1
|
Grau JW, Hudson KE, Johnston DT, Partipilo SR. Updating perspectives on spinal cord function: motor coordination, timing, relational processing, and memory below the brain. Front Syst Neurosci 2024; 18:1184597. [PMID: 38444825 PMCID: PMC10912355 DOI: 10.3389/fnsys.2024.1184597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Those studying neural systems within the brain have historically assumed that lower-level processes in the spinal cord act in a mechanical manner, to relay afferent signals and execute motor commands. From this view, abstracting temporal and environmental relations is the province of the brain. Here we review work conducted over the last 50 years that challenges this perspective, demonstrating that mechanisms within the spinal cord can organize coordinated behavior (stepping), induce a lasting change in how pain (nociceptive) signals are processed, abstract stimulus-stimulus (Pavlovian) and response-outcome (instrumental) relations, and infer whether stimuli occur in a random or regular manner. The mechanisms that underlie these processes depend upon signal pathways (e.g., NMDA receptor mediated plasticity) analogous to those implicated in brain-dependent learning and memory. New data show that spinal cord injury (SCI) can enable plasticity within the spinal cord by reducing the inhibitory effect of GABA. It is suggested that the signals relayed to the brain may contain information about environmental relations and that spinal cord systems can coordinate action in response to descending signals from the brain. We further suggest that the study of stimulus processing, learning, memory, and cognitive-like processing in the spinal cord can inform our views of brain function, providing an attractive model system. Most importantly, the work has revealed new avenues of treatment for those that have suffered a SCI.
Collapse
Affiliation(s)
- James W. Grau
- Lab of Dr. James Grau, Department of Psychological and Brain Sciences, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | | | | | | |
Collapse
|
2
|
Unusual Quadrupedal Locomotion in Rat during Recovery from Lumbar Spinal Blockade of 5-HT 7 Receptors. Int J Mol Sci 2021; 22:ijms22116007. [PMID: 34199392 PMCID: PMC8199611 DOI: 10.3390/ijms22116007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023] Open
Abstract
Coordination of four-limb movements during quadrupedal locomotion is controlled by supraspinal monoaminergic descending pathways, among which serotoninergic ones play a crucial role. Here we investigated the locomotor pattern during recovery from blockade of 5-HT7 or 5-HT2A receptors after intrathecal application of SB269970 or cyproheptadine in adult rats with chronic intrathecal cannula implanted in the lumbar spinal cord. The interlimb coordination was investigated based on electromyographic activity recorded from selected fore- and hindlimb muscles during rat locomotion on a treadmill. In the time of recovery after hindlimb transient paralysis, we noticed a presence of an unusual pattern of quadrupedal locomotion characterized by a doubling of forelimb stepping in relation to unaffected hindlimb stepping (2FL-1HL) after blockade of 5-HT7 receptors but not after blockade of 5-HT2A receptors. The 2FL-1HL pattern, although transient, was observed as a stable form of fore-hindlimb coupling during quadrupedal locomotion. We suggest that modulation of the 5-HT7 receptors on interneurons located in lamina VII with ascending projections to the forelimb spinal network can be responsible for the 2FL-1HL locomotor pattern. In support, our immunohistochemical analysis of the lumbar spinal cord demonstrated the presence of the 5-HT7 immunoreactive cells in the lamina VII, which were rarely 5-HT2A immunoreactive.
Collapse
|
3
|
Kemler D, Wolff CA, Esser KA. Time-of-day dependent effects of contractile activity on the phase of the skeletal muscle clock. J Physiol 2020; 598:3631-3644. [PMID: 32537739 PMCID: PMC7479806 DOI: 10.1113/jp279779] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Key points Disruptions in circadian rhythms across an organism are associated with negative health outcomes, such as cardiometabolic and neurodegenerative diseases. Exercise has been proposed as a time cue for the circadian clock in rodents and humans. In this study, we assessed the effect of a single bout of endurance exercise on the skeletal muscle clock in vivo and a bout of muscle contractions in vitro. Timing of exercise or contractions influences the directional response of the muscle clock phase in vivo and in vitro. Our findings demonstrate that muscle contractions, as a component of exercise, can directly modulate the expression of muscle clock components in a time‐of‐day dependent manner.
Abstract Exercise has been proposed to be a zeitgeber for the muscle circadian clock mechanism. However, this is not well defined and it is unknown if exercise timing induces directional shifts of the muscle clock. Our purpose herein was to assess the effect of one bout of treadmill exercise on skeletal muscle clock phase changes. We subjected PERIOD2::LUCIFERASE mice (n = 30F) to one 60 min treadmill exercise bout at three times of day. Exercise at ZT5, 5 h after lights on, induced a phase advance (100.2 ± 25.8 min; P = 0.0002), whereas exercise at ZT11, 1 h before lights off, induced a phase delay (62.1 ± 21.1 min; P = 0.0003). Exercise at ZT17, middle of the dark phase, did not alter the muscle clock phase. Exercise induces diverse systemic changes so we developed an in vitro model system to examine the effects of contractile activity on muscle clock phase. Contractions applied at peak or trough Bmal1 expression induced significant phase delays (applied at peak: 27.2 ± 10.2 min; P = 0.0017; applied at trough: 64.6 ± 6.5 min, P < 0.0001). Contractions applied during the transition from peak to trough Bmal1 expression induced a phase advance (49.8 ± 23.1 min; P = 0.0051). Lastly, contractions at different times of day resulted in differential changes of core clock gene expression, demonstrating an exercise and clock interaction, providing insight into potential mechanisms of exercise‐induced phase shifts. These data demonstrate that muscle contractions, as part of exercise, are sufficient to shift the muscle circadian clock phase, likely through changes in core clock gene expression. Additionally, our findings that exercise induces directional muscle clock phase changes confirms that exercise is a bona fide environmental time cue for skeletal muscle. Disruptions in circadian rhythms across an organism are associated with negative health outcomes, such as cardiometabolic and neurodegenerative diseases. Exercise has been proposed as a time cue for the circadian clock in rodents and humans. In this study, we assessed the effect of a single bout of endurance exercise on the skeletal muscle clock in vivo and a bout of muscle contractions in vitro. Timing of exercise or contractions influences the directional response of the muscle clock phase in vivo and in vitro. Our findings demonstrate that muscle contractions, as a component of exercise, can directly modulate the expression of muscle clock components in a time‐of‐day dependent manner.
Collapse
Affiliation(s)
- Denise Kemler
- Department of Physiology and Functional Genomics, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA.,Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Christopher A Wolff
- Department of Physiology and Functional Genomics, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA.,Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA.,Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| |
Collapse
|
4
|
Ahmed RU, Alam M, Zheng YP. Experimental spinal cord injury and behavioral tests in laboratory rats. Heliyon 2019; 5:e01324. [PMID: 30906898 PMCID: PMC6411514 DOI: 10.1016/j.heliyon.2019.e01324] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/01/2018] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
Traumatic spinal cord injury (SCI) results in some serious neurophysiological consequences that alter healthy body functions and devastate the quality of living of individuals. To find a cure for SCI, researchers around the world are working on different neurorepair and neurorehabilitation modalities. To test a new treatment for SCI as well as to understand the mechanism of recovery, animal models are being widely used. Among them, SCI rat models are arguably the most prominent. Furthermore, it is important to select a suitable behavioral test to evaluate both the motor and sensory recovery following any therapeutic intervention. In this paper, we review the rat models of spinal injury and commonly used behavioral tests to serve as a useful guideline for neuroscientists in the field of SCI research.
