to as electrodiffusive models, account for ion concentration dynamics in a way that ensures a biophysical consistent relationship between ion concentrations, electric charge, and electrical potentials. These models include compartmental single-cell models, geometrically explicit models, and domain-type models, but none that model neuronal network dynamics. To address this gap, we present an electrodiffusive network model with multicompartmental neurons and synaptic connections, which we believe is the first compartmentalized network model to account for intra- and extracellular ion concentration dynamics in a biophysically consistent way. The model comprises an arbitrary number of "units," each divided into three domains representing a neuron, glia, and extracellular space. Each domain is further subdivided into a somatic and dendritic layer. Unlike conventional models which focus primarily on neuronal spiking patterns, our model predicts intra- and extracellular ion concentrations (Na+, K+, Cl-, and Ca2+), electrical potentials, and volume fractions. A unique feature of the model is that it captures ephaptic effects, both electric and ionic. In this paper, we show how this leads to interesting behavior in the network. First, we demonstrate how changing ion concentrations can affect the synaptic strengths. Then, we show how ionic ephaptic coupling can lead to spontaneous firing in neurons that do not receive any synaptic or external input. Lastly, we explore the effects of having glia in the network and demonstrate how a strongly coupled glial syncytium can prevent neuronal depolarization blocks.
Collapse
Affiliation(s)
- Marte J. Sætra
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Yoichiro Mori
- Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
4
|
Tichauer JE, Lira M, Cerpa W, Orellana JA, Sáez JC, Rovegno M. Inhibition of astroglial hemichannels prevents synaptic transmission decline during spreading depression. Biol Res 2024; 57:39. [PMID: 38867288 PMCID: PMC11167948 DOI: 10.1186/s40659-024-00519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Spreading depression (SD) is an intriguing phenomenon characterized by massive slow brain depolarizations that affect neurons and glial cells. This phenomenon is repetitive and produces a metabolic overload that increases secondary damage. However, the mechanisms associated with the initiation and propagation of SD are unknown. Multiple lines of evidence indicate that persistent and uncontrolled opening of hemichannels could participate in the pathogenesis and progression of several neurological disorders including acute brain injuries. Here, we explored the contribution of astroglial hemichannels composed of connexin-43 (Cx43) or pannexin-1 (Panx1) to SD evoked by high-K+ stimulation in brain slices. RESULTS Focal high-K+ stimulation rapidly evoked a wave of SD linked to increased activity of the Cx43 and Panx1 hemichannels in the brain cortex, as measured by light transmittance and dye uptake analysis, respectively. The activation of these channels occurs mainly in astrocytes but also in neurons. More importantly, the inhibition of both the Cx43 and Panx1 hemichannels completely prevented high K+-induced SD in the brain cortex. Electrophysiological recordings also revealed that Cx43 and Panx1 hemichannels critically contribute to the SD-induced decrease in synaptic transmission in the brain cortex and hippocampus. CONCLUSIONS Targeting Cx43 and Panx1 hemichannels could serve as a new therapeutic strategy to prevent the initiation and propagation of SD in several acute brain injuries.
Collapse
Affiliation(s)
- Juan E Tichauer
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matías Lira
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Lindquist BE. Spreading depolarizations pose critical energy challenges in acute brain injury. J Neurochem 2024; 168:868-887. [PMID: 37787065 PMCID: PMC10987398 DOI: 10.1111/jnc.15966] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/08/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
Spreading depolarization (SD) is an electrochemical wave of neuronal depolarization mediated by extracellular K+ and glutamate, interacting with voltage-gated and ligand-gated ion channels. SD is increasingly recognized as a major cause of injury progression in stroke and brain trauma, where the mechanisms of SD-induced neuronal injury are intimately linked to energetic status and metabolic impairment. Here, I review the established working model of SD initiation and propagation. Then, I summarize the historical and recent evidence for the metabolic impact of SD, transitioning from a descriptive to a mechanistic working model of metabolic signaling and its potential to promote neuronal survival and resilience. I quantify the energetic cost of restoring ionic gradients eroded during SD, and the extent to which ion pumping impacts high-energy phosphate pools and the energy charge of affected tissue. I link energy deficits to adaptive increases in the utilization of glucose and O2, and the resulting accumulation of lactic acid and CO2 downstream of catabolic metabolic activity. Finally, I discuss the neuromodulatory and vasoactive paracrine signaling mediated by adenosine and acidosis, highlighting these metabolites' potential to protect vulnerable tissue in the context of high-frequency SD clusters.
Collapse
Affiliation(s)
- Britta E Lindquist
- Department of Neurology, University of California, San Francisco, California, USA
- Gladstone Institute of Neurological Diseases, San Francisco, California, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, USA
| |
Collapse
|
6
|
Andrew RD, Farkas E, Hartings JA, Brennan KC, Herreras O, Müller M, Kirov SA, Ayata C, Ollen-Bittle N, Reiffurth C, Revah O, Robertson RM, Dawson-Scully KD, Ullah G, Dreier JP. Questioning Glutamate Excitotoxicity in Acute Brain Damage: The Importance of Spreading Depolarization. Neurocrit Care 2022; 37:11-30. [PMID: 35194729 PMCID: PMC9259542 DOI: 10.1007/s12028-021-01429-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/20/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Within 2 min of severe ischemia, spreading depolarization (SD) propagates like a wave through compromised gray matter of the higher brain. More SDs arise over hours in adjacent tissue, expanding the neuronal damage. This period represents a therapeutic window to inhibit SD and so reduce impending tissue injury. Yet most neuroscientists assume that the course of early brain injury can be explained by glutamate excitotoxicity, the concept that immediate glutamate release promotes early and downstream brain injury. There are many problems with glutamate release being the unseen culprit, the most practical being that the concept has yielded zero therapeutics over the past 30 years. But the basic science is also flawed, arising from dubious foundational observations beginning in the 1950s METHODS: Literature pertaining to excitotoxicity and to SD over the past 60 years is critiqued. RESULTS Excitotoxicity theory centers on the immediate and excessive release of glutamate with resulting neuronal hyperexcitation. This instigates poststroke cascades with subsequent secondary neuronal injury. By contrast, SD theory argues that although SD evokes some brief glutamate release, acute neuronal damage and the subsequent cascade of injury to neurons are elicited by the metabolic stress of SD, not by excessive glutamate release. The challenge we present here is to find new clinical targets based on more informed basic science. This is motivated by the continuing failure by neuroscientists and by industry to develop drugs that can reduce brain injury following ischemic stroke, traumatic brain injury, or sudden cardiac arrest. One important step is to recognize that SD plays a central role in promoting early neuronal damage. We argue that uncovering the molecular biology of SD initiation and propagation is essential because ischemic neurons are usually not acutely injured unless SD propagates through them. The role of glutamate excitotoxicity theory and how it has shaped SD research is then addressed, followed by a critique of its fading relevance to the study of brain injury. CONCLUSIONS Spreading depolarizations better account for the acute neuronal injury arising from brain ischemia than does the early and excessive release of glutamate.
Collapse
Affiliation(s)
| | - Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged, Cerebral Blood Flow and Metabolism Research Group, Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | - Cenk Ayata
- Harvard Medical School, Harvard University, Boston, MA USA
| | | | - Clemens Reiffurth
- Center for Stroke Research Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Omer Revah
- School of Medicine, Stanford University, Stanford, CA USA
| | | | | | | | - Jens P. Dreier
- Center for Stroke Research Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Corporate Member of Freie Universität Berlin, Berlin, Germany
- Department of Neurology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
7
|
Lemale CL, Lückl J, Horst V, Reiffurth C, Major S, Hecht N, Woitzik J, Dreier JP. Migraine Aura, Transient Ischemic Attacks, Stroke, and Dying of the Brain Share the Same Key Pathophysiological Process in Neurons Driven by Gibbs–Donnan Forces, Namely Spreading Depolarization. Front Cell Neurosci 2022; 16:837650. [PMID: 35237133 PMCID: PMC8884062 DOI: 10.3389/fncel.2022.837650] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Neuronal cytotoxic edema is the morphological correlate of the near-complete neuronal battery breakdown called spreading depolarization, or conversely, spreading depolarization is the electrophysiological correlate of the initial, still reversible phase of neuronal cytotoxic edema. Cytotoxic edema and spreading depolarization are thus different modalities of the same process, which represents a metastable universal reference state in the gray matter of the brain close to Gibbs–Donnan equilibrium. Different but merging sections of the spreading-depolarization continuum from short duration waves to intermediate duration waves to terminal waves occur in a plethora of clinical conditions, including migraine aura, ischemic stroke, traumatic brain injury, aneurysmal subarachnoid hemorrhage (aSAH) and delayed cerebral ischemia (DCI), spontaneous intracerebral hemorrhage, subdural hematoma, development of brain death, and the dying process during cardio circulatory arrest. Thus, spreading depolarization represents a prime and simultaneously the most neglected pathophysiological process in acute neurology. Aristides Leão postulated as early as the 1940s that the pathophysiological process in neurons underlying migraine aura is of the same nature as the pathophysiological process in neurons that occurs in response to cerebral circulatory arrest, because he assumed that spreading depolarization occurs in both conditions. With this in mind, it is not surprising that patients with migraine with aura have about a twofold increased risk of stroke, as some spreading depolarizations leading to the patient percept of migraine aura could be caused by cerebral ischemia. However, it is in the nature of spreading depolarization that it can have different etiologies and not all spreading depolarizations arise because of ischemia. Spreading depolarization is observed as a negative direct current (DC) shift and associated with different changes in spontaneous brain activity in the alternating current (AC) band of the electrocorticogram. These are non-spreading depression and spreading activity depression and epileptiform activity. The same spreading depolarization wave may be associated with different activity changes in adjacent brain regions. Here, we review the basal mechanism underlying spreading depolarization and the associated activity changes. Using original recordings in animals and patients, we illustrate that the associated changes in spontaneous activity are by no means trivial, but pose unsolved mechanistic puzzles and require proper scientific analysis.
Collapse
Affiliation(s)
- Coline L. Lemale
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janos Lückl
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Viktor Horst
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Jens P. Dreier
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- *Correspondence: Jens P. Dreier,
| |
Collapse
|
8
|
Andrew RD, Hartings JA, Ayata C, Brennan KC, Dawson-Scully KD, Farkas E, Herreras O, Kirov SA, Müller M, Ollen-Bittle N, Reiffurth C, Revah O, Robertson RM, Shuttleworth CW, Ullah G, Dreier JP. The Critical Role of Spreading Depolarizations in Early Brain Injury: Consensus and Contention. Neurocrit Care 2022; 37:83-101. [PMID: 35257321 PMCID: PMC9259543 DOI: 10.1007/s12028-021-01431-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/29/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND When a patient arrives in the emergency department following a stroke, a traumatic brain injury, or sudden cardiac arrest, there is no therapeutic drug available to help protect their jeopardized neurons. One crucial reason is that we have not identified the molecular mechanisms leading to electrical failure, neuronal swelling, and blood vessel constriction in newly injured gray matter. All three result from a process termed spreading depolarization (SD). Because we only partially understand SD, we lack molecular targets and biomarkers to help neurons survive after losing their blood flow and then undergoing recurrent SD. METHODS In this review, we introduce SD as a single or recurring event, generated in gray matter following lost blood flow, which compromises the Na+/K+ pump. Electrical recovery from each SD event requires so much energy that neurons often die over minutes and hours following initial injury, independent of extracellular glutamate. RESULTS We discuss how SD has been investigated with various pitfalls in numerous experimental preparations, how overtaxing the Na+/K+ ATPase elicits SD. Elevated K+ or glutamate are unlikely natural activators of SD. We then turn to the properties of SD itself, focusing on its initiation and propagation as well as on computer modeling. CONCLUSIONS Finally, we summarize points of consensus and contention among the authors as well as where SD research may be heading. In an accompanying review, we critique the role of the glutamate excitotoxicity theory, how it has shaped SD research, and its questionable importance to the study of early brain injury as compared with SD theory.