Collapse
|
5
|
Smerdu V, Perše M. Effect of high-fat mixed lipid diet and swimming on fibre types in skeletal muscles of rats with colon tumours. Eur J Histochem 2018; 62. [PMID: 30043597 PMCID: PMC6065050 DOI: 10.4081/ejh.2018.2945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/11/2018] [Indexed: 11/23/2022] Open
Abstract
Skeletal muscle fibre types, whose characteristics are determined by myosin heavy chain (MyHC) isoforms, can adapt to changed physiological demands with changed MyHC isoform expression resulting in the fibre type transitions. The endurance training is known to induce fastto- slow transitions and has beneficial effect in carcinogenesis, whereas the effect of an excessive fat intake and its interaction with the effect of swimming are less conclusive. Therefore, we studied the effect of high-fat mixed lipid (HFML) diet and long-term (21-week) swimming on fibre type transitions and their average diameters by immunohistochemical demonstration of MyHC isoforms in slow soleus (SOL), fast extensor digitorum longus (EDL), and mixed gastrocnemius medialis and lateralis (GM, GL) muscles, divided to deep and superficial portions (GMd, GMs, GLd, GLs), of sedentary and swimming Wistar rats with experimentally (dimethylhydrazine) induced colon tumours and fed either with HFML or low-fat corn oil (LFCO) diet. HFML diet induced only a trend for fast-to-slow transitions in SOL and in the opposite direction in GMd. Swimming triggered significant transitions in unexpected slow-to-fast direction in SOL, whereas in GMs the transitions had tendency to proceed in the expected fast-toslow direction. The average diameters of fibre types were mostly unaffected. Hence, it can be concluded that if present, the effects of HFML diet and swimming on fibre type transitions were counteractive and muscle-specific implying that each muscle possesses its own adaptive range of response to changed physiological conditions.
Collapse
Affiliation(s)
- Vika Smerdu
- University of Ljubljana, Faculty of Medicine, Institute of Anatomy.
| | | |
Collapse
|
6
|
Jagnandan K, Higham TE. Neuromuscular control of locomotion is altered by tail autotomy in geckos. J Exp Biol 2018; 221:jeb.179564. [DOI: 10.1242/jeb.179564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/16/2018] [Indexed: 11/20/2022]
Abstract
Animal locomotion is driven by underlying axial and appendicular musculature. In order for locomotion to be effective, these muscles must be able to rapidly respond to changes in environmental and physiological demands. Although virtually unstudied, muscles must also respond to morphological changes, such as those that occur with tail autotomy in lizards. Tail autotomy in leopard geckos (Eublepharis macularius) results in a 25% loss of caudal mass and significant kinematic alterations to maintain stability. To elucidate how motor control of the locomotor muscles is modulated with these shifts, we used electromyography (EMG) to quantify patterns of in vivo muscle activity in fore- and hind limb muscles before and after autotomy. Forelimb muscles (biceps brachii and triceps brachii) exhibited no changes in motor recruitment, consistent with unaltered kinematics after autotomy. Amplitude of activity of propulsive muscles of the hind limbs (caudofemoralis and gastrocnemius) was significantly reduced and coincided with decreases in the propulsive phases of femur retraction and ankle extension, respectively. The puboischiotibialis did not exhibit these changes, despite significant reductions in femur depression and knee angle, suggesting that reduction in mass and vertical ground-reaction force by autotomy allows for the maintenance of a more sprawled and stable posture without increasing motor recruitment of the support muscles. These results highlight the significant neuromuscular shifts that occur to accommodate dramatic changes in body size and mass distribution, and illuminate the utility of tail autotomy as a system for studying the neuromuscular control of locomotion.
Collapse
Affiliation(s)
- Kevin Jagnandan
- Life Sciences Department, San Diego City College, 1313 Park Boulevard, San Diego, CA 92101, USA
| | - Timothy E. Higham
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
7
|
Fixed spaced stimulation restores adaptive plasticity within the spinal cord: Identifying the eliciting conditions. Physiol Behav 2017; 174:1-9. [PMID: 28238778 DOI: 10.1016/j.physbeh.2017.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/22/2017] [Indexed: 01/21/2023]
Abstract
Prior work has shown that neurons within the spinal cord are sensitive to temporal relations and that stimulus regularity impacts nociceptive processing and adaptive plasticity. Application of brief (80ms) shocks (180-900) in a variable manner induces a form of maladaptive plasticity that inhibits spinally-mediated learning and enhances nociceptive reactivity. In contrast, an extended exposure (720-900) to stimuli given at regular (fixed spaced) intervals has a restorative effect that counters nociceptive sensitization and enables learning. The present paper explores the stimulus parameters under which this therapeutic effect of fixed spaced stimulation emerges. Spinally transected rats received variably spaced stimulation (180 shocks) to the sciatic nerve at an intensity (40-V) that recruits pain (C) fibers, producing a form of maladaptive plasticity that impairs spinal learning. As previously shown, exposure to 720 fixed spaced shocks had a therapeutic effect that restored adaptive learning. This therapeutic effect was most robust at a lower shock intensity (20V) and was equally strong irrespective of pulse duration (20-80ms). A restorative effect was observed when stimuli were given at a frequency between 0.5 and 5Hz, but not at a higher (50Hz) or lower (0.05Hz) rate. The results are consistent with prior work implicating neural systems related to the central pattern generator that drives stepping behavior. Clinical implications are discussed.
Collapse
|
8
|
Lee KH, Huang YJ, Grau JW. Learning about Time within the Spinal Cord II: Evidence that Temporal Regularity Is Encoded by a Spinal Oscillator. Front Behav Neurosci 2016; 10:14. [PMID: 26903830 PMCID: PMC4749712 DOI: 10.3389/fnbeh.2016.00014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/28/2016] [Indexed: 11/13/2022] Open
Abstract
How a stimulus impacts spinal cord function depends upon temporal relations. When intermittent noxious stimulation (shock) is applied and the interval between shock pulses is varied (unpredictable), it induces a lasting alteration that inhibits adaptive learning. If the same stimulus is applied in a temporally regular (predictable) manner, the capacity to learn is preserved and a protective/restorative effect is engaged that counters the adverse effect of variable stimulation. Sensitivity to temporal relations implies a capacity to encode time. This study explores how spinal neurons discriminate variable and fixed spaced stimulation. Communication with the brain was blocked by means of a spinal transection and adaptive capacity was tested using an instrumental learning task. In this task, subjects must learn to maintain a hind limb in a flexed position to minimize shock exposure. To evaluate the possibility that a distinct class of afferent fibers provide a sensory cue for regularity, we manipulated the temporal relation between shocks given to two dermatomes (leg and tail). Evidence for timing emerged when the stimuli were applied in a coherent manner across dermatomes, implying that a central (spinal) process detects regularity. Next, we show that fixed spaced stimulation has a restorative effect when half the physical stimuli are randomly omitted, as long as the stimuli remain in phase, suggesting that stimulus regularity is encoded by an internal oscillator Research suggests that the oscillator that drives the tempo of stepping depends upon neurons within the rostral lumbar (L1-L2) region. Disrupting communication with the L1-L2 tissue by means of a L3 transection eliminated the restorative effect of fixed spaced stimulation. Implications of the results for step training and rehabilitation after injury are discussed.