Collapse
Affiliation(s)
- R. David Andrew
- grid.410356.50000 0004 1936 8331Queen’s University, Kingston, ON Canada
| | - Jed A. Hartings
- grid.24827.3b0000 0001 2179 9593University of Cincinnati, Cincinnati, OH USA
| | - Cenk Ayata
- grid.38142.3c000000041936754XHarvard Medical School, Harvard University, Boston, MA USA
| | - K. C. Brennan
- grid.223827.e0000 0001 2193 0096The University of Utah, Salt Lake City, UT USA
| | | | - Eszter Farkas
- grid.9008.10000 0001 1016 96251HCEMM-USZ Cerebral Blood Flow and Metabolism Research Group, and the Department of Cell Biology and Molecular Medicine, Faculty of Science and Informatics & Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Oscar Herreras
- grid.419043.b0000 0001 2177 5516Instituto de Neurobiologia Ramon Y Cajal (Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Sergei. A. Kirov
- grid.410427.40000 0001 2284 9329Medical College of Georgia, Augusta, GA USA
| | - Michael Müller
- grid.411984.10000 0001 0482 5331University of Göttingen, University Medical Center Göttingen, Göttingen, Germany
| | - Nikita Ollen-Bittle
- grid.39381.300000 0004 1936 8884University of Western Ontario, London, ON Canada
| | - Clemens Reiffurth
- grid.7468.d0000 0001 2248 7639Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and the Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health., Berlin, Germany
| | - Omer Revah
- grid.168010.e0000000419368956School of Medicine, Stanford University, Stanford, CA USA
| | | | | | - Ghanim Ullah
- grid.170693.a0000 0001 2353 285XUniversity of South Florida, Tampa, FL USA
| | - Jens P. Dreier
- grid.7468.d0000 0001 2248 7639Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and the Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health., Berlin, Germany
| |
Collapse
|
9
|
Sætra MJ, Einevoll GT, Halnes G. An electrodiffusive neuron-extracellular-glia model for exploring the genesis of slow potentials in the brain. PLoS Comput Biol 2021; 17:e1008143. [PMID: 34270543 PMCID: PMC8318289 DOI: 10.1371/journal.pcbi.1008143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/28/2021] [Accepted: 06/28/2021] [Indexed: 11/29/2022] Open
Abstract
Within the computational neuroscience community, there has been a focus on simulating the electrical activity of neurons, while other components of brain tissue, such as glia cells and the extracellular space, are often neglected. Standard models of extracellular potentials are based on a combination of multicompartmental models describing neural electrodynamics and volume conductor theory. Such models cannot be used to simulate the slow components of extracellular potentials, which depend on ion concentration dynamics, and the effect that this has on extracellular diffusion potentials and glial buffering currents. We here present the electrodiffusive neuron-extracellular-glia (edNEG) model, which we believe is the first model to combine compartmental neuron modeling with an electrodiffusive framework for intra- and extracellular ion concentration dynamics in a local piece of neuro-glial brain tissue. The edNEG model (i) keeps track of all intraneuronal, intraglial, and extracellular ion concentrations and electrical potentials, (ii) accounts for action potentials and dendritic calcium spikes in neurons, (iii) contains a neuronal and glial homeostatic machinery that gives physiologically realistic ion concentration dynamics, (iv) accounts for electrodiffusive transmembrane, intracellular, and extracellular ionic movements, and (v) accounts for glial and neuronal swelling caused by osmotic transmembrane pressure gradients. The edNEG model accounts for the concentration-dependent effects on ECS potentials that the standard models neglect. Using the edNEG model, we analyze these effects by splitting the extracellular potential into three components: one due to neural sink/source configurations, one due to glial sink/source configurations, and one due to extracellular diffusive currents. Through a series of simulations, we analyze the roles played by the various components and how they interact in generating the total slow potential. We conclude that the three components are of comparable magnitude and that the stimulus conditions determine which of the components that dominate.
Collapse
Affiliation(s)
- Marte J. Sætra
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Gaute T. Einevoll
- Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
- Department of Physics, Norwegian University of Life Sciences, Ås, Norway
| | - Geir Halnes
- Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
- Department of Physics, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
10
|
Herreras O, Makarova J. Mechanisms of the negative potential associated with Leão's spreading depolarization: A history of brain electrogenesis. J Cereb Blood Flow Metab 2020; 40:1934-1952. [PMID: 32580670 PMCID: PMC7786845 DOI: 10.1177/0271678x20935998] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
Abstract
Spreading depolarization (SD) is a self-propagated wave that provokes transient disorder of numerous cell and tissue functions, and that may kill neurons in metabolically compromised tissue. We examined the mechanisms underlying the main hallmark of SD, a giant extracellular potential (ΔVo) for which multiple electromotive forces have been proposed. The end-point is that neurons and not glia, dendritic channels and not spatial currents, and increased sodium conductance rather than potassium gradients, appear to be the main actors in the generation of the negative ΔVo. Neuronal currents are established by two mechanisms, a voltage independent dendritic current, and the differential polarization along the neuron membranes. Notably, despite of a marked drop of ion gradients, these evolve significantly during SD, and yet the membrane potential remains clamped at zero no matter how much inward current is present. There may be substantial inward current or none in function of the evolving portion of the neuron dendrites with SD-activated channels. We propose that the ΔVo promotes swelling-induced dendritic damage. Understanding SD electrogenesis requires all elements relevant for membrane potential, action currents, field potentials and volume conduction to be jointly considered, and it has already encouraged the search for new targets to limit SD-related pathology.
Collapse
Affiliation(s)
- Oscar Herreras
- Department of Translational Neuroscience, Cajal Institute – CSIC, Madrid, Spain
| | - Julia Makarova
- Department of Translational Neuroscience, Cajal Institute – CSIC, Madrid, Spain
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
11
|
Mei YY, Lee MH, Cheng TC, Hsiao IH, Wu DC, Zhou N. NMDA receptors sustain but do not initiate neuronal depolarization in spreading depolarization. Neurobiol Dis 2020; 145:105071. [PMID: 32890774 DOI: 10.1016/j.nbd.2020.105071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/18/2022] Open
Abstract
Spreading depolarization (SD) represents a neurological process characterized by a massive, self-sustaining wave of brain cell depolarization. Understanding its mechanism is important for treating ischemic or hemorrhagic stroke and migraine with aura. Many believed that ion fluxes through NMDA receptors (NMDARs) are responsible for neuronal transmembrane currents of SD. However, the explicit role of NMDARs remains ambiguous. This is in part due to the limitation of traditional pharmacological approaches in resolving the contribution of NMDARs in different intercellular and intracellular processes of SD. Here, we applied single-cell blockade and genetic deletion methods to remove functional NMDARs from individual hippocampal CA1 neurons in order to examine the role of NMDARs in the depolarization mechanism without affecting the propagation of SD. We analyzed neuronal membrane potential changes to demonstrate that NMDARs are not required for initiating the depolarization. Consistently, neuronal input resistance (RN) revealed a sharp decline at the start of SD, which was unaffected by blocking NMDARs. Instead, the recovery of both membrane potential and RN during the late phase of SD was facilitated by inhibition of NMDARs, indicating that NMDARs are responsible for sustaining the depolarization. Our results strongly indicate that NMDAR activation is not a determinant of the initiation of depolarization but is important for sustaining transmembrane ion fluxes during SD.
Collapse
Affiliation(s)
- Yu-Ying Mei
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - Ming-Hsueh Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ting-Chun Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - I-Han Hsiao
- Department of Neurosurgery, China Medical University Hospital, Taichung 40402, Taiwan
| | - Dong Chuan Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Ning Zhou
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
12
|
An electrodiffusive, ion conserving Pinsky-Rinzel model with homeostatic mechanisms. PLoS Comput Biol 2020; 16:e1007661. [PMID: 32348299 PMCID: PMC7213750 DOI: 10.1371/journal.pcbi.1007661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/11/2020] [Accepted: 04/07/2020] [Indexed: 02/05/2023] Open
Abstract
In most neuronal models, ion concentrations are assumed to be constant, and effects of concentration variations on ionic reversal potentials, or of ionic diffusion on electrical potentials are not accounted for. Here, we present the electrodiffusive Pinsky-Rinzel (edPR) model, which we believe is the first multicompartmental neuron model that accounts for electrodiffusive ion concentration dynamics in a way that ensures a biophysically consistent relationship between ion concentrations, electrical charge, and electrical potentials in both the intra- and extracellular space. The edPR model is an expanded version of the two-compartment Pinsky-Rinzel (PR) model of a hippocampal CA3 neuron. Unlike the PR model, the edPR model includes homeostatic mechanisms and ion-specific leakage currents, and keeps track of all ion concentrations (Na+, K+, Ca2+, and Cl−), electrical potentials, and electrical conductivities in the intra- and extracellular space. The edPR model reproduces the membrane potential dynamics of the PR model for moderate firing activity. For higher activity levels, or when homeostatic mechanisms are impaired, the homeostatic mechanisms fail in maintaining ion concentrations close to baseline, and the edPR model diverges from the PR model as it accounts for effects of concentration changes on neuronal firing. We envision that the edPR model will be useful for the field in three main ways. Firstly, as it relaxes commonly made modeling assumptions, the edPR model can be used to test the validity of these assumptions under various firing conditions, as we show here for a few selected cases. Secondly, the edPR model should supplement the PR model when simulating scenarios where ion concentrations are expected to vary over time. Thirdly, being applicable to conditions with failed homeostasis, the edPR model opens up for simulating a range of pathological conditions, such as spreading depression or epilepsy. Neurons generate their electrical signals by letting ions pass through their membranes. Despite this fact, most models of neurons apply the simplifying assumption that ion concentrations remain effectively constant during neural activity. This assumption is often quite good, as neurons contain a set of homeostatic mechanisms that make sure that ion concentrations vary quite little under normal circumstances. However, under some conditions, these mechanisms can fail, and ion concentrations can vary quite dramatically. Standard models are thus not able to simulate such conditions. Here, we present what to our knowledge is the first multicompartmental neuron model that accounts for ion concentration variations in a way that ensures complete and consistent ion concentration and charge conservation. In this work, we use the model to explore under which activity conditions the ion concentration variations become important for predicting the neurodynamics. We expect the model to be of great value for the field of neuroscience, as it can be used to simulate a range of pathological conditions, such as spreading depression or epilepsy, which are associated with large changes in extracellular ion concentrations.
Collapse
|
13
|
Major S, Huo S, Lemale CL, Siebert E, Milakara D, Woitzik J, Gertz K, Dreier JP. Direct electrophysiological evidence that spreading depolarization-induced spreading depression is the pathophysiological correlate of the migraine aura and a review of the spreading depolarization continuum of acute neuronal mass injury. GeroScience 2020; 42:57-80. [PMID: 31820363 PMCID: PMC7031471 DOI: 10.1007/s11357-019-00142-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Spreading depolarization is observed as a large negative shift of the direct current potential, swelling of neuronal somas, and dendritic beading in the brain's gray matter and represents a state of a potentially reversible mass injury. Its hallmark is the abrupt, massive ion translocation between intraneuronal and extracellular compartment that causes water uptake (= cytotoxic edema) and massive glutamate release. Dependent on the tissue's energy status, spreading depolarization can co-occur with different depression or silencing patterns of spontaneous activity. In adequately supplied tissue, spreading depolarization induces spreading depression of activity. In severely ischemic tissue, nonspreading depression of activity precedes spreading depolarization. The depression pattern determines the neurological deficit which is either spreading such as in migraine aura or migraine stroke or nonspreading such as in transient ischemic attack or typical stroke. Although a clinical distinction between spreading and nonspreading focal neurological deficits is useful because they are associated with different probabilities of permanent damage, it is important to note that spreading depolarization, the neuronal injury potential, occurs in all of these conditions. Here, we first review the scientific basis of the continuum of spreading depolarizations. Second, we highlight the transition zone of the continuum from reversibility to irreversibility using clinical cases of aneurysmal subarachnoid hemorrhage and cerebral amyloid angiopathy. These illustrate how modern neuroimaging and neuromonitoring technologies increasingly bridge the gap between basic sciences and clinic. For example, we provide direct electrophysiological evidence for the first time that spreading depolarization-induced spreading depression is the pathophysiological correlate of the migraine aura.