Collapse
Affiliation(s)
- Kuan H Lee
- Department of Neurobiology, Center for Pain Research, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Yung-Jen Huang
- Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University College Station, TX, USA
| | - James W Grau
- Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University College Station, TX, USA
| |
Collapse
|
9
|
Levine AJ, Hinckley CA, Hilde KL, Driscoll SP, Poon TH, Montgomery JM, Pfaff SL. Identification of a cellular node for motor control pathways. Nat Neurosci 2014; 17:586-93. [PMID: 24609464 PMCID: PMC4569558 DOI: 10.1038/nn.3675] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/13/2014] [Indexed: 12/28/2022]
Abstract
The rich behavioral repertoire of animals is encoded in the CNS as a set of motorneuron activation patterns, also called 'motor synergies'. However, the neurons that orchestrate these motor programs as well as their cellular properties and connectivity are poorly understood. Here we identify a population of molecularly defined motor synergy encoder (MSE) neurons in the mouse spinal cord that may represent a central node in neural pathways for voluntary and reflexive movement. This population receives direct inputs from the motor cortex and sensory pathways and, in turn, has monosynaptic outputs to spinal motorneurons. Optical stimulation of MSE neurons drove reliable patterns of activity in multiple motor groups, and we found that the evoked motor patterns varied on the basis of the rostrocaudal location of the stimulated MSE. We speculate that these neurons comprise a cellular network for encoding coordinated motor output programs.
Collapse
Affiliation(s)
- Ariel J Levine
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA. [3]
| | - Christopher A Hinckley
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA. [3]
| | - Kathryn L Hilde
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Shawn P Driscoll
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Tiffany H Poon
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Jessica M Montgomery
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Samuel L Pfaff
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
10
|
Ward PJ, Herrity AN, Smith RR, Willhite A, Harrison BJ, Petruska JC, Harkema SJ, Hubscher CH. Novel multi-system functional gains via task specific training in spinal cord injured male rats. J Neurotrauma 2014; 31:819-33. [PMID: 24294909 DOI: 10.1089/neu.2013.3082] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Locomotor training (LT) after spinal cord injury (SCI) is a rehabilitative therapy used to enhance locomotor recovery. There is evidence, primarily anecdotal, also associating LT with improvements in bladder function and reduction in some types of SCI-related pain. In the present study, we determined if a step training paradigm could improve outcome measures of locomotion, bladder function, and pain/allodynia. After a T10 contusive SCI trained animals (adult male Wistar rats), trained animals began quadrupedal step training beginning 2 weeks post-SCI for 1 h/day. End of study experiments (3 months of training) revealed significant changes in limb kinematics, gait, and hindlimb flexor-extensor bursting patterns relative to non-trained controls. Importantly, micturition function, evaluated with terminal transvesical cystometry, was significantly improved in the step trained group (increased voiding efficiency, intercontraction interval, and contraction amplitude). Because both SCI and LT affect neurotrophin signaling, and neurotrophins are involved with post-SCI plasticity in micturition pathways, we measured bladder neurotrophin mRNA. Training regulated the expression of nerve growth factor (NGF) but not BDNF or NT3. Bladder NGF mRNA levels were inversely related to bladder function in the trained group. Monitoring of overground locomotion and neuropathic pain throughout the study revealed significant improvements, beginning after 3 weeks of training, which in both cases remained consistent for the study duration. These novel findings, improving non-locomotor in addition to locomotor functions, demonstrate that step training post-SCI could contribute to multiple quality of life gains, targeting patient-centered high priority deficits.
Collapse
Affiliation(s)
- Patricia J Ward
- 1 Department of Anatomical Sciences and Neurobiology, University of Louisville , Louisville, Kentucky
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Foster KL, Higham TE. Context-dependent changes in motor control and kinematics during locomotion: modulation and decoupling. Proc Biol Sci 2014; 281:20133331. [PMID: 24621949 DOI: 10.1098/rspb.2013.3331] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Successful locomotion through complex, heterogeneous environments requires the muscles that power locomotion to function effectively under a wide variety of conditions. Although considerable data exist on how animals modulate both kinematics and motor pattern when confronted with orientation (i.e. incline) demands, little is known about the modulation of muscle function in response to changes in structural demands like substrate diameter, compliance and texture. Here, we used high-speed videography and electromyography to examine how substrate incline and perch diameter affected the kinematics and muscle function of both the forelimb and hindlimb in the green anole (Anolis carolinensis). Surprisingly, we found a decoupling of the modulation of kinematics and motor activity, with kinematics being more affected by perch diameter than by incline, and muscle function being more affected by incline than by perch diameter. Also, muscle activity was most stereotyped on the broad, vertical condition, suggesting that, despite being classified as a trunk-crown ecomorph, this species may prefer trunks. These data emphasize the complex interactions between the processes that underlie animal movement and the importance of examining muscle function when considering both the evolution of locomotion and the impacts of ecology on function.
Collapse
Affiliation(s)
- Kathleen L Foster
- Department of Biology, University of California, , 900 University Avenue, Riverside, CA 92521, USA
| | | |
Collapse
|
12
|
Kamgar P, Agarwal A, Chao T, Askari S, Tan M, Honor R, Won DS. Step trajectory analysis of spinal cord injured rats trained with neuromuscular electrical stimulation coordinated with robotic treadmill training. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:1864-7. [PMID: 23366276 DOI: 10.1109/embc.2012.6346315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Applying neuromuscular electrical stimulation (NMES) during treadmill training (TT) has been shown to improve functional outcomes, such as gait speed and walking distance, in spinal cord injury (SCI) patients. However, ways to improve this combined NMES+TT therapy have not been investigated. We have developed NMES system for a rodent model of SCI to investigate whether and how more precisely timing the stimulation to robotically assisted hindlimb position might achieve rehabilitation of independent stepping after SCI. In our therapy (NMES+RTT), rodent ankle flexor muscles are stimulated while the hindlimbs are robotically driven through pre-programmed trajectories during treadmill training. The objectives of the work presented here were to quantify changes in step trajectory resulting from our combined NMES+RTT therapy and compare those effects with those induced by robotic treadmill training (RTT) alone. Animals were spinally contused to model severe SCI, and either received 2 weeks of NMES+RTT followed by 2 weeks of RTT (n=6) or 2 weeks of RTT followed by 2 weeks of NMES+RTT (n=7). Changes in step trajectories after training were analyzed. According to a deviation measure we developed, the step trajectories improved after either NMES+RTT or RTT training but more closely matched the desired pre-programmed trajectories after NMES+RTT than after RTT only. The step trajectories are also more consistent, as indicated by a coefficient of variation measure, after training and more so after NMES+RTT than after RTT only. These preliminary results from our NMES+RTT vs. RTT study are consistent with the hypothesis that appropriately timing NMES with hindlimb movements during stepping is an effective therapy for restoring the ability to step after spinal cord injury.
Collapse
Affiliation(s)
- P Kamgar
- Electrical and Computer Engineering Department, California State University - Los Angeles, Los Angeles, CA 90032, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Temporal regularity determines the impact of electrical stimulation on tactile reactivity and response to capsaicin in spinally transected rats. Neuroscience 2012; 227:119-33. [PMID: 23036621 DOI: 10.1016/j.neuroscience.2012.09.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/21/2012] [Accepted: 09/22/2012] [Indexed: 01/20/2023]
Abstract
Nociceptive plasticity and central sensitization within the spinal cord depend on neurobiological mechanisms implicated in learning and memory in higher neural systems, suggesting that the factors that impact brain-mediated learning and memory could modulate how stimulation affects spinal systems. One such factor is temporal regularity (predictability). The present paper shows that intermittent hindleg shock has opposing effects in spinally transected rats depending upon whether shock is presented in a regular or irregular (variable) manner. Variable intermittent legshock (900 shocks) enhanced mechanical reactivity to von Frey stimuli (hyperreactivity), whereas 900 fixed-spaced legshocks produced hyporeactivity. The impact of fixed-spaced shock depended upon the duration of exposure; a brief exposure (36 shocks) induced hyperreactivity whereas an extended exposure (900 shocks) produced hyporeactivity. The enhanced reactivity observed after variable shock was most evident 60-180 min after treatment. Fixed and variable intermittent stimulation applied to the sciatic nerve, or the tail, yielded a similar pattern of results. Stimulation had no effect on thermal reactivity. Exposure to fixed-spaced shock, but not variable shock, attenuated the enhanced mechanical reactivity (EMR) produced by treatment with hindpaw capsaicin. The effect of fixed-spaced stimulation lasted 24h. Treatment with fixed-spaced shock also attenuated the maintenance of capsaicin-induced EMR. The results show that variable intermittent shock enhances mechanical reactivity, while an extended exposure to fixed-spaced shock has the opposite effect on mechanical reactivity and attenuates capsaicin-induced EMR.