Collapse
Affiliation(s)
- Sebastian Major
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Shufan Huo
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eberhard Siebert
- Department of Neuroradiology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Denny Milakara
- Solution Centre for Image Guided Local Therapies (STIMULATE), Otto-von-Guericke-University, Magdeburg, Germany
| | - Johannes Woitzik
- Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Karen Gertz
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens P Dreier
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
| |
Collapse
|
14
|
Tuttle A, Riera Diaz J, Mori Y. A computational study on the role of glutamate and NMDA receptors on cortical spreading depression using a multidomain electrodiffusion model. PLoS Comput Biol 2019; 15:e1007455. [PMID: 31790388 PMCID: PMC6907880 DOI: 10.1371/journal.pcbi.1007455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/12/2019] [Accepted: 10/02/2019] [Indexed: 11/25/2022] Open
Abstract
Cortical spreading depression (SD) is a spreading disruption of ionic homeostasis in the brain during which neurons experience complete and prolonged depolarizations. SD is the basis of migraine aura and is increasingly associated with many other brain pathologies. Here, we study the role of glutamate and NMDA receptor dynamics in the context of an ionic electrodiffusion model. We perform simulations in one (1D) and two (2D) spatial dimension. Our 1D simulations reproduce the "inverted saddle" shape of the extracellular voltage signal for the first time. Our simulations suggest that SD propagation depends on two overlapping mechanisms; one dependent on extracellular glutamate diffusion and NMDA receptors and the other dependent on extracellular potassium diffusion and persistent sodium channel conductance. In 2D simulations, we study the dynamics of spiral waves. We study the properties of the spiral waves in relation to the planar 1D wave, and also compute the energy expenditure associated with the recurrent SD spirals.
Collapse
Affiliation(s)
- Austin Tuttle
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jorge Riera Diaz
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States of America
| | - Yoichiro Mori
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
15
|
Zakharov A, Chernova K, Burkhanova G, Holmes GL, Khazipov R. Segregation of seizures and spreading depolarization across cortical layers. Epilepsia 2019; 60:2386-2397. [PMID: 31755112 DOI: 10.1111/epi.16390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Cortical spreading depolarization (SD) and seizures are often co-occurring electrophysiological phenomena. However, the cross-layer dynamics of SD during seizures and the effect of SD on epileptic activity across cortical layers remain largely unknown. METHODS We explored the spatial-temporal dynamics of SD and epileptic activity across layers of the rat barrel cortex using direct current silicone probe recordings during flurothyl-induced seizures. RESULTS SD occurred in half of the flurothyl-evoked seizures. SD always started from the superficial layers and spread downward either through all cortical layers or stopping at the L4/L5 border. In cases without SD, seizures were characterized by synchronized population firing across all cortical layers throughout the entire seizure. However, when SD occurred, epileptic activity was transiently silenced in layers involved with SD but persisted in deeper layers. During partial SD, epileptiform activity persisted in deep layers throughout the entire seizure, with positive signals at the cortical surface reflecting passive sources of population spikes generated in deeper cortical layers. During full SD, the initial phase of SD propagation through the superficial layers was similar to partial SD, with suppression of activity at the superficial layers and segregation of seizures to deep layers. Further propagation of SD to deep layers resulted in a wave of transient suppression of epileptic activity through the entire cortical column. Thus, vertical propagation of SD through the cortical column creates dynamic network states during which epileptiform activity is restricted to layers without SD. SIGNIFICANCE Our results point to the importance of vertical SD spread in the SD-related depression of epileptiform activity across cortical layers.
Collapse
Affiliation(s)
- Andrey Zakharov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,Department of physiology, Kazan State Medical University, Kazan, Russia
| | - Kseniya Chernova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | | | - Gregory L Holmes
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,Mediterranean Institute of Neurobiology, National Institute of Health and Medical Research Mixed Unit of Research 1249, Aix-Marseille University, Marseille, France
| |
Collapse
|
16
|
Zhao HH, Du H, Cai Y, Liu C, Xie Z, Chen KC. Time-resolved quantification of the dynamic extracellular space in the brain: study of cortical spreading depression. J Neurophysiol 2019; 121:1735-1747. [PMID: 30786223 DOI: 10.1152/jn.00348.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular diffusion in the brain is customarily characterized by two parameters, the extracellular space (ECS) volume fraction α and the diffusion tortuosity λ. How these two parameters are temporarily modified and correlated in a physiological/pathological event remains unclear to date. Using tetramethylammonium (TMA+) as an ECS ion tracer in a newly updated iontophoretic sinusoidal method, we studied in this work the dynamic α(t) and λ(t) in rat somatosensory cortex during spreading depression (SD). Temporal variations of α(t) and λ(t), as evoked by SD, were obtained through analyses of the extracellular TMA+ diffusion waveform resulting from a sinusoidally modulated point source. Most of the time, cortical SD induced coordinated α(t) decreases and λ(t) increases. In rare occasions, SD induced sole decreases of α(t) with no changes in λ(t). The independent modulation of α(t) and λ(t) was neither associated with cortical anatomy nor with the specific shape of the SD field potential wave. Changes of α(t) and λ(t) often took place acutely at the onset of SD, followed by a more transient modulation. Compared with the prior iontophoretic methods of TMA+, the sinusoidal method provides time-resolved quantification of α(t) and λ(t) in relative terms but also raises a higher property requirement on the TMA+-selective microelectrode. The sinusoidal method could become a valuable tool in the studies of the dynamic ECS response in various brain events. NEW & NOTEWORTHY An iontophoretic sinusoidal method was applied to study the dynamic changes of two extracellular space parameters, the extracellular volume fraction α(t) and tortuosity λ(t), in the brain during cortical spreading depression. Both parameters showed coordinated (most often) and independent (rarely) modulations in spreading depression. The sinusoidal method is equally applicable to other acute pathological events and a valuable tool to study the functional role of extracellular space in brain events.
Collapse
Affiliation(s)
- Hui-Hui Zhao
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China
| | - Hong Du
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China
| | - Yujie Cai
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China
| | - Chao Liu
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China
| | - Zeyu Xie
- Neurosurgery Division, Second Affiliated Hospital of the School of Medicine, Shantou University , Shantou, Guangdong , China
| | - Kevin C Chen
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China.,Department of Biomedical Engineering, Shantou University , Shantou, Guangdong , China
| |
Collapse
|
17
|
Jahanbazi Jahan-Abad A, Alizadeh L, Sahab Negah S, Barati P, Khaleghi Ghadiri M, Meuth SG, Kovac S, Gorji A. Apoptosis Following Cortical Spreading Depression in Juvenile Rats. Mol Neurobiol 2018; 55:4225-4239. [PMID: 28612259 DOI: 10.1007/s12035-017-0642-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 05/29/2017] [Indexed: 12/27/2022]
Abstract
Repetitive cortical spreading depression (CSD) can lead to cell death in immature brain tissue. Caspases are involved in neuronal cell death in several CSD-related neurological disorders, such as stroke and epilepsy. Yet, whether repetitive CSD itself can induce caspase activation in adult or juvenile tissue remains unknown. Inducing repetitive CSD in somatosensory cortices of juvenile and adult rats in vivo, we thus aimed to investigate the effect of repetitive CSD on the expression caspase-3, caspase-8, caspase-9, and caspase-12 in different brain regions using immunohistochemistry and western blotting techniques. Higher numbers of dark neurons and TUNEL-positive cells were observed in the hippocampal CA1 and CA3 regions as well as in the entorhinal and somatosensory cortices after CSD in juvenile rats. This was accompanied by higher expressions of caspase-3, caspase-8, and caspase-9. Caspase-12 levels remained unchanged after CSD, suggesting that endoplasmic reticulum stress is not involved in CSD-triggered apoptosis. Changes in caspase expression were paralleled by a decrease of procaspase-3, procaspase-8, and procaspase-9 in juvenile rat brain tissue subjected to CSD. In contrast, repetitive CSD in adult rats did not result in the upregulation of caspase signaling. Our data points to a maturation-dependent vulnerability of brain tissue to repetitive CSD with a higher degree of apoptotic damage and caspase upregulation observed in juvenile tissue. Findings suggest a key role of caspase signaling in CSD-induced cell death in the immature brain. This implies that anti-apoptotic treatment may prevent CSD-related functional deficits in the immature brain.
Collapse
Affiliation(s)
| | - Leila Alizadeh
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Sajad Sahab Negah
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parastoo Barati
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | | | - Sven G Meuth
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Robert-Koch-Straße 45, 48149, Münster, Germany.
| |
Collapse
|
18
|
Abstract
Acid-sensing ion channels (ASICs) are a family of ion channels, consisting of four members; ASIC1 to 4. These channels are sensitive to changes in pH and are expressed throughout the central and peripheral nervous systems-including brain, spinal cord, and sensory ganglia. They have been implicated in a number of neurological conditions such as stroke and cerebral ischemia, traumatic brain injury, and epilepsy, and more recently in migraine. Their expression within areas of interest in the brain in migraine, such as the hypothalamus and PAG, their demonstrated involvement in preclinical models of meningeal afferent signaling, and their role in cortical spreading depression (the electrophysiological correlate of migraine aura), has enhanced research interest into these channels as potential therapeutic targets in migraine. Migraine is a disorder with a paucity of both acute and preventive therapies available, in which at best 50% of patients respond to available medications, and these medications often have intolerable side effects. There is therefore a great need for therapeutic development for this disabling condition. This review will summarize the understanding of the structure and CNS expression of ASICs, the mechanisms for their potential role in nociception, recent work in migraine, and areas for future research and drug development.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Denmark Hill, London, SE5 9PJ, UK
| | - Eric B Gonzales
- TCU and UNTHSC School of Medicine (applicant for LCME accreditation), Department of Medical Education, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, BSB-14, Richardson, TX, 75080, USA.
| |
Collapse
|
19
|
Nasretdinov A, Lotfullina N, Vinokurova D, Lebedeva J, Burkhanova G, Chernova K, Zakharov A, Khazipov R. Direct Current Coupled Recordings of Cortical Spreading Depression Using Silicone Probes. Front Cell Neurosci 2017; 11:408. [PMID: 29311836 PMCID: PMC5742611 DOI: 10.3389/fncel.2017.00408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/04/2017] [Indexed: 12/04/2022] Open
Abstract
Electrophysiological assessment of infraslow (<0.1 Hz) brain activities such as cortical spreading depression (SD), which occurs in a number of pathologies including migraine, epilepsy, traumatic brain injury (TBI) and brain ischemia requires direct current (DC) coupled recordings of local field potentials (LFPs). Here, we describe how DC-coupled recordings can be performed using high-density iridium electrode arrays (silicone probes). We found that the DC voltage offset of the silicone probe is large and often exceeds the amplifier input range. Introduction of an offset compensation chain at the signal ground efficiently minimized the DC offsets. Silicone probe DC-coupled recordings across layers of the rat visual and barrel cortices revealed that epipial application of KCl, dura incision or pinprick TBI induced SD which preferentially propagated through the supragranular layers and further spread to the granular and infragranular layers attaining maximal amplitudes of ~−30 mV in the infragranular layers. SD at the superficial cortical layers was nearly two-fold longer than at the deep cortical layers. Continuous epipial KCl evoked multiple recurrent SDs which always started in the supragranular layers but often failed to propagate through the deeper cortical layers. Intracortical KCl injection into the infragranular layers evoked SD which also started in the supragranular layers and spread to the granular and infragranular layers, further indicating that the supragranular layers are particularly prone to SD. Thus, DC-coupled recordings with silicone probes after offset compensation can be successfully used to explore the spatial—temporal dynamics of SD and other slow brain activities.
Collapse
Affiliation(s)
- Azat Nasretdinov
- Laboratory of Neurobiology, Department of Human and Animal Physiology, Kazan Federal University, Kazan, Russia
| | - Nailya Lotfullina
- Laboratory of Neurobiology, Department of Human and Animal Physiology, Kazan Federal University, Kazan, Russia
| | - Daria Vinokurova
- Laboratory of Neurobiology, Department of Human and Animal Physiology, Kazan Federal University, Kazan, Russia
| | - Julia Lebedeva
- Laboratory of Neurobiology, Department of Human and Animal Physiology, Kazan Federal University, Kazan, Russia
| | - Gulshat Burkhanova
- Laboratory of Neurobiology, Department of Human and Animal Physiology, Kazan Federal University, Kazan, Russia
| | - Kseniya Chernova
- Laboratory of Neurobiology, Department of Human and Animal Physiology, Kazan Federal University, Kazan, Russia
| | - Andrey Zakharov
- Laboratory of Neurobiology, Department of Human and Animal Physiology, Kazan Federal University, Kazan, Russia
| | - Roustem Khazipov
- Laboratory of Neurobiology, Department of Human and Animal Physiology, Kazan Federal University, Kazan, Russia.,Institut de Neurobiologie de la Méditerranée (INMED)-INSERM, UMR901, Aix-Marseille University, Marseille, France
| |
Collapse
|
20
|
Halnes G, Mäki-Marttunen T, Keller D, Pettersen KH, Andreassen OA, Einevoll GT. Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue. PLoS Comput Biol 2016; 12:e1005193. [PMID: 27820827 PMCID: PMC5098741 DOI: 10.1371/journal.pcbi.1005193] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 10/11/2016] [Indexed: 01/06/2023] Open
Abstract
Recorded potentials in the extracellular space (ECS) of the brain is a standard measure of population activity in neural tissue. Computational models that simulate the relationship between the ECS potential and its underlying neurophysiological processes are commonly used in the interpretation of such measurements. Standard methods, such as volume-conductor theory and current-source density theory, assume that diffusion has a negligible effect on the ECS potential, at least in the range of frequencies picked up by most recording systems. This assumption remains to be verified. We here present a hybrid simulation framework that accounts for diffusive effects on the ECS potential. The framework uses (1) the NEURON simulator to compute the activity and ionic output currents from multicompartmental neuron models, and (2) the electrodiffusive Kirchhoff-Nernst-Planck framework to simulate the resulting dynamics of the potential and ion concentrations in the ECS, accounting for the effect of electrical migration as well as diffusion. Using this framework, we explore the effect that ECS diffusion has on the electrical potential surrounding a small population of 10 pyramidal neurons. The neural model was tuned so that simulations over ∼100 seconds of biological time led to shifts in ECS concentrations by a few millimolars, similar to what has been seen in experiments. By comparing simulations where ECS diffusion was absent with simulations where ECS diffusion was included, we made the following key findings: (i) ECS diffusion shifted the local potential by up to ∼0.2 mV. (ii) The power spectral density (PSD) of the diffusion-evoked potential shifts followed a 1/f2 power law. (iii) Diffusion effects dominated the PSD of the ECS potential for frequencies up to several hertz. In scenarios with large, but physiologically realistic ECS concentration gradients, diffusion was thus found to affect the ECS potential well within the frequency range picked up in experimental recordings.