Collapse
|
14
|
Nudds RL, Codd JR. The metabolic cost of walking on gradients with a waddling gait. J Exp Biol 2012; 215:2579-85. [DOI: 10.1242/jeb.071522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Using open-flow respirometry and video footage (25 frames s–1), the energy expenditure and hindlimb kinematics of barnacle geese, Branta leucopsis, were measured whilst they were exercising on a treadmill at gradients of +7 and –7 deg, and on a level surface. In agreement with previous studies, ascending a gradient incurred metabolic costs higher than those experienced on level ground at comparable speeds. The geese, however, are the first species to show an increased duty factor when ascending a gradient. This increased duty factor was accompanied by a longer stance time, which was probably to enable the additional force required for ascending to be generated. Contrary to previous findings, the geese did not experience decreased metabolic costs when descending a gradient. For a given speed, the geese took relatively shorter and quicker strides when walking downhill. This ‘choppy’ stride and perhaps a lack of postural plasticity (an inability to adopt a more crouched posture) may negate any energy savings gained from gravity's assistance in moving the centre of mass downhill. Also contrary to previous studies, the incremental increase in metabolic cost with increasing speed was similar for each gradient, indicating that the efficiency of locomotion (mechanical work done/chemical energy consumed) is not constant across all walking speeds. The data here suggest that there are species-specific metabolic responses to locomotion on slopes, as well as the established kinematics differences. It is likely that a suite of factors, such as ecology, posture, gait, leggedness and foot morphology, will subtly affect an organism's ability to negotiate gradients.
Collapse
Affiliation(s)
- Robert L. Nudds
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Jonathan R. Codd
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
15
|
Joseph MS, Ying Z, Zhuang Y, Zhong H, Wu A, Bhatia HS, Cruz R, Tillakaratne NJK, Roy RR, Edgerton VR, Gomez-Pinilla F. Effects of diet and/or exercise in enhancing spinal cord sensorimotor learning. PLoS One 2012; 7:e41288. [PMID: 22911773 PMCID: PMC3401098 DOI: 10.1371/journal.pone.0041288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/19/2012] [Indexed: 11/19/2022] Open
Abstract
Given that the spinal cord is capable of learning sensorimotor tasks and that dietary interventions can influence learning involving supraspinal centers, we asked whether the presence of omega-3 fatty acid docosahexaenoic acid (DHA) and the curry spice curcumin (Cur) by themselves or in combination with voluntary exercise could affect spinal cord learning in adult spinal mice. Using an instrumental learning paradigm to assess spinal learning we observed that mice fed a diet containing DHA/Cur performed better in the spinal learning paradigm than mice fed a diet deficient in DHA/Cur. The enhanced performance was accompanied by increases in the mRNA levels of molecular markers of learning, i.e., BDNF, CREB, CaMKII, and syntaxin 3. Concurrent exposure to exercise was complementary to the dietary treatment effects on spinal learning. The diet containing DHA/Cur resulted in higher levels of DHA and lower levels of omega-6 fatty acid arachidonic acid (AA) in the spinal cord than the diet deficient in DHA/Cur. The level of spinal learning was inversely related to the ratio of AA:DHA. These results emphasize the capacity of select dietary factors and exercise to foster spinal cord learning. Given the non-invasiveness and safety of the modulation of diet and exercise, these interventions should be considered in light of their potential to enhance relearning of sensorimotor tasks during rehabilitative training paradigms after a spinal cord injury.
Collapse
Affiliation(s)
- M. Selvan Joseph
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yumei Zhuang
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hui Zhong
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Aiguo Wu
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Harsharan S. Bhatia
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Rusvelda Cruz
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Niranjala J. K. Tillakaratne
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Roland R. Roy
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - V. Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, United States of America
- UCLA Brain Injury Research Center, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
16
|
Zhong H, Roy RR, Nakada KK, Zdunowski S, Khalili N, de Leon RD, Edgerton VR. Accommodation of the spinal cat to a tripping perturbation. Front Physiol 2012; 3:112. [PMID: 22557975 PMCID: PMC3340914 DOI: 10.3389/fphys.2012.00112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/04/2012] [Indexed: 12/01/2022] Open
Abstract
Adult cats with a complete spinal cord transection at T12–T13 can relearn over a period of days-to-weeks how to generate full weight-bearing stepping on a treadmill or standing ability if trained specifically for that task. In the present study, we assessed short-term (milliseconds to minutes) adaptations by repetitively imposing a mechanical perturbation on the hindlimb of chronic spinal cats by placing a rod in the path of the leg during the swing phase to trigger a tripping response. The kinematics and EMG were recorded during control (10 steps), trip (1–60 steps with various patterns), and then release (without any tripping stimulus, 10–20 steps) sequences. Our data show that the muscle activation patterns and kinematics of the hindlimb in the step cycle immediately following the initial trip (mechanosensory stimulation of the dorsal surface of the paw) was modified in a way that increased the probability of avoiding the obstacle in the subsequent step. This indicates that the spinal sensorimotor circuitry reprogrammed the trajectory of the swing following a perturbation prior to the initiation of the swing phase of the subsequent step, in effect “attempting” to avoid the re-occurrence of the perturbation. The average height of the release steps was elevated compared to control regardless of the pattern and the length of the trip sequences. In addition, the average impact force on the tripping rod tended to be lower with repeated exposure to the tripping stimulus. EMG recordings suggest that the semitendinosus, a primary knee flexor, was a major contributor to the adaptive tripping response. These results demonstrate that the lumbosacral locomotor circuitry can modulate the activation patterns of the hindlimb motor pools within the time frame of single step in a manner that tends to minimize repeated perturbations. Furthermore, these adaptations remained evident for a number of steps after removal of the mechanosensory stimulation.
Collapse
Affiliation(s)
- Hui Zhong
- Departments of Integrative Biology and Physiology, University of California Los Angeles Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Baumbauer KM, Grau JW. Timing in the absence of supraspinal input III: regularly spaced cutaneous stimulation prevents and reverses the spinal learning deficit produced by peripheral inflammation. Behav Neurosci 2011; 125:37-45. [PMID: 21319886 DOI: 10.1037/a0022009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the absence of brain input, spinal systems can adapt to new environmental relations. For example, spinally transected rats given a legshock each time the leg is extended exhibit a progressive increase in flexion duration that minimizes net shock exposure, a simple form of instrumental learning. This capacity for learning is modulated by prior stimulation; both variable shock and inflammation produce a lasting inhibition of learning. An extended exposure to fixed spaced shock has no adverse effect on learning and opposes the consequences of variable shock. The present studies expand on these findings and demonstrate that fixed stimulation ameliorates the impact of peripheral inflammation. Spinally transected rats were administered 900 fixed spaced legshocks before (Experiment 1) or 1,800 legshocks after (Experiment 2) a subcutaneous hindpaw injection of capsaicin. Learning was assessed 24 hr later. Treatment with fixed shock attenuated the capsaicin-induced inhibition of learning. These findings suggest that fixed stimulation promotes adaptive plasticity and may foster recovery after injury.