Collapse
Affiliation(s)
- Geir Halnes
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Tuomo Mäki-Marttunen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Klas H. Pettersen
- Letten Centre and GliaLab, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gaute T. Einevoll
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
O'Connell R, Mori Y. Effects of Glia in a Triphasic Continuum Model of Cortical Spreading Depression. Bull Math Biol 2016; 78:1943-1967. [PMID: 27730322 DOI: 10.1007/s11538-016-0206-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/15/2016] [Indexed: 12/01/2022]
Abstract
Cortical spreading depression (SD) is a spreading disruption in brain ionic homeostasis during which neurons experience complete and prolonged depolarizations. SD is generally believed to be the physiological substrate of migraine aura and is associated with many other brain pathologies. Here, we perform simulations with a model of SD treating brain tissue as a triphasic continuum of neurons, glia and the extracellular space. A thermodynamically consistent incorporation of the major biophysical effects, including ionic electrodiffusion and osmotic water flow, allows for the computation of important physiological variables including the extracellular voltage (DC) shift. A systematic parameter study reveals that glia can act as both a disperser and buffer of potassium in SD propagation. Furthermore, we show that the timing of the DC shift with respect to extracellular [Formula: see text] rise is highly dependent on glial parameters, a result with implications for the identification of the propagating mechanism of SD.
Collapse
Affiliation(s)
- Rosemary O'Connell
- School of Mathematics, University of Minnesota, 206 Church St. SE, Minneapolis, MN, 55455, USA
| | - Yoichiro Mori
- School of Mathematics, University of Minnesota, 206 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
22
|
Angamo EA, Rösner J, Liotta A, Kovács R, Heinemann U. A neuronal lactate uptake inhibitor slows recovery of extracellular ion concentration changes in the hippocampal CA3 region by affecting energy metabolism. J Neurophysiol 2016; 116:2420-2430. [PMID: 27559140 DOI: 10.1152/jn.00327.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/13/2016] [Indexed: 01/20/2023] Open
Abstract
Astrocyte-derived lactate supports pathologically enhanced neuronal metabolism, but its role under physiological conditions is still a matter of debate. Here, we determined the contribution of astrocytic neuronal lactate shuttle for maintenance of ion homeostasis and energy metabolism. We tested for the effects of α-cyano-4-hydroxycinnamic acid (4-CIN), which could interfere with energy metabolism by blocking monocarboxylate-transporter 2 (MCT2)-mediated neuronal lactate uptake, on evoked potentials, stimulus-induced changes in K+, Na+, Ca2+, and oxygen concentrations as well as on changes in flavin adenine dinucleotide (FAD) autofluorescence in the hippocampal area CA3. MCT2 blockade by 4-CIN reduced synaptically evoked but not antidromic population spikes. This effect was dependent on the activation of KATP channels indicating reduced neuronal ATP synthesis. By contrast, lactate receptor activation by 3,5-dihydroxybenzoic acid (3,5-DHBA) resulted in increased antidromic and orthodromic population spikes suggesting that 4-CIN effects are not mediated by lactate accumulation and subsequent activation of lactate receptors. Recovery kinetics of all ion transients were prolonged and baseline K+ concentration became elevated by blockade of lactate uptake. Lactate contributed to oxidative metabolism as both baseline respiration and stimulus-induced changes in Po2 were decreased, while FAD fluorescence increased likely due to a reduced conversion of FAD into FADH2 These data suggest that lactate shuttle contributes to regulation of ion homeostatsis and synaptic signaling even in the presence of ample glucose.
Collapse
Affiliation(s)
| | - Joerg Rösner
- Neuroscience Research Center, Charité Universitätsmedizin, Berlin, Germany
| | - Agustin Liotta
- Department of Anesthesiology and Intensive Care, Charité Universitätsmedizin, Berlin, Germany
| | - Richard Kovács
- Institute for Neurophysiology, Charité Universitätsmedizin, Berlin, Germany; and
| | - Uwe Heinemann
- Neuroscience Research Center, Charité Universitätsmedizin, Berlin, Germany;
| |
Collapse
|
23
|
Abstract
The term spreading depolarization (SD) refers to waves of abrupt, sustained mass depolarization in gray matter of the CNS. SD, which spreads from neuron to neuron in affected tissue, is characterized by a rapid near-breakdown of the neuronal transmembrane ion gradients. SD can be induced by hypoxic conditions--such as from ischemia--and facilitates neuronal death in energy-compromised tissue. SD has also been implicated in migraine aura, where SD is assumed to ascend in well-nourished tissue and is typically benign. In addition to these two ends of the "SD continuum," an SD wave can propagate from an energy-depleted tissue into surrounding, well-nourished tissue, as is often the case in stroke and brain trauma. This review presents the neurobiology of SD--its triggers and propagation mechanisms--as well as clinical manifestations of SD, including overlaps and differences between migraine aura and stroke, and recent developments in neuromonitoring aimed at better diagnosis and more targeted treatments.
Collapse
Affiliation(s)
- Jens P Dreier
- Department of Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany; Department of Experimental Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany; Center for Stroke Research, Charité University Medicine Berlin, 10117 Berlin, Germany.
| | - Clemens Reiffurth
- Department of Experimental Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany; Center for Stroke Research, Charité University Medicine Berlin, 10117 Berlin, Germany
| |
Collapse
|
24
|
How spreading depolarization can be the pathophysiological correlate of both migraine aura and stroke. ACTA NEUROCHIRURGICA. SUPPLEMENT 2015; 120:137-40. [PMID: 25366613 DOI: 10.1007/978-3-319-04981-6_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The term spreading depolarization describes a mechanism of abrupt, massive ion translocation between neurons and the interstitial space, which leads to a cytotoxic edema in the gray matter of the brain. In energy-compromised tissue, spreading depolarization is preceded by a nonspreading silencing (depression of spontaneous activity) because of a neuronal hyperpolarization. By contrast, in tissue that is not energy compromised, spreading depolarization is accompanied by a spreading silencing (spreading depression) of spontaneous activity caused by a depolarization block. It is assumed that the nonspreading silencing translates into the initial clinical symptoms of ischemic stroke and the spreading silencing (spreading depression) into the symptoms of migraine aura. In energy-compromised tissue, spreading depolarization facilitates neuronal death, whereas, in healthy tissue, it is relatively innocuous. Therapies targeting spreading depolarization in metabolically compromised tissue may potentially treat conditions of acute cerebral injury such as aneurysmal subarachnoid hemorrhage.
Collapse
|
25
|
Fujita S, Mizoguchi N, Aoki R, Cui Y, Koshikawa N, Kobayashi M. Cytoarchitecture-Dependent Decrease in Propagation Velocity of Cortical Spreading Depression in the Rat Insular Cortex Revealed by Optical Imaging. Cereb Cortex 2015; 26:1580-1589. [PMID: 25595184 DOI: 10.1093/cercor/bhu336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cortical spreading depression (SD) is a self-propagating wave of depolarization accompanied by a substantial disturbance of the ionic distribution between the intra- and extracellular compartments. Glial cells, including astrocytes, play critical roles in maintenance of the extracellular environment, including ionic distribution. Therefore, SD propagation in the cerebral cortex may depend on the density of astrocytes. The present study aimed to examine the profile of SD propagation in the insular cortex (IC), which is located between the neocortex and paleocortex and is where the density of astrocytes gradually changes. The velocity of SD propagation in the neocortex, including the somatosensory, motor, and granular insular cortices (5.7 mm/min), was higher than that (2.8 mm/min) in the paleocortex (agranular insular and piriform cortices). Around thick vessels, including the middle cerebral artery, SD propagation was frequently delayed and sometimes disappeared. Immunohistological analysis of glial fibrillary acidic protein (GFAP) demonstrated the sparse distribution of astrocytes in the somatosensory cortex and the IC dorsal to the rhinal fissure, whereas the ventral IC showed a higher density of astrocytes. These results suggest that cortical cytoarchitectonic features, which possibly involve the distribution of astrocytes, are crucial for regulating the velocity of SD propagation in the cerebral cortex.
Collapse
Affiliation(s)
- Satoshi Fujita
- Department of Pharmacology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Naoko Mizoguchi
- Department of Pharmacology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Division of Physiology, Department of Human Development and Fostering
| | - Ryuhei Aoki
- Department of Pharmacology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Yilong Cui
- Molecular Dynamics Imaging Unit, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Noriaki Koshikawa
- Department of Pharmacology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Molecular Dynamics Imaging Unit, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
26
|
Pietrobon D, Moskowitz MA. Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations. Nat Rev Neurosci 2014; 15:379-93. [PMID: 24857965 DOI: 10.1038/nrn3770] [Citation(s) in RCA: 277] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Punctuated episodes of spreading depolarizations erupt in the brain, encumbering tissue structure and function, and raising fascinating unanswered questions concerning their initiation and propagation. Linked to migraine aura and headache, cortical spreading depression contributes to the morbidity in the world's migraine with aura population. Even more ominously, erupting spreading depolarizations accelerate tissue damage during brain injury. The once-held view that spreading depolarizations may not exist in the human brain has changed, largely because of the discovery of migraine genes that confer cortical spreading depression susceptibility, the application of sophisticated imaging tools and efforts to interrogate their impact in the acutely injured human brain.
Collapse
Affiliation(s)
- Daniela Pietrobon
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova 35121 Padova, Italy
| | - Michael A Moskowitz
- 1] Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, 149 13th Street, Room 6403, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. [2] Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Costa C, Tozzi A, Rainero I, Cupini LM, Calabresi P, Ayata C, Sarchielli P. Cortical spreading depression as a target for anti-migraine agents. J Headache Pain 2013; 14:62. [PMID: 23879550 PMCID: PMC3728002 DOI: 10.1186/1129-2377-14-62] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/08/2013] [Indexed: 12/18/2022] Open
Abstract
Spreading depression (SD) is a slowly propagating wave of neuronal and glial depolarization lasting a few minutes, that can develop within the cerebral cortex or other brain areas after electrical, mechanical or chemical depolarizing stimulations. Cortical SD (CSD) is considered the neurophysiological correlate of migraine aura. It is characterized by massive increases in both extracellular K⁺ and glutamate, as well as rises in intracellular Na⁺ and Ca²⁺. These ionic shifts produce slow direct current (DC) potential shifts that can be recorded extracellularly. Moreover, CSD is associated with changes in cortical parenchymal blood flow. CSD has been shown to be a common therapeutic target for currently prescribed migraine prophylactic drugs. Yet, no effects have been observed for the antiepileptic drugs carbamazepine and oxcarbazepine, consistent with their lack of efficacy on migraine. Some molecules of interest for migraine have been tested for their effect on CSD. Specifically, blocking CSD may play an enabling role for novel benzopyran derivative tonabersat in preventing migraine with aura. Additionally, calcitonin gene-related peptide (CGRP) antagonists have been recently reported to inhibit CSD, suggesting the contribution of CGRP receptor activation to the initiation and maintenance of CSD not only at the classic vascular sites, but also at a central neuronal level. Understanding what may be lying behind this contribution, would add further insights into the mechanisms of actions for "gepants", which may be pivotal for the effectiveness of these drugs as anti-migraine agents. CSD models are useful tools for testing current and novel prophylactic drugs, providing knowledge on mechanisms of action relevant for migraine.