Collapse
Affiliation(s)
- Kyle M Baumbauer
- Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | | |
Collapse
|
18
|
Matsakas A, Macharia R, Otto A, Elashry MI, Mouisel E, Romanello V, Sartori R, Amthor H, Sandri M, Narkar V, Patel K. Exercise training attenuates the hypermuscular phenotype and restores skeletal muscle function in the myostatin null mouse. Exp Physiol 2011; 97:125-40. [DOI: 10.1113/expphysiol.2011.063008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Lee C, Won D, Cantoria MJ, Hamlin M, de Leon RD. Robotic assistance that encourages the generation of stepping rather than fully assisting movements is best for learning to step in spinally contused rats. J Neurophysiol 2011; 105:2764-71. [PMID: 21430272 DOI: 10.1152/jn.01129.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Robotic devices have been developed to assist body weight-supported treadmill training (BWSTT) in individuals with spinal cord injuries (SCIs) and stroke. Recent findings have raised questions about the effectiveness of robotic training that fully assisted (FA) stepping movements. The purpose of this study was to examine whether assist-as-needed robotic (AAN) training was better than FA movements in rats with incomplete SCI. Electromyography (EMG) electrodes were implanted in the tibialis anterior and medial gastrocnemius hindlimb muscles of 14 adult rats. Afterward, the rats received a severe midthoracic spinal cord contusion and began daily weight-supported treadmill training 1 wk later using a rodent robotic system. During training, assistive forces were applied to the ankle when it strayed from a desired stepping trajectory. The amount of force was proportional to the magnitude of the movement error, and this was multiplied by either a high or low scale factor to implement the FA (n = 7) or AAN algorithms (n = 7), respectively. Thus FA training drove the ankle along the desired trajectory, whereas greater variety in ankle movements occurred during AAN training. After 4 wk of training, locomotor recovery was greater in the AAN group, as demonstrated by the ability to generate steps without assistance, more normal-like kinematic characteristics, and greater EMG activity. The findings suggested that flexible robotic assistance facilitated learning to step after a SCI. These findings support the rationale for the use of AAN robotic training algorithms in human robotic-assisted BWSTT.
Collapse
Affiliation(s)
- Connie Lee
- Department of Biological Sciences, California State University, Los Angeles, CA 90032-8162, USA
| | | | | | | | | |
Collapse
|
20
|
Exploring the potential for neural recovery after incomplete tetraplegia through nonsurgical interventions. PM R 2011; 2:S279-85. [PMID: 21172689 DOI: 10.1016/j.pmrj.2010.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/30/2010] [Accepted: 10/04/2010] [Indexed: 11/23/2022]
Abstract
Persons with tetraplegia resulting from a cervical spinal cord injury believe that increasing upper limb (UL) function will improve their quality of life. Various lines of evidence demonstrate that persons with incomplete tetraplegia have the potential for improvements in both neural plasticity and function of the arms and hands. Therefore treatment to improve UL function in persons with incomplete tetraplegia should focus on improving motor control, not just compensation for the paralysis and sensory loss that follows a spinal cord injury. This article highlights the principles that underlie the facilitation of neural plasticity and functional changes: intensity, repeated practice, attention, and somatosensory augmentation. Evidence is presented for the application of these principles through the use of activity-based interventions in persons with tetraplegia and the hypothesis is proposed that the use of activity-based interventions will lead to greater, more beneficial neural plasticity as well as gains in UL function, in persons with incomplete tetraplegia.
Collapse
|
21
|
Johnson WL, Jindrich DL, Zhong H, Roy RR, Edgerton VR. Application of a rat hindlimb model: a prediction of force spaces reachable through stimulation of nerve fascicles. IEEE Trans Biomed Eng 2011; 58:3328-38. [PMID: 21244999 DOI: 10.1109/tbme.2011.2106784] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A device to generate standing or locomotion through chronically placed electrodes has not been fully developed due in part to limitations of clinical experimentation and the high number of muscle activation inputs of the leg. We investigated the feasibility of functional electrical stimulation paradigms that minimize the input dimensions for controlling the limbs by stimulating at nerve fascicles, utilizing a model of the rat hindlimb, which combined previously collected morphological data with muscle physiological parameters presented herein. As validation of the model, we investigated the suitability of a lumped-parameter model for the prediction of muscle activation during dynamic tasks. Using the validated model, we found that the space of forces producible through activation of muscle groups sharing common nerve fascicles was nonlinearly dependent on the number of discrete muscle groups that could be individually activated (equivalently, the neuroanatomical level of activation). Seven commonly innervated muscle groups were sufficient to produce 78% of the force space producible through individual activation of the 42 modeled hindlimb muscles. This novel, neuroanatomically derived reduction in input dimension emphasizes the potential to simplify controllers for functional electrical stimulation to improve functional recovery after a neuromuscular injury.
Collapse
Affiliation(s)
- Will L Johnson
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90024, USA.
| | | | | | | | | |
Collapse
|
22
|
Myostatin knockout mice increase oxidative muscle phenotype as an adaptive response to exercise. J Muscle Res Cell Motil 2010; 31:111-25. [DOI: 10.1007/s10974-010-9214-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
|
23
|
Tillakaratne NJK, Guu JJ, de Leon RD, Bigbee AJ, London NJ, Zhong H, Ziegler MD, Joynes RL, Roy RR, Edgerton VR. Functional recovery of stepping in rats after a complete neonatal spinal cord transection is not due to regrowth across the lesion site. Neuroscience 2010; 166:23-33. [PMID: 20006680 PMCID: PMC2820384 DOI: 10.1016/j.neuroscience.2009.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 12/03/2009] [Indexed: 01/15/2023]
Abstract
Rats receiving a complete spinal cord transection (ST) at a neonatal stage spontaneously can recover significant stepping ability, whereas minimal recovery is attained in rats transected as adults. In addition, neonatally spinal cord transected rats trained to step more readily improve their locomotor ability. We hypothesized that recovery of stepping in rats receiving a complete spinal cord transection at postnatal day 5 (P5) is attributable to changes in the lumbosacral neural circuitry and not to regeneration of axons across the lesion. As expected, stepping performance measured by several kinematics parameters was significantly better in ST (at P5) trained (treadmill stepping for 8 weeks) than age-matched non-trained spinal rats. Anterograde tracing with biotinylated dextran amine showed an absence of labeling of corticospinal or rubrospinal tract axons below the transection. Retrograde tracing with Fast Blue from the spinal cord below the transection showed no labeled neurons in the somatosensory motor cortex of the hindlimb area, red nucleus, spinal vestibular nucleus, and medullary reticular nucleus. Retrograde labeling transsynaptically via injection of pseudorabies virus (Bartha) into the soleus and tibialis anterior muscles showed no labeling in the same brain nuclei. Furthermore, re-transection of the spinal cord at or rostral to the original transection did not affect stepping ability. Combined, these results clearly indicate that there was no regeneration across the lesion after a complete spinal cord transection in neonatal rats and suggest that this is an important model to understand the higher level of locomotor recovery in rats attributable to lumbosacral mechanisms after receiving a complete ST at a neonatal compared to an adult stage.