Collapse
Affiliation(s)
- Cinzia Costa
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano, 00143, Rome, Italy
| | - Alessandro Tozzi
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano, 00143, Rome, Italy
| | - Innocenzo Rainero
- Neurology II, Department of Neuroscience, University of Torino, Ospedale Molinette, Via Cherasco 15, 10126, Turin, Italy
| | | | - Paolo Calabresi
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano, 00143, Rome, Italy
| | - Cenk Ayata
- Neurovascular Research Lab., Department of Radiology, Stroke Service and Neuroscience Intensive Unit Department of Neurology Massachusetts Hospital, Harvard Medical School, 02115, Boston, MA, USA
| | - Paola Sarchielli
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
| |
Collapse
|
28
|
Gniel HM, Martin RL. Cortical spreading depression-induced preconditioning in mouse neocortex is lamina specific. J Neurophysiol 2013; 109:2923-36. [PMID: 23515796 DOI: 10.1152/jn.00855.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cortical spreading depression (CSD) is able to confer neuroprotection when delivered at least 1 day in advance of an ischemic event. However, its ability to confer neuroprotection in a more immediate time frame has not previously been investigated. Here we have used mouse neocortical brain slices to study the effects of repeated episodes of CSD in layer V and layer II/III pyramidal neurons. In layer V, CSD evoked at 15-min intervals caused successively smaller membrane depolarizations and increases in intracellular calcium compared with the response to the first CSD. With an inter-CSD interval of 30 min this preconditioning effect was much less marked, indicating that preconditioning lasts between 15 and 30 min. A single episode of CSD also provided a degree of protection in oxygen-glucose deprivation (OGD) by significantly lengthening the time a cell could withstand OGD before anoxic depolarization occurred. In layer II/III pyramidal neurons no preconditioning by CSD on subsequent episodes of CSD was observed, demonstrating that the response of pyramidal neurons to repeated CSD is lamina specific. The A1 receptor antagonist 8-cyclopentyl theophylline (8-CPT) reduced the layer V preconditioning in a concentration-related manner. Inhibition of extracellular formation of adenosine by blocking ecto-5'-nucleotidase with α,β-methyleneadenosine 5'-diphosphate prevented preconditioning in most but not all cells. Block of equilibrative nucleoside transporters 1 and 2 with dipyramidole alone or in combination with 6-[(4-nitrobenzyl)thio]-9-β-d-ribofuranosylpurine also prevented preconditioning in some but not all cells. These data provide evidence that rapid preconditioning of one CSD by another is primarily mediated by adenosine.
Collapse
Affiliation(s)
- Helen M Gniel
- Research School of Biology, The Australian National Univ. Bldg. 134, Linnaeus Way, Acton, ACT, 0200, Australia.
| | | |
Collapse
|
29
|
Dreier JP, Victorov IV, Petzold GC, Major S, Windmüller O, Fernández-Klett F, Kandasamy M, Dirnagl U, Priller J. Electrochemical Failure of the Brain Cortex Is More Deleterious When it Is Accompanied by Low Perfusion. Stroke 2013; 44:490-6. [PMID: 23287786 DOI: 10.1161/strokeaha.112.660589] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Clinical and experimental evidence suggests that spreading depolarization facilitates neuronal injury when its duration exceeds a certain time point, termed commitment point. We here investigated whether this commitment point is shifted to an earlier period, when spreading depolarization is accompanied by a perfusion deficit.
Methods—
Electrophysiological and cerebral blood flow changes were studied in a rat cranial window model followed by histological and immunohistochemical analyses of cortical damage.
Results—
In group 1, brain topical application of artificial cerebrospinal fluid (ACSF) with high K
+
concentration ([K
+
]
ACSF
) for 1 hour allowed us to induce a depolarizing event of fixed duration with cerebral blood flow fluctuations around the baseline (short-lasting initial hypoperfusions followed by hyperemia). In group 2, coapplication of the NO-scavenger hemoglobin ([Hb]
ACSF
) with high [K
+
]
ACSF
caused a depolarizing event of similar duration, to which a severe perfusion deficit was coupled (=spreading ischemia). In group 3, intravenous coadministration of the L-type calcium channel antagonist nimodipine with brain topical application of high [K
+
]
ACSF
/[Hb]
ACSF
caused spreading ischemia to revert to spreading hyperemia. Whereas scattered neuronal injury occurred in the superficial cortical layers in the window areas of groups 1 and 3, necrosis of all layers with partial loss of the tissue texture and microglial activation were observed in group 2.
Conclusions—
The results suggest that electrochemical failure of the cortex is more deleterious when it is accompanied by low perfusion. Thus, the commitment point of the cortex is not a universal value but depends on additional factors, such as the level of perfusion.
Collapse
Affiliation(s)
- Jens P. Dreier
- From the Center for Stroke Research Berlin (J.P.D., S.M., U.D.), Department of Experimental Neurology (J.P.D., S.M., G.C.P., O.W., U.D.), Department of Neurology (J.P.D., S.M., G.C.P.), Department of Neuropsychiatry (F.F.-K., M.K., J.P.), and Excellence Cluster NeuroCure (J.P.D., U.D., J.P.), Charité University Medicine Berlin, Berlin, Germany; Department of Neurology, University of Bonn, Bonn, Germany (G.C.P.); and Laboratory of Experimental Neurocytology, Brain Research Institute, Moscow, Russia
| | - Ilya V. Victorov
- From the Center for Stroke Research Berlin (J.P.D., S.M., U.D.), Department of Experimental Neurology (J.P.D., S.M., G.C.P., O.W., U.D.), Department of Neurology (J.P.D., S.M., G.C.P.), Department of Neuropsychiatry (F.F.-K., M.K., J.P.), and Excellence Cluster NeuroCure (J.P.D., U.D., J.P.), Charité University Medicine Berlin, Berlin, Germany; Department of Neurology, University of Bonn, Bonn, Germany (G.C.P.); and Laboratory of Experimental Neurocytology, Brain Research Institute, Moscow, Russia
| | - Gabor C. Petzold
- From the Center for Stroke Research Berlin (J.P.D., S.M., U.D.), Department of Experimental Neurology (J.P.D., S.M., G.C.P., O.W., U.D.), Department of Neurology (J.P.D., S.M., G.C.P.), Department of Neuropsychiatry (F.F.-K., M.K., J.P.), and Excellence Cluster NeuroCure (J.P.D., U.D., J.P.), Charité University Medicine Berlin, Berlin, Germany; Department of Neurology, University of Bonn, Bonn, Germany (G.C.P.); and Laboratory of Experimental Neurocytology, Brain Research Institute, Moscow, Russia
| | - Sebastian Major
- From the Center for Stroke Research Berlin (J.P.D., S.M., U.D.), Department of Experimental Neurology (J.P.D., S.M., G.C.P., O.W., U.D.), Department of Neurology (J.P.D., S.M., G.C.P.), Department of Neuropsychiatry (F.F.-K., M.K., J.P.), and Excellence Cluster NeuroCure (J.P.D., U.D., J.P.), Charité University Medicine Berlin, Berlin, Germany; Department of Neurology, University of Bonn, Bonn, Germany (G.C.P.); and Laboratory of Experimental Neurocytology, Brain Research Institute, Moscow, Russia
| | - Olaf Windmüller
- From the Center for Stroke Research Berlin (J.P.D., S.M., U.D.), Department of Experimental Neurology (J.P.D., S.M., G.C.P., O.W., U.D.), Department of Neurology (J.P.D., S.M., G.C.P.), Department of Neuropsychiatry (F.F.-K., M.K., J.P.), and Excellence Cluster NeuroCure (J.P.D., U.D., J.P.), Charité University Medicine Berlin, Berlin, Germany; Department of Neurology, University of Bonn, Bonn, Germany (G.C.P.); and Laboratory of Experimental Neurocytology, Brain Research Institute, Moscow, Russia
| | - Francisco Fernández-Klett
- From the Center for Stroke Research Berlin (J.P.D., S.M., U.D.), Department of Experimental Neurology (J.P.D., S.M., G.C.P., O.W., U.D.), Department of Neurology (J.P.D., S.M., G.C.P.), Department of Neuropsychiatry (F.F.-K., M.K., J.P.), and Excellence Cluster NeuroCure (J.P.D., U.D., J.P.), Charité University Medicine Berlin, Berlin, Germany; Department of Neurology, University of Bonn, Bonn, Germany (G.C.P.); and Laboratory of Experimental Neurocytology, Brain Research Institute, Moscow, Russia
| | - Mahesh Kandasamy
- From the Center for Stroke Research Berlin (J.P.D., S.M., U.D.), Department of Experimental Neurology (J.P.D., S.M., G.C.P., O.W., U.D.), Department of Neurology (J.P.D., S.M., G.C.P.), Department of Neuropsychiatry (F.F.-K., M.K., J.P.), and Excellence Cluster NeuroCure (J.P.D., U.D., J.P.), Charité University Medicine Berlin, Berlin, Germany; Department of Neurology, University of Bonn, Bonn, Germany (G.C.P.); and Laboratory of Experimental Neurocytology, Brain Research Institute, Moscow, Russia
| | - Ulrich Dirnagl
- From the Center for Stroke Research Berlin (J.P.D., S.M., U.D.), Department of Experimental Neurology (J.P.D., S.M., G.C.P., O.W., U.D.), Department of Neurology (J.P.D., S.M., G.C.P.), Department of Neuropsychiatry (F.F.-K., M.K., J.P.), and Excellence Cluster NeuroCure (J.P.D., U.D., J.P.), Charité University Medicine Berlin, Berlin, Germany; Department of Neurology, University of Bonn, Bonn, Germany (G.C.P.); and Laboratory of Experimental Neurocytology, Brain Research Institute, Moscow, Russia
| | - Josef Priller
- From the Center for Stroke Research Berlin (J.P.D., S.M., U.D.), Department of Experimental Neurology (J.P.D., S.M., G.C.P., O.W., U.D.), Department of Neurology (J.P.D., S.M., G.C.P.), Department of Neuropsychiatry (F.F.-K., M.K., J.P.), and Excellence Cluster NeuroCure (J.P.D., U.D., J.P.), Charité University Medicine Berlin, Berlin, Germany; Department of Neurology, University of Bonn, Bonn, Germany (G.C.P.); and Laboratory of Experimental Neurocytology, Brain Research Institute, Moscow, Russia
| |
Collapse
|
30
|
Aiba I, Shuttleworth CW. Sustained NMDA receptor activation by spreading depolarizations can initiate excitotoxic injury in metabolically compromised neurons. J Physiol 2012; 590:5877-93. [PMID: 22907056 PMCID: PMC3528997 DOI: 10.1113/jphysiol.2012.234476] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/15/2012] [Indexed: 01/09/2023] Open
Abstract
Spreading depolarizations (SDs) are slowly propagating waves of near-complete neuronal and glial depolarization. SDs have been recorded in patients with brain injury, and the incidence of SD significantly correlates with outcome severity. Although it is well accepted that the ionic dyshomeostasis of SD presents a severe metabolic burden, there is currently limited understanding of SD-induced injury processes at a cellular level. In the current study we characterized events accompanying SD in the hippocampal CA1 region of murine brain slices, using whole-cell recordings and single-cell Ca(2+) imaging. We identified an excitatory phase that persisted for approximately 2 min following SD onset, and accompanied with delayed dendritic ionic dyshomeostasis. The excitatory phase coincided with a significant increase in presynaptic glutamate release, evidenced by a transient increase in spontaneous EPSC frequency and paired-pulse depression of evoked EPSCs. Activation of NMDA receptors (NMDARs) during this late excitatory phase contributed to the duration of individual neuronal depolarizations and delayed recovery of extracellular slow potential changes. Selectively targeting the NMDAR activation following SD onset (by delayed pressure application of a competitive NMDAR antagonist) significantly decreased the duration of cellular depolarizations. Recovery of dendritic Ca(2+) elevations following SD were also sensitive to delayed NMDA antagonist application. Partial inhibition of neuronal energy metabolism converted SD into an irrecoverable event with persistent Ca(2+) overload and membrane compromise. Delayed NMDAR block was sufficient to prevent these acute injurious events in metabolically compromised neurons. These results identify a significant contribution of a late component of SD that could underlie neuronal injury in pathological circumstances.