Collapse
Affiliation(s)
- N J K Tillakaratne
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Klein DA, Patino A, Tresch MC. Flexibility of motor pattern generation across stimulation conditions by the neonatal rat spinal cord. J Neurophysiol 2010; 103:1580-90. [PMID: 20089814 DOI: 10.1152/jn.00961.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Previous studies have demonstrated that "locomotor-like" rhythmic patterns can be evoked in the isolated neonatal rat spinal cord by several means, including pharmacological neuromodulation and electrical stimulation of various pathways. Recent studies have used stimulation of afferent pathways to evoke rhythmic patterns, relying on synaptic activation of interneuronal systems rather than global imposition of neuromodulatory state by pharmacological agents. We use the in vitro neonatal rat spinal cord with attached hindlimb to examine the muscle activation patterns evoked by stimulation of these different pathways and evaluate whether stimulation of these pathways all evoke the same patterns. We find that the patterns evoked by bath application of serotonin (5-HT) and N-methyl-D-aspartic acid (NMDA) consisted of alternation between hip flexors and extensors and similar alternation was observed in the patterns evoked by electrical stimulation of the cauda equina (CE) or contralateral fifth lumbar (L(5)) dorsal nerve root. In contrast, the knee extensor/hip flexor rectus femoris (RF) and knee flexor/hip extensor semitendinosus (ST) were activated differentially across stimulation conditions. In 5-HT/NMDA patterns, RF was active in late flexion and ST in late extension. In CE patterns, these two muscles switched places with RF typically active in late extension and ST active in flexion. In L(5) patterns, ST was activated in extension and RF was silent or weakly active during flexion. There were also systematic differences in the consistency of rhythms evoked by each stimulation method: patterns evoked by electrical stimulation of CE or L(5) were less consistently modulated with the rhythm when compared with 5-HT/NMDA-evoked patterns. All differences were preserved following deafferentation, demonstrating that they reflect intrinsic properties of spinal systems. These results highlight the intrinsic flexibility of motor pattern generation by spinal motor circuitry which is present from birth and provides important information to many studies examining spinal pattern generating networks.
Collapse
Affiliation(s)
- David A Klein
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | | | | |
Collapse
|
25
|
Timing in the absence of supraspinal input II: regularly spaced stimulation induces a lasting alteration in spinal function that depends on the NMDA receptor, BDNF release, and protein synthesis. J Neurosci 2009; 29:14383-93. [PMID: 19923273 DOI: 10.1523/jneurosci.3583-09.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The detection of temporal regularity allows organisms to predict the occurrence of future events. When events occur in an irregular manner, uncertainty is increased, and negative outcomes can ensue (e.g., stress). The present study shows that spinal neurons can discriminate between variable- and fixed-spaced stimulation and that the detection of regularity requires training and engages a form of NMDA receptor-mediated plasticity. The impact of stimulus exposure was assessed using a spinally mediated instrumental response, wherein spinally transected rats are given legshock whenever one hindlimb is extended. Over time, they learn to maintain the leg in a flexed position that minimizes net shock exposure. Prior exposure to 180-900 tailshocks given in a variable (unpredictable) manner inhibited this learning. A learning deficit was not observed when 900 tailshocks were applied using a fixed (predictable) spacing. Fixed-spaced stimulation did not have a divergent effect when fewer (180) shocks were presented, implying that the abstraction of temporal regularity required repeated exposure (training). Moreover, fixed-spaced stimulation both prevented and reversed the learning deficit. The protective effect of fixed-spaced shock lasted 48 h, and was prevented by pretreatment with the NMDA receptor antagonist MK-801. Administration of the protein synthesis inhibitor cycloheximide after training blocked the long-term effect. Inhibiting BDNF function, using TrkB-IgG, also eliminated the beneficial effect of fixed-spaced stimulation. The results suggest that spinal systems can detect regularity and that this type of stimulation promotes adaptive plasticity, which may foster recovery after spinal injury.
Collapse
|
26
|
Zagoraiou L, Akay T, Martin JF, Brownstone RM, Jessell TM, Miles GB. A cluster of cholinergic premotor interneurons modulates mouse locomotor activity. Neuron 2009; 64:645-62. [PMID: 20005822 PMCID: PMC2891428 DOI: 10.1016/j.neuron.2009.10.017] [Citation(s) in RCA: 304] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2009] [Indexed: 11/17/2022]
Abstract
Mammalian motor programs are controlled by networks of spinal interneurons that set the rhythm and intensity of motor neuron firing. Motor neurons have long been known to receive prominent "C bouton" cholinergic inputs from spinal interneurons, but the source and function of these synaptic inputs have remained obscure. We show here that the transcription factor Pitx2 marks a small cluster of spinal cholinergic interneurons, V0(C) neurons, that represents the sole source of C bouton inputs to motor neurons. The activity of these cholinergic interneurons is tightly phase locked with motor neuron bursting during fictive locomotor activity, suggesting a role in the modulation of motor neuron firing frequency. Genetic inactivation of the output of these neurons impairs a locomotor task-dependent increase in motor neuron firing and muscle activation. Thus, V0(C) interneurons represent a defined class of spinal cholinergic interneurons with an intrinsic neuromodulatory role in the control of locomotor behavior.
Collapse
Affiliation(s)
- Laskaro Zagoraiou
- Howard Hughes Medical Institute, Kavli Institute for Brain Science, Depts. of Neuroscience, and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - Turgay Akay
- Howard Hughes Medical Institute, Kavli Institute for Brain Science, Depts. of Neuroscience, and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - James F Martin
- Institute of Biosciences and Technology, Texas A&M System Health Science Center, Houston, Texas 77030
| | - Robert M Brownstone
- Departments of Surgery, and Anatomy & Neurobiology, Neuroscience Institute, Dalhousie University, Halifax, Canada
| | - Thomas M Jessell
- Howard Hughes Medical Institute, Kavli Institute for Brain Science, Depts. of Neuroscience, and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - Gareth B Miles
- School of Biology, University of St Andrews, St Andrews, Fife, KY169TS, UK
| |
Collapse
|
27
|
Magnuson DSK, Smith RR, Brown EH, Enzmann G, Angeli C, Quesada PM, Burke D. Swimming as a model of task-specific locomotor retraining after spinal cord injury in the rat. Neurorehabil Neural Repair 2009; 23:535-45. [PMID: 19270266 DOI: 10.1177/1545968308331147] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The authors have shown that rats can be retrained to swim after a moderately severe thoracic spinal cord contusion. They also found that improvements in body position and hindlimb activity occurred rapidly over the first 2 weeks of training, reaching a plateau by week 4. Overground walking was not influenced by swim training, suggesting that swimming may be a task-specific model of locomotor retraining. OBJECTIVE To provide a quantitative description of hindlimb movements of uninjured adult rats during swimming, and then after injury and retraining. METHODS The authors used a novel and streamlined kinematic assessment of swimming in which each limb is described in 2 dimensions, as 3 segments and 2 angles. RESULTS The kinematics of uninjured rats do not change over 4 weeks of daily swimming, suggesting that acclimatization does not involve refinements in hindlimb movement. After spinal cord injury, retraining involved increases in hindlimb excursion and improved limb position, but the velocity of the movements remained slow. CONCLUSION These data suggest that the activity pattern of swimming is hardwired in the rat spinal cord. After spinal cord injury, repetition is sufficient to bring about significant improvements in the pattern of hindlimb movement but does not improve the forces generated, leaving the animals with persistent deficits. These data support the concept that force (load) and pattern generation (recruitment) are independent and may have to be managed together with respect to postinjury rehabilitation.
Collapse
Affiliation(s)
- David S K Magnuson
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky 40292, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Nikolaidis MG, Jamurtas AZ, Paschalis V, Fatouros IG, Koutedakis Y, Kouretas D. The effect of muscle-damaging exercise on blood and skeletal muscle oxidative stress: magnitude and time-course considerations. Sports Med 2008; 38:579-606. [PMID: 18557660 DOI: 10.2165/00007256-200838070-00005] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The aim of this article is to present the effects of acute muscle-damaging exercise on oxidative stress/damage of animal and human tissues using a quantitative approach and focusing on the time-course of exercise effects. The reviewed studies employed eccentric contractions on a dynamometer or downhill running. The statistical power of each study to detect a 20% or 40% post-exercise change compared with pre-exercise value in each oxidative stress/damage biomarker was calculated. Muscle-damaging exercise can increase free radical levels and augment oxidation of lipids, proteins, glutathione and possibly DNA in the blood. In contrast, the effect of muscle-damaging exercise on concentration of antioxidants in the blood, except for glutathione, was little. Muscle-damaging exercise induces oxidative stress/damage in skeletal muscle, even though this is not fully supported by the original statistical analysis of some studies. In contrast, muscle-damaging exercise does not appear to affect--at least to similar extent as the oxidative stress/damage markers--the levels of antioxidants in skeletal muscle. Based on the rather limited data available, the oxidative stress response of skeletal muscle to exercise was generally independent of muscle fibre type. Most of the changes in oxidative stress/damage appeared and were sustained for days after muscle-damaging exercise. The major part of the delayed oxidative stress/damage production that follows muscle-damaging exercise probably comes from phagocytic cells that are activated and recruited to the site of the initial damage. A point that emerged and potentially explains much of the lack of consensus among studies is the low statistical power of many of them. In summary, muscle-damaging exercise can increase oxidative stress/damage in blood and skeletal muscle of rats and humans that may persist for and/or appear several days after exercise.
Collapse
Affiliation(s)
- Michalis G Nikolaidis
- Institute of Human Performance and Rehabilitation, Center for Research and Technology-Thessaly, Trikala, Greece.
| | | | | | | | | | | |
Collapse
|
29
|
Baumbauer KM, Hoy KC, Huie JR, Hughes AJ, Woller SA, Puga DA, Setlow B, Grau JW. Timing in the absence of supraspinal input I: variable, but not fixed, spaced stimulation of the sciatic nerve undermines spinally-mediated instrumental learning. Neuroscience 2008; 155:1030-47. [PMID: 18674601 DOI: 10.1016/j.neuroscience.2008.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/27/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
Abstract
Rats with complete spinal transections are capable of acquiring a simple instrumentally trained response. If rats receive shock to one hind limb when the limb is extended (controllable shock), the spinal cord will learn to hold the leg in a flexed position that minimizes shock exposure. If shock is delivered irrespective of leg position, subjects do not exhibit an increase in flexion duration and subsequently fail to learn when tested with controllable shock (learning deficit). Just 6 min of variable intermittent shock produces a learning deficit that lasts 24 h. Evidence suggests that the neural mechanisms underlying the learning deficit may be related to those involved in other instances of spinal plasticity (e.g. windup, long-term potentiation). The present paper begins to explore these relations by demonstrating that direct stimulation of the sciatic nerve also impairs instrumental learning. Six minutes of electrical stimulation (mono- or biphasic direct current [DC]) of the sciatic nerve in spinally transected rats produced a voltage-dependent learning deficit that persisted for 24 h (experiments 1-2) and was dependent on C-fiber activation (experiment 7). Exposure to continuous stimulation did not produce a deficit, but intermittent burst or single pulse (as short as 0.1 ms) stimulation (delivered at a frequency of 0.5 Hz) did, irrespective of the pattern (fixed or variable) of stimulus delivery (experiments 3-6, 8). When the duration of stimulation was extended from 6 to 30 min, a surprising result emerged; shocks applied in a random (variable) fashion impaired subsequent learning whereas shocks given in a regular pattern (fixed spacing) did not (experiments 9-10). The results imply that spinal neurons are sensitive to temporal relations and that stimulation at regular intervals can have a restorative effect.
Collapse
Affiliation(s)
- K M Baumbauer
- Department of Psychology, Texas A&M University, College Station, TX 77843-4325, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Backus D. Activity-Based Interventions for the Upper Extremity in Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2008. [DOI: 10.1310/sci1304-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Cha J, Heng C, Reinkensmeyer DJ, Roy RR, Edgerton VR, De Leon RD. Locomotor ability in spinal rats is dependent on the amount of activity imposed on the hindlimbs during treadmill training. J Neurotrauma 2007; 24:1000-12. [PMID: 17600516 DOI: 10.1089/neu.2006.0233] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Studies have shown that treadmill training with body weight support is effective for enhancing locomotor recovery following a complete spinal cord transection (ST) in animals. However, there have been no studies that have investigated the extent that functional recovery in ST animals is dependent on the amount of activity imposed on the hindlimbs during training. In rats transected as neonates (P5), we used a robotic device to impose either a high or a low amount of hindlimb activity during treadmill training starting 23 days after transection. The rats were trained 5 days per week for 4 weeks. One group (n = 13) received 1000 steps/training session and a second group (n = 13) received 100 steps/training session. During training, the robotic device imposed the maximum amount of weight that each rat could bear on the hindlimbs, and counted the number of stepping movements during each session. After 4 weeks of training, the number of steps performed during treadmill testing was not significantly different between the two groups. However, the quality of stepping in the group that received 1000 steps/training session improved over a range of levels of weight bearing on the hindlimbs and at different treadmill speeds. In contrast, little improvement in the quality of stepping was observed in the group that received only 100 steps/training session. These findings indicate that the ability of the lumbar spinal cord to adjust to load- and speed-related sensory stimuli associated with stepping is dependent on the number of repetitions of the same activity that is imposed on the spinal circuits during treadmill training.
Collapse
Affiliation(s)
- John Cha
- Department of Biological Science, California State University, Los Angeles, California 90032-8162, USA
| | | | | | | | | | | |
Collapse
|
32
|
Majczyński H, Maleszak K, Górska T, Sławińska U. Comparison of two methods for quantitative assessment of unrestrained locomotion in the rat. J Neurosci Methods 2007; 163:197-207. [DOI: 10.1016/j.jneumeth.2007.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 01/30/2007] [Accepted: 02/28/2007] [Indexed: 11/25/2022]
|
33
|
Anttila K, Mänttäri S, Järvilehto M. Expression of dihydropyridine and ryanodine receptors in type IIA fibers of rat skeletal muscle. Acta Histochem Cytochem 2007; 40:35-41. [PMID: 17576431 PMCID: PMC1874508 DOI: 10.1267/ahc.06028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 02/07/2007] [Indexed: 01/07/2023] Open
Abstract
In this study, the fiber type specificity of dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs) in different rat limb muscles was investigated. Western blot and histochemical analyses provided for the first time evidence that the expression of both receptors correlates to a specific myosin heavy chain (MHC) composition. We observed a significant (p=0.01) correlation between DHP as well as Ry receptor density and the expression of MHC IIa (correlation factor r=0.674 and r=0.645, respectively) in one slow-twitch, postural muscle (m. soleus), one mixed, fast-twitch muscle (m. gastrocnemius) and two fast-twitch muscles (m. rectus femoris, m. extensor digitorum longus). The highest DHP and Ry receptor density was found in the white part of m. rectus femoris (0.058+/-0.0060 and 0.057+/-0.0158 ODu, respectively). As expected, the highest relative percentage of MHC IIa was also found in the white part of m. rectus femoris (70.0+/-7.77%). Furthermore, histochemical experiments revealed that the IIA fibers stained most strongly for the fluorophore-conjugated receptor blockers. Our data clearly suggest that the expression of DHPRs and RyRs follows a fiber type-specific pattern, indicating an important role for these proteins in the maintenance of an effective Ca2+ cycle in the fast contracting fiber type IIA.