Collapse
Affiliation(s)
- Isamu Aiba
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131-0001, USA
| | | |
Collapse
|
31
|
Richter F, Bauer R, Ebersberger A, Lehmenkühler A, Schaible HG. Enhanced neuronal excitability in adult rat brainstem causes widespread repetitive brainstem depolarizations with cardiovascular consequences. J Cereb Blood Flow Metab 2012; 32:1535-45. [PMID: 22453631 PMCID: PMC3421090 DOI: 10.1038/jcbfm.2012.40] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The brainstem of the adult rat is relatively resistant to spreading depolarization (SD) but after enhancement of excitability SD can be evoked by local application of KCl. In the present experiments, we observed that the enhanced excitability even triggers prolonged periods of repetitive depolarizations (RDs), which elicit significant cardiovascular changes. In contrast to KCl-evoked SDs with amplitudes of ∼24 mV and spreading velocity of 4 mm/min, spontaneous RDs had amplitudes of 7 to 12 mV, propagated up to 30 times faster than KCl-evoked SDs, and depolarized larger brainstem areas including the contralateral side. Similarly as SD, RDs depended on glutamatergic neurotransmission and were blocked by MK-801 or by the calcium channel blocker agatoxin. They depended on sodium channels and were blocked by tetrodotoxin. Functionally, the invasion of RDs into the spinal trigeminal and other nuclei evoked bursts of action potentials, indicating that specific neuronal systems are affected. In fact, during episodes of RDs the blood pressure and the local blood flow at the surface of the brainstem and the cortex increased substantially. Brainstem RDs did not propagate into the cerebral cortex. We propose to consider brainstem RPs as a pathophysiological mechanism whose significance for brainstem disease states should be further explored.
Collapse
Affiliation(s)
- Frank Richter
- Institute of Physiology I/Neurophysiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
| | | | | | | | | |
Collapse
|
32
|
Dreier JP, Isele T, Reiffurth C, Offenhauser N, Kirov SA, Dahlem MA, Herreras O. Is spreading depolarization characterized by an abrupt, massive release of gibbs free energy from the human brain cortex? Neuroscientist 2012; 19:25-42. [PMID: 22829393 DOI: 10.1177/1073858412453340] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the evolution of the cerebral cortex, the sophisticated organization in a steady state far away from thermodynamic equilibrium has produced the side effect of two fundamental pathological network events: ictal epileptic activity and spreading depolarization. Ictal epileptic activity describes the partial disruption, and spreading depolarization describes the near-complete disruption of the physiological double Gibbs-Donnan steady state. The occurrence of ictal epileptic activity in patients has been known for decades. Recently, unequivocal electrophysiological evidence has been found in patients that spreading depolarizations occur abundantly in stroke and brain trauma. The authors propose that the ion changes can be taken to estimate relative changes in Gibbs free energy from state to state. The calculations suggest that in transitions from the physiological state to ictal epileptic activity to spreading depolarization to death, the cortex releases Gibbs free energy in a stepwise fashion. Spreading depolarization thus appears as a twilight state close to death. Consistently, electrocorticographic recordings in the core of focal ischemia or after cardiac arrest display a smooth transition from the initial spreading depolarization component to the later ultraslow negative potential, which is assumed to reflect processes in cellular death.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Drenckhahn C, Winkler MKL, Major S, Scheel M, Kang EJ, Pinczolits A, Grozea C, Hartings JA, Woitzik J, Dreier JP. Correlates of spreading depolarization in human scalp electroencephalography. Brain 2012; 135:853-68. [PMID: 22366798 PMCID: PMC3286336 DOI: 10.1093/brain/aws010] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It has been known for decades that suppression of spontaneous scalp electroencephalographic activity occurs during ischaemia. Trend analysis for such suppression was found useful for intraoperative monitoring during carotid endarterectomy, or as a screening tool to detect delayed cerebral ischaemia after aneurismal subarachnoid haemorrhage. Nevertheless, pathogenesis of such suppression of activity has remained unclear. In five patients with aneurismal subarachnoid haemorrhage and four patients with decompressive hemicraniectomy after malignant hemispheric stroke due to middle cerebral artery occlusion, we here performed simultaneously full-band direct and alternating current electroencephalography at the scalp and direct and alternating current electrocorticography at the cortical surface. After subarachnoid haemorrhage, 275 slow potential changes, identifying spreading depolarizations, were recorded electrocorticographically over 694 h. Visual inspection of time-compressed scalp electroencephalography identified 193 (70.2%) slow potential changes [amplitude: −272 (−174, −375) µV (median quartiles), duration: 5.4 (4.0, 7.1) min, electrocorticography–electroencephalography delay: 1.8 (0.8, 3.5) min]. Intervals between successive spreading depolarizations were significantly shorter for depolarizations with electroencephalographically identified slow potential change [33.0 (27.0, 76.5) versus 53.0 (28.0, 130.5) min, P = 0.009]. Electroencephalography was thus more likely to display slow potential changes of clustered than isolated spreading depolarizations. In contrast to electrocorticography, no spread of electroencephalographic slow potential changes was seen, presumably due to superposition of volume-conducted electroencephalographic signals from widespread cortical generators. In two of five patients with subarachnoid haemorrhage, serial magnetic resonance imaging revealed large delayed infarcts at the recording site, while electrocorticography showed clusters of spreading depolarizations with persistent depression of spontaneous activity. Alternating current electroencephalography similarly displayed persistent depression of spontaneous activity, and direct current electroencephalography slow potential changes riding on a shallow negative ultraslow potential. Isolated spreading depolarizations with depression of both spontaneous electrocorticographic and electroencephalographic activity displayed significantly longer intervals between successive spreading depolarizations than isolated depolarizations with only depression of electrocorticographic activity [44.0 (28.0, 132.0) min, n = 96, versus 30.0 (26.5, 51.5) min, n = 109, P = 0.001]. This suggests fusion of electroencephalographic depression periods at high depolarization frequency. No propagation of electroencephalographic depression was seen between scalp electrodes. Durations/magnitudes of isolated electroencephalographic and corresponding electrocorticographic depression periods correlated significantly. Fewer spreading depolarizations were recorded in patients with malignant hemispheric stroke but characteristics were similar to those after subarachnoid haemorrhage. In conclusion, spreading depolarizations and depressions of spontaneous activity display correlates in time-compressed human scalp direct and alternating current electroencephalography that may serve for their non-invasive detection.
Collapse
Affiliation(s)
- Christoph Drenckhahn
- Centre for Stroke Research Berlin, Charité University Medicine Berlin, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Schnell C, Janc OA, Kempkes B, Callis CA, Flügge G, Hülsmann S, Müller M. Restraint Stress Intensifies Interstitial K(+) Accumulation during Severe Hypoxia. Front Pharmacol 2012; 3:53. [PMID: 22470344 PMCID: PMC3314232 DOI: 10.3389/fphar.2012.00053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/12/2012] [Indexed: 11/23/2022] Open
Abstract
Chronic stress affects neuronal networks by inducing dendritic retraction, modifying neuronal excitability and plasticity, and modulating glial cells. To elucidate the functional consequences of chronic stress for the hippocampal network, we submitted adult rats to daily restraint stress for 3 weeks (6 h/day). In acute hippocampal tissue slices of stressed rats, basal synaptic function and short-term plasticity at Schaffer collateral/CA1 neuron synapses were unchanged while long-term potentiation was markedly impaired. The spatiotemporal propagation pattern of hypoxia-induced spreading depression episodes was indistinguishable among control and stress slices. However, the duration of the extracellular direct current potential shift was shortened after stress. Moreover, K+ fluxes early during hypoxia were more intense, and the postsynaptic recoveries of interstitial K+ levels and synaptic function were slower. Morphometric analysis of immunohistochemically stained sections suggested hippocampal shrinkage in stressed rats, and the number of cells that are immunoreactive for glial fibrillary acidic protein was increased in the CA1 subfield indicating activation of astrocytes. Western blots showed a marked downregulation of the inwardly rectifying K+ channel Kir4.1 in stressed rats. Yet, resting membrane potentials, input resistance, and K+-induced inward currents in CA1 astrocytes were indistinguishable from controls. These data indicate an intensified interstitial K+ accumulation during hypoxia in the hippocampus of chronically stressed rats which seems to arise from a reduced interstitial volume fraction rather than impaired glial K+ buffering. One may speculate that chronic stress aggravates hypoxia-induced pathophysiological processes in the hippocampal network and that this has implications for the ischemic brain.
Collapse
Affiliation(s)
- Christian Schnell
- DFG Research Center Molecular Physiology of the Brain, Georg-August-Universität Göttingen Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Bassani HF, Árajo ÁFR, Barbosa CTF, Guedes RCA. Modeling the slow wave shapes of spreading depression in a rat cortex: a methodology for seeking physiological parameters. IEEE Trans Biomed Eng 2011; 59:515-24. [PMID: 22084043 DOI: 10.1109/tbme.2011.2175447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Spreading depression (SD) consists of a transient significant suppression of the spontaneous neural electrical activity that spreads slowly across regions of the gray matter in a wave form. Nowadays, this phenomenon is being studied by means of mathematical and computational models to reproduce the main characteristics of SD. Given the high number of parameters and their unknown ranges of variation, the setting of parameters for current SD models is usually a hard task that must be addressed in order to make such models reproduce real data. In this paper, we present a 1-D model which is able to reproduce the most important characteristics of SD waves observed in laboratory experiments: the slow extracellular potential shift and extracellular ionic concentration variations regarding speed, shape, and amplitude. Such a reproduction is possible due to a methodology that we introduced to set the parameters of the SD models. The methodology allows the impact of each parameter on the results produced by the model and the range of parameters for which the model displays plausible behavior to be determined. The methodology also helps to identify features that the model cannot produce and it gives insights about what parts of the model should be modified to improve its capacities through the identification of parameters involved with each behavior.
Collapse
Affiliation(s)
- H F Bassani
- Center of Informatics, Federal University of Pernambuco, Recife 50732-970, Brazil.
| | | | | | | |
Collapse
|
36
|
Maslarova A, Alam M, Reiffurth C, Lapilover E, Gorji A, Dreier JP. Chronically epileptic human and rat neocortex display a similar resistance against spreading depolarization in vitro. Stroke 2011; 42:2917-22. [PMID: 21836085 DOI: 10.1161/strokeaha.111.621581] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Experimental and clinical evidence suggests that prolonged spreading depolarizations (SDs) are a promising target for therapeutic intervention in stroke because they recruit tissue at risk into necrosis by protracted intracellular calcium surge and massive glutamate release. Unfortunately, unlike SDs in healthy tissue, they are resistant to drugs such as N-methyl-d-aspartate-receptor antagonists. This drug resistance of SD in low perfusion areas may be due to the gradual rise of extracellular potassium before SD onset. Brain slices from patients undergoing surgery for intractable epilepsy allow for screening of drugs, targeting pharmacoresistant SDs under elevated potassium in human tissue. However, network changes associated with epilepsy may interfere with tissue susceptibility to SD. This could distort the results of pharmacological tests. METHODS We investigated the threshold for SD, induced by a gradual rise of potassium, in neocortex slices of patients with intractable epilepsy and of chronically epileptic rats as well as age-matched and younger control rats using combined extracellular potassium/field recordings and intrinsic optical imaging. RESULTS Both age and epilepsy significantly increased the potassium threshold, which was similarly high in epileptic rat and human slices (23.6±2.4 mmol/L versus 22.3±2.8 mmol/L). CONCLUSIONS Our results suggest that chronic epilepsy confers resistance against SD. This should be considered when human tissue is used for screening of neuroprotective drugs. The finding of similar potassium thresholds for SD in epileptic human and rat neocortex challenges previous speculations that the resistance of the human brain against SD is markedly higher than that of the rodent brain.