Collapse
Affiliation(s)
- Katja Anttila
- Department of Biology, University of Oulu, P. O. Box 3000, FIN-90014 Oulun yliopisto, Finland
| | - Satu Mänttäri
- Department of Biology, University of Oulu, P. O. Box 3000, FIN-90014 Oulun yliopisto, Finland
| | - Matti Järvilehto
- Department of Biology, University of Oulu, P. O. Box 3000, FIN-90014 Oulun yliopisto, Finland
| |
Collapse
|
34
|
Smith RR, Burke DA, Baldini AD, Shum-Siu A, Baltzley R, Bunger M, Magnuson DSK. The Louisville Swim Scale: a novel assessment of hindlimb function following spinal cord injury in adult rats. J Neurotrauma 2007; 23:1654-70. [PMID: 17115911 PMCID: PMC2833969 DOI: 10.1089/neu.2006.23.1654] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The majority of animal studies examining the recovery of function following spinal cord injury use the BBB Open-Field Locomotor Scale as a primary outcome measure. However, it is now well known that rehabilitation strategies can bring about significant improvements in hindlimb function in some animal models. Thus, improvements in walking following spinal cord injury in rats may be influenced by differences in activity levels and housing conditions during the first few weeks post-injury. Swimming is a natural form of locomotion that animals are not normally exposed to in the laboratory setting. We hypothesized that deficits in, and functional recovery of, swimming would accurately represent the locomotor capability of the nervous system in the absence of any retraining effects. To test this hypothesis, we have compared the recovery of walking and swimming in rats following a range of standardized spinal cord injuries and two different retraining strategies. In order to assess swimming, we developed a rating system we call the Louisville Swimming Scale (LSS) that evaluates three characteristics of swimming that are highly altered by spinal cord injury--namely, hindlimb movement, forelimb dependency, and body position. The data indicate that the LSS is a sensitive and reliable method of determining swimming ability and the improvement in hindlimb function after standardized contusion injury of the thoracic spinal cord. Furthermore, the data suggests that when used in conjunction with the BBB Open-field Locomotor Scale, the LSS assesses locomotor capabilities that are not influenced by a retraining effect.
Collapse
Affiliation(s)
- Rebecca R Smith
- The Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
de Leon RD, Acosta CN. Effect of robotic-assisted treadmill training and chronic quipazine treatment on hindlimb stepping in spinally transected rats. J Neurotrauma 2006; 23:1147-63. [PMID: 16866627 DOI: 10.1089/neu.2006.23.1147] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to determine if robotic-assisted treadmill training improved hindlimb stepping in complete spinal cord transected (ST) rats. In addition, we examined whether chronic quipazine treatment would enhance the effectiveness of robotic-assisted training. Hindlimb stepping was examined in four groups of ST rats: trained + quipazine; trained + vehicle; untrained + quipazine; and untrained + vehicle. To train the rats to step, a robotic device was used that moved the hindlimbs in a semi-fixed trajectory during treadmill stepping. The robotic device was also used to assess treadmill stepping. Quipazine or vehicle was administered to the lumbar spinal cord using an intrathecal cannula. The groups that received robotic-assisted training performed more stepping movements on the treadmill than the untrained groups 10 weeks after ST. However, no differences were found between the robotic-assisted and untrained groups 16 weeks after ST. Kinematic analyses revealed that abnormally small step cycles were performed by all of the groups of ST rats. There was no significant effect of combining robotic-assisted training and quipazine treatment on stepping recovery. These data suggest that robotic-assisted training may generate hindlimb sensory stimuli that are effective in enhancing the ability of the lumbar spinal cord to generate hindlimb stepping. However, the effectiveness of robotic-assisted training may be limited to the early stages of recovery following spinal cord transection.
Collapse
Affiliation(s)
- Ray D de Leon
- Department of Kinesiology and Nutritional Science, California State University, Los Angeles, 90032, USA.
| | | |
Collapse
|
36
|
Gerasimenko YP, Lavrov IA, Courtine G, Ichiyama RM, Dy CJ, Zhong H, Roy RR, Edgerton VR. Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. J Neurosci Methods 2006; 157:253-63. [PMID: 16764937 DOI: 10.1016/j.jneumeth.2006.05.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 04/06/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
Motor responses in hindlimb muscles to epidural spinal cord stimulation in normal awake rats during bipedal standing were studied. Stimulation at L2 or S1 induced simultaneous and bilateral responses in the vastus lateralis, semitendinosus, tibialis anterior, and medial gastrocnemius muscles. Stimulation at S1 evoked an early (ER), middle (MR) and late (LR) response: stimulation at L2 elicited only a MR and LR. Vibration and double epidural stimulation testing suggests that the ER is a direct motor response, whereas the MR and LR are mediated synaptically. MR has properties of a monosynaptic reflex, i.e., inhibited during vibration and depressed during the second pulse of a double stimulation. Some components of the LR seem to be mediated by afferents associated with the flexor reflex and probably involve group II afferents. During bipedal treadmill stepping, the MR was modulated in extensors, whereas the LR was modulated in flexors. These results show differential modulation of monosynaptic and polysynaptic reflexes in flexor and extensor motor pools during locomotion. Monosynaptic responses to stimulation at either L2 or S1 generally were amplified in extensors during the stance phase and in flexors during the swing phase of the step cycle. No correlation was found between the ER and the EMG background during stepping, whereas both the MR and LR were closely correlated with the changes in the EMG activity level of the corresponding muscle. These data demonstrate the feasibility of using epidural stimulation for examining monosynaptic and polysynaptic pathways to motor pools associated with multiple muscles during movement and over a prolonged period.
Collapse
Affiliation(s)
- Yury P Gerasimenko
- Department of Physiological Science, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Cappellini G, Ivanenko YP, Poppele RE, Lacquaniti F. Motor patterns in human walking and running. J Neurophysiol 2006; 95:3426-37. [PMID: 16554517 DOI: 10.1152/jn.00081.2006] [Citation(s) in RCA: 489] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite distinct differences between walking and running, the two types of human locomotion are likely to be controlled by shared pattern-generating networks. However, the differences between their kinematics and kinetics imply that corresponding muscle activations may also be quite different. We examined the differences between walking and running by recording kinematics and electromyographic (EMG) activity in 32 ipsilateral limb and trunk muscles during human locomotion, and compared the effects of speed (3-12 km/h) and gait. We found that the timing of muscle activation was accounted for by five basic temporal activation components during running as we previously found for walking. Each component was loaded on similar sets of leg muscles in both gaits but generally on different sets of upper trunk and shoulder muscles. The major difference between walking and running was that one temporal component, occurring during stance, was shifted to an earlier phase in the step cycle during running. These muscle activation differences between gaits did not simply depend on locomotion speed as shown by recordings during each gait over the same range of speeds (5-9 km/h). The results are consistent with an organization of locomotion motor programs having two parts, one that organizes muscle activation during swing and another during stance and the transition to swing. The timing shift between walking and running reflects therefore the difference in the relative duration of the stance phase in the two gaits.
Collapse
Affiliation(s)
- G Cappellini
- Department of Neuromotor Physiology, Scientific Institute Foundation Santa Lucia, 306 via Ardeatina, 00179 Rome, Italy
| | | | | | | |
Collapse
|
38
|
Lovering RM, Hakim M, Moorman CT, De Deyne PG. The contribution of contractile pre-activation to loss of function after a single lengthening contraction. J Biomech 2005; 38:1501-7. [PMID: 15922761 PMCID: PMC4489540 DOI: 10.1016/j.jbiomech.2004.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 07/19/2004] [Indexed: 10/26/2022]
Abstract
PURPOSE Some muscle injuries are the result of a single lengthening contraction. Our goal was to evaluate the contributions of angular velocity, arc of motion, and timing of contractile activation relative to the onset of joint motion in an animal model of muscle injury using a single lengthening contraction. METHODS The intact tibialis anterior (TA) muscle of rats was activated while lengthened, preceded by a maximal isometric contraction of 0, 25, 50, 100, or 200 ms. The lengthening contraction was performed at two different angular velocities (300 or 900 degrees/s) and through two different arcs of motion (90 degrees or 45 degrees). RESULTS Muscle contractile function, as measured by maximal isometric tetanic tension, was significantly decreased only when the TA was activated at least 50 ms prior to the motion, regardless of angular