Collapse
Affiliation(s)
- Anna Maslarova
- Institute of Neurophysiology, Center for Stroke Research Berlin, Department of Experimental Neurology, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Contribution of astrocyte glycogen stores to progression of spreading depression and related events in hippocampal slices. Neuroscience 2011; 192:295-303. [PMID: 21600270 DOI: 10.1016/j.neuroscience.2011.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/01/2011] [Accepted: 05/02/2011] [Indexed: 11/23/2022]
Abstract
Spreading depression (SD) is a wave of coordinated cellular depolarization that propagates slowly throughout brain tissue. SD has been associated with migraine aura, and related events have been implicated in the enlargement of some brain injuries. Selective disruption of astrocyte oxidative metabolism has previously been shown to increase the propagation rate of SD in vivo, but it is currently unknown whether astrocyte glycogen stores make significant contributions to the onset or propagation of SD. We examined SD in acutely-prepared murine hippocampal slices, using either localized microinjections of KCl or oxygen and glucose deprivation (OGD) as stimuli. A combination of glycogenolysis inhibitors 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) and 1-deoxynojirimycin (DNJ) increased the propagation rates of both high K(+)-SD and OGD-SD. Consistent with these observations, exposure to l-methionine-dl-sulfoximine (MSO) increased slice glycogen levels and decreased OGD-SD propagation rates. Effects of glycogen depletion were matched by selective inhibition of astrocyte tricarboxylic acid (TCA) cycle activity by fluoroacetate (FA). Prolonged exposure to reduced extracellular glucose (2 mM) has been suggested to deplete slice glycogen stores, but significant modification SD of propagation rate was not observed with this treatment. Furthermore, decreases in OGD-SD latency with this preexposure paradigm appeared to be due to depletion of glucose, rather than glycogen availability. These results suggest that astrocyte glycogen stores contribute to delaying the advancing wavefront of SD, including during the severe metabolic challenge of OGD. Approaches to enhance astrocyte glycogen reserves could be beneficial for delaying or preventing SD in some pathologic conditions.
Collapse
|
38
|
Hartings JA, Watanabe T, Bullock MR, Okonkwo DO, Fabricius M, Woitzik J, Dreier JP, Puccio A, Shutter LA, Pahl C, Strong AJ. Spreading depolarizations have prolonged direct current shifts and are associated with poor outcome in brain trauma. ACTA ACUST UNITED AC 2011; 134:1529-40. [PMID: 21478187 DOI: 10.1093/brain/awr048] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Cortical spreading depolarizations occur spontaneously after ischaemic, haemorrhagic and traumatic brain injury. Their effects vary spatially and temporally as graded phenomena, from infarction to complete recovery, and are reflected in the duration of depolarization measured by the negative direct current shift of electrocorticographic recordings. In the focal ischaemic penumbra, peri-infarct depolarizations have prolonged direct current shifts and cause progressive recruitment of the penumbra into the core infarct. In traumatic brain injury, the effects of spreading depolarizations are unknown, although prolonged events have not been observed in animal models. To determine whether detrimental penumbral-type depolarizations occur in human brain trauma, we analysed electrocorticographic recordings obtained by subdural electrode-strip monitoring during intensive care. Of 53 patients studied, 10 exhibited spreading depolarizations in an electrophysiologic penumbra (i.e. isoelectric cortex with no spontaneous activity). All 10 patients (100%) with isoelectric spreading depolarizations had poor outcomes, defined as death, vegetative state, or severe disability at 6 months. In contrast, poor outcomes were observed in 60% of patients (12/20) who had spreading depolarizations with depression of spontaneous activity and only 26% of patients (6/23) who had no depolarizations (χ2, P<0.001). Spontaneous electrocorticographic activity and direct current shifts of depolarizations were further examined in nine patients. Direct current shift durations (n=295) were distributed with a significant positive skew (range 0:51-16:19 min:s), evidencing a normally distributed group of short events and a sub-group of prolonged events. Prolonged direct current shifts were more commonly associated with isoelectric depolarizations (median 2 min 36 s), whereas shorter depolarizations occurred with depression of spontaneous activity (median 2 min 10 s; P<0.001). In the latter group, direct current shift durations correlated with electrocorticographic depression periods, and were longer when preceded by periodic epileptiform discharges than by continuous delta (0.5-4.0 Hz) or higher frequency activity. Prolonged direct current shifts (>3 min) also occurred mainly within temporal clusters of events. Our results show for the first time that spreading depolarizations are associated with worse clinical outcome after traumatic brain injury. Furthermore, based on animal models of brain injury, the prolonged durations of depolarizations raise the possibility that these events may contribute to maturation of cortical lesions. Prolonged depolarizations, measured by negative direct current shifts, were associated with (i) isoelectricity or periodic epileptiform discharges; (ii) prolonged depression of spontaneous activity and (iii) occurrence in temporal clusters. Depolarizations with these characteristics are likely to reflect a worse prognosis.
Collapse
Affiliation(s)
- Jed A Hartings
- Department of Neurosurgery, University of Cincinnati, 260 Stetson St. Suite 2200, Cincinnati, OH 45219, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lauritzen M, Dreier JP, Fabricius M, Hartings JA, Graf R, Strong AJ. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab 2011; 31:17-35. [PMID: 21045864 PMCID: PMC3049472 DOI: 10.1038/jcbfm.2010.191] [Citation(s) in RCA: 564] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 01/01/2023]
Abstract
Cortical spreading depression (CSD) and depolarization waves are associated with dramatic failure of brain ion homeostasis, efflux of excitatory amino acids from nerve cells, increased energy metabolism and changes in cerebral blood flow (CBF). There is strong clinical and experimental evidence to suggest that CSD is involved in the mechanism of migraine, stroke, subarachnoid hemorrhage and traumatic brain injury. The implications of these findings are widespread and suggest that intrinsic brain mechanisms have the potential to worsen the outcome of cerebrovascular episodes or brain trauma. The consequences of these intrinsic mechanisms are intimately linked to the composition of the brain extracellular microenvironment and to the level of brain perfusion and in consequence brain energy supply. This paper summarizes the evidence provided by novel invasive techniques, which implicates CSD as a pathophysiological mechanism for this group of acute neurological disorders. The findings have implications for monitoring and treatment of patients with acute brain disorders in the intensive care unit. Drawing on the large body of experimental findings from animal studies of CSD obtained during decades we suggest treatment strategies, which may be used to prevent or attenuate secondary neuronal damage in acutely injured human brain cortex caused by depolarization waves.
Collapse
Affiliation(s)
- Martin Lauritzen
- Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark.
| | | | | | | | | | | |
Collapse
|
40
|
Makarova J, Makarov VA, Herreras O. Generation of Sustained Field Potentials by Gradients of Polarization Within Single Neurons: A Macroscopic Model of Spreading Depression. J Neurophysiol 2010; 103:2446-57. [PMID: 20220074 DOI: 10.1152/jn.01045.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spreading depression (SD) is a pathological wave of depolarization of the neural tissue producing a negative macroscopic field potential ( Vo), used as a marker for diagnostic purposes. The cellular basis of SD and neuronal mechanisms of generation of Vo at the microscopic level are poorly understood. Using a CA1 mathematical model and experimental verification, we examined how transmembrane currents in single cells scale up in the extracellular space shaping Vo. The model includes an array of 17,000 realistically modeled neurons (responsible for generating transmembrane currents) dynamically coupled to a virtual aggregate/extracellular space (responsible for Vo). The SD wave in different tissue bands is simulated by imposing membrane shunts in the corresponding dendritic elements as suggested by experimentally assessed drop in membrane resistance. We show that strong isopotential depolarization of wide domains (as in the main SD phase) produce broad central cancellation of axial and transmembrane currents in single cells. When depolarization is restricted to narrow dendritic domains (as in the late SD phase), the internal cancellation shrinks and the transmembrane current increases. This explains why in the laminated CA1 the Vo is smaller in the main phase of SD, when both dendritic layers are seized, than in the SD tail restricted to an apical band. Moreover, scattering of the neuronal somatas (as in cortical regions) further decreases the aggregate Vo due to the volume averaging. Although mechanistically the Vo associated to SD is similar to customary transient fields, its changes maybe related to spatial factors in single cells rather than cell number or depolarization strength.
Collapse
Affiliation(s)
| | - Valeri A. Makarov
- Department of Applied Mathematics, University of Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
41
|
Gurkoff GG, Giza CC, Shin D, Auvin S, Sankar R, Hovda DA. Acute neuroprotection to pilocarpine-induced seizures is not sustained after traumatic brain injury in the developing rat. Neuroscience 2009; 164:862-76. [PMID: 19695311 PMCID: PMC2762013 DOI: 10.1016/j.neuroscience.2009.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 07/06/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
Following CNS injury there is a period of vulnerability when cells will not easily tolerate a secondary insult. However recent studies have shown that following traumatic brain injury (TBI), as well as hypoxic-ischemic injuries, the CNS may experience a period of protection termed "preconditioning." While there is literature characterizing the properties of vulnerability and preconditioning in the adult rodent, there is an absence of comparable literature in the developing rat. To determine if there is a window of vulnerability in the developing rat, post-natal day 19 animals were subjected to a severe lateral fluid percussion injury followed by pilocarpine (Pc)-induced status epilepticus at 1, 6 or 24 h post TBI. During the first 24 h after TBI, the dorsal hippocampus exhibited less status epilepticus-induced cell death than that normally seen following Pc administration alone. Instead of producing a state of hippocampal vulnerability to activation, TBI produced a state of neuroprotection. However, in a second group of animals evaluated 20 weeks post injury, double-injured animals were statistically indistinguishable in terms of seizure threshold, mossy fiber sprouting and cell survival when compared to those treated with Pc alone. TBI, therefore, produced a temporary state of neuroprotection from seizure-induced cell death in the developing rat; however, this ultimately conferred no long-term protection from altered hippocampal circuit rearrangements, enhanced excitability or later convulsive seizures.
Collapse
Affiliation(s)
- Gene G. Gurkoff
- Department of Neurosurgery, David Geffen School of Medicine at UCLA
- Brain Research Institute, David Geffen School of Medicine at UCLA
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA
- Interdepartmental Program for Neuroscience, David Geffen School of Medicine at UCLA
| | - Christopher C. Giza
- Department of Neurosurgery, David Geffen School of Medicine at UCLA
- Division of Pediatric Neurology, Department of Pediatrics, David Geffen School of Medicine at UCLA
- Brain Research Institute, David Geffen School of Medicine at UCLA
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA
- Interdepartmental Program for Neuroscience, David Geffen School of Medicine at UCLA
- Interdepartmental Program in Biomedical Engineering, David Geffen School of Medicine at UCLA
| | - Don Shin
- Division of Pediatric Neurology, Department of Pediatrics, David Geffen School of Medicine at UCLA
| | - Stephane Auvin
- Division of Pediatric Neurology, Department of Pediatrics, David Geffen School of Medicine at UCLA
- Department of Pediatric Neurology, Hôpital Robert Debré Paris, France
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, David Geffen School of Medicine at UCLA
- Brain Research Institute, David Geffen School of Medicine at UCLA
| | - David A. Hovda
- Department of Neurosurgery, David Geffen School of Medicine at UCLA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA
- Brain Research Institute, David Geffen School of Medicine at UCLA
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA
- Interdepartmental Program for Neuroscience, David Geffen School of Medicine at UCLA
| |
Collapse
|
42
|
Hartings JA, Watanabe T, Dreier JP, Major S, Vendelbo L, Fabricius M. Recovery of slow potentials in AC-coupled electrocorticography: application to spreading depolarizations in rat and human cerebral cortex. J Neurophysiol 2009; 102:2563-75. [PMID: 19494192 DOI: 10.1152/jn.00345.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cortical spreading depolarizations (spreading depressions and peri-infarct depolarizations) are a pathology intrinsic to acute brain injury, generating large negative extracellular slow potential changes (SPCs) that, lasting on the order of minutes, are studied with DC-coupled recordings in animals. The spreading SPCs of depolarization waves are observed in human cortex with AC-coupled electrocorticography (ECoG), although SPC morphology is distorted by the high-pass filter stage of the amplifiers. Here, we present a signal processing method to reverse these distortions and recover approximate full-band waveforms from AC-coupled recordings. We constructed digital filters that reproduced the phase and amplitude distortions introduced by specific AC-coupled amplifiers and, based on this characterization, derived digital inverse filters to remove these distortions from ECoG recordings. Performance of the inverse filter was validated by its ability to recover both simulated and real low-frequency input test signals. The inverse filter was then applied to AC-coupled ECoG recordings from five patients who underwent invasive monitoring after aneurysmal subarachnoid hemorrhage. For 117 SPCs, the inverse filter recovered full-band waveforms with morphologic characteristics typical of the negative DC shifts recorded in animals. Compared with those recorded in the rat cortex with the same analog and digital methods, the negative DC shifts of human depolarizations had significantly greater durations (1:47 vs. 0:45 min:sec) and peak-to-peak amplitudes (10.1 vs. 4.2 mV). The inverse filter thus permits the study of spreading depolarizations in humans, using the same assessment of full-band DC potentials as that in animals, and suggests a particular solution for recovery of biosignals recorded with frequency-limited amplifiers.
Collapse
Affiliation(s)
- Jed A Hartings
- Division of Psychiatry and Neuroscience, Department of Neurosurgery, Walter Reed Army Institute of Research, USA.
| | | | | | | | | | | |
Collapse
|
43
|
The role of extracellular potassium dynamics in the different stages of ictal bursting and spreading depression: a computational study. J Theor Biol 2009; 258:219-28. [PMID: 19490858 DOI: 10.1016/j.jtbi.2009.01.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 01/24/2009] [Accepted: 01/30/2009] [Indexed: 11/22/2022]
Abstract
Experimental evidences point out the participation of nonsynaptic mechanisms (e.g., fluctuations in extracellular ions) in epileptiform bursting and spreading depression (SD). During these abnormal oscillatory patterns, it is observed an increase of extracellular potassium concentration [K(+)](o) and a decrease of extracellular calcium concentration [Ca(2+)](o) which raises the neuronal excitability. However, whether the high [K(+)](o) triggers and propagates these abnormal neuronal activities or plays a secondary role into this process is unclear. To better understand the influence of extracellular potassium dynamics in these oscillatory patterns, the experimental conditions of high [K(+)](o) and zero [Ca(2+)](o) were replicated in an extended Golomb model where we added important regulatory mechanisms of ion concentration as Na(+)-K(+) pump, ion diffusion and glial buffering. Within these conditions, simulations of the cell model exhibit seizure-like discharges (ictal bursting). The SD was elicited by the interruption of the Na(+)-K(+) pump activity, mimicking the effect of cellular hypoxia (an experimental protocol to elicit SD, the hypoxia-induced SD). We used the bifurcation theory and the fast-slow method to analyze the interference of K(+) dynamics in the cellular excitability. This analysis indicates that the system loses its stability at a high [K(+)](o), transiting to an elevated state of neuronal excitability. Effects of high [K(+)](o) are observed in different stages of ictal bursting and SD. In the initial stage, the increase of [K(+)](o) creates favorable conditions to trigger both oscillatory patterns. During the neuronal activity, a continuous growth of [K(+)](o) by outward K(+) flow depresses K(+) currents in a positive feedback way. At the last stage, due to the depression of K(+) currents, the Na(+)-K(+) pump is the main mechanism in the end of neuronal activity. Thus, this work suggests that [K(+)](o) dynamics may play a fundamental role in these abnormal oscillatory patterns.
Collapse
|
44
|
Somjen GG, Kager H, Wadman WJ. Calcium sensitive non-selective cation current promotes seizure-like discharges and spreading depression in a model neuron. J Comput Neurosci 2008; 26:139-47. [PMID: 18563545 DOI: 10.1007/s10827-008-0103-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 04/20/2008] [Accepted: 05/21/2008] [Indexed: 10/21/2022]
Abstract
As described by others, an extracellular calcium-sensitive non-selective cation channel ([Ca(2+)](o)-sensitive NSCC) of central neurons opens when extracellular calcium level decreases. An other non-selective current is activated by rising intracellular calcium ([Ca(2+)]( i )). The [Ca(2+)](o)-sensitive NSCC is not dependent on voltage and while it is permeable by monovalent cations, it is blocked by divalent cations. We tested the hypothesis that activation of this channel can promote seizures and spreading depression (SD). We used a computer model of a neuron surrounded by interstitial space and enveloped in a glia-endothelial "buffer" system. Na(+), K(+), Ca(2+) and Cl(-) concentrations, ion fluxes and osmotically driven volume changes were computed. Conventional ion channels and the NSCC were incorporated in the neuron membrane. Activation of NSCC conductance caused the appearance of paroxysmal afterdischarges (ADs) at parameter settings that did not produce AD in the absence of NSCC. The duration of the AD depended on the amplitude of the NSCC. Similarly, NSCC also enabled the generation of SD. We conclude that NSCC can contribute to the generation of epileptiform events and to spreading depression.
Collapse
Affiliation(s)
- G G Somjen
- Department of Cell Biology, Duke University Medical Center, Box 3011, Durham, NC 27710, USA.
| | | | | |
Collapse
|
45
|
Makarova J, Gómez-Galán M, Herreras O. Variations in tissue resistivity and in the extension of activated neuron domains shape the voltage signal during spreading depression in the CA1 in vivo. Eur J Neurosci 2008; 27:444-56. [PMID: 18215240 DOI: 10.1111/j.1460-9568.2008.06022.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spreading depression (SD), a wave of neuron activity related to migraine and the ischaemic penumbra, features a moving shell of extracellular negative potential shift (V(o)) whose generators are poorly understood. We investigated its subcellular correlates in the hippocampal CA1 in vivo by localizing the neuron domains that generate transmembrane current (I(m)) using field analysis, and the local changes of tissue resistivity, a major determinant of extracellular current flow. A large increase of tissue resistivity occurred in times and dendritic strata displaying large V(o), albeit with different rates. Typically, SD is composed of basal and apical dendritic components. The apical SD lasts much longer, while it becomes gradually restricted to a narrow dendritic region. Strikingly, pyramidal cells displayed a strong surge of inward current only when SD affected a small dendritic region. However, when the V(o) signal covered most of the main neuron axis, only smaller surges of inward current developed at the outer dendritic rims of a wide null current zone. Computational reconstruction showed that this effect was due to strong spatial cancellation of the inward and outward currents in SD-activated isopotential and shunted regions of individual neurons. Consequently, despite former accounts of large conductance increase, the net I(m) is small and the large DeltaV(o) amplitude mostly due to increased tissue resistivity. The particular subcellular evolution indicates an initial explosive opening of conductance along most of the pyramidal neuron followed by a wave-like centripetal closure towards the apical dendrites. The applicability of these mechanisms to SD in other brain regions is discussed.
Collapse
|
46
|
Bazhenov M, Timofeev I, Fröhlich F, Sejnowski TJ. Cellular and network mechanisms of electrographic seizures. DRUG DISCOVERY TODAY. DISEASE MODELS 2008; 5:45-57. [PMID: 19190736 PMCID: PMC2633479 DOI: 10.1016/j.ddmod.2008.07.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epileptic seizures constitute a complex multiscale phenomenon that is characterized by synchronized hyperexcitation of neurons in neuronal networks. Recent progress in understanding pathological seizure dynamics provides crucial insights into underlying mechanisms and possible new avenues for the development of novel treatment modalities. Here we review some recent work that combines in vivo experiments and computational modeling to unravel the pathophysiology of seizures of cortical origin. We particularly focus on how activity-dependent changes in extracellular potassium concentration affects the intrinsic dynamics of neurons involved in cortical seizures characterized by spike/wave complexes and fast runs.
Collapse
Affiliation(s)
- Maxim Bazhenov
- The Salk Institute for Biological Studies, La Jolla, CA 92037
| | | | | | | |
Collapse
|
47
|
Makarova J, Ibarz JM, Canals S, Herreras O. A steady-state model of spreading depression predicts the importance of an unknown conductance in specific dendritic domains. Biophys J 2007; 92:4216-32. [PMID: 17400694 PMCID: PMC1877769 DOI: 10.1529/biophysj.106.090332] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 02/08/2007] [Indexed: 11/18/2022] Open
Abstract
Spreading depression (SD) is a pathological wave of transient neuronal inactivation. We recently reported that the characteristic sustained complete depolarization is restricted to specific cell domains where the input resistance (R(in)) first becomes negligible before achieving partial recovery, whereas in adjacent, more polarized membranes it drops by much less. The experimental study of the participating membrane channels is hindered by their mixed contribution and heterogeneous distribution. Therefore, we derived a biophysical model to analyze the conductances that replicate the subcellular profile of R(in) during SD. Systematic variation of conductance densities far beyond the ranges reported failed to fit the experimental values. Besides standard potassium, sodium, and Glu-mediated conductances, the initial opening and gradual closing of an as yet undetermined large conductance is required to account for the evolution of R(in). Potassium conductances follow in the relative contribution and their closing during the late phase is also predicted. Large intracellular potential gradients from zero to rest are readily sustained between shunted and adjacent SD-spared membranes, which remain electroregenerative. The gradients are achieved by a combination of high-conductance subcellular domains and transmembrane ion redistribution in extended but discrete dendritic domains. We conclude that the heterogeneous subcellular behavior is due to local membrane properties, some of which may be specifically activated under extreme SD conditions.
Collapse
Affiliation(s)
- Julia Makarova
- Cajal Institute of Neurobiology, Consejo Superior de Investigaciones Cientificas, Madrid, Spain.
| | | | | | | |
Collapse
|
48
|
Smith JM, Bradley DP, James MF, Huang CLH. Physiological studies of cortical spreading depression. Biol Rev Camb Philos Soc 2007. [DOI: 10.1111/j.1469-185x.2006.tb00214.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Pastori C, Regondi MC, Librizzi L, de Curtis M. Early excitability changes in a novel acute model of transient focal ischemia and reperfusion in the in vitro isolated guinea pig brain. Exp Neurol 2006; 204:95-105. [PMID: 17141221 DOI: 10.1016/j.expneurol.2006.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 09/01/2006] [Accepted: 09/30/2006] [Indexed: 11/19/2022]
Abstract
The study of the early events that characterize cerebral ischemia is limited in available experimental models. The study of neurophysiological network changes that occur in brain tissue during the early minutes that follow focal ischemia induction is restricted in the in vivo condition. Very simplified systems, such as in vitro brain slices and in isolated neurons, have been utilized for this type of studies. We describe here a new model of transient focal ischemia and reperfusion developed in the isolated guinea pig brain, maintained in vitro by arterial perfusion with a complex saline solution without blood cells. In this preparation, that combines the advantage of an in vitro preparation with the functional preservation of both vascular and neuronal compartments, the arteries of the Willis circle are directly accessible by visual control. To induce transitory focal ischemia, one medial cerebral artery (MCA) was transiently tied for 30 min, while brain activity was recorded with multiple electrodes positioned in brain areas within and outside MCA territory. Anoxic depression in ischemic areas propagated to the surrounding tissue and was associated with the abolition of evoked responses due to both functional impairment of afferent olfactory input and tissue depression. Recovery of evoked responses was obtained after MCA reperfusion. The spatial distribution of hypoxic depressions was characterized and was correlated with the extension of brain damage, defined by immunohistochemical analysis with antibodies against microtubule-associated protein (MAP-2). We propose that the present model can be utilized to analyze brain activity changes that occur in early stages of focal brain ischemia and reperfusion.
Collapse
Affiliation(s)
- Chiara Pastori
- Neurology Residency School University of Milano-Bicocca, Monza, Italy
| | | | | | | |
Collapse
|
50
|
Kunkler PE, Hulse RE, Schmitt MW, Nicholson C, Kraig RP. Optical current source density analysis in hippocampal organotypic culture shows that spreading depression occurs with uniquely reversing currents. J Neurosci 2006; 25:3952-61. [PMID: 15829647 PMCID: PMC2712306 DOI: 10.1523/jneurosci.0491-05.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Spreading depression (SD) involves current flow through principal neurons, but the pattern of current flow over the expanse of susceptible tissues or individual principal neurons remains undefined. Accordingly, tissue and single cell maps made from digital imaging of voltage-sensitive dye changes in hippocampal organotypic cultures undergoing SD were processed via optical current source density analysis to reveal the currents associated with pyramidal neurons. Two distinctive current flow patterns were seen. The first was a trilaminar pattern (420 microm2) that developed with the onset of SD in CA3 pyramidal neurons, in which SD most often began. This initial pattern comprised a somatic current sink with current sources to either side in the dendrites that lasted for seconds extending into the first aspect of the classical "inverted saddle" interstitial direct current waveform of SD. Next, the somatic sink backpropagated at a speed of millimeters per minute into the proximal dendrites, resulting in a reversal of the initial current flow pattern to its second orientation, namely dendritic sinks associated with a somatic source. The latter persisted for the remainder of SD in CA3 and was the only pattern seen in CA1, in which SD was rarely initiated. This backpropagating SD current flow resembles that of activity-dependent synaptic activation. Retrograde and associative signaling via principal neuron current flow is a key means to affect tissue function, including synaptic activation and, by extension, perhaps SD. Such current-related postsynaptic signaling might not only help explain SD but also neuroprotection and migraine, two phenomena increasingly recognized as being related to SD.
Collapse
Affiliation(s)
- Phillip E Kunkler
- Department of Neurology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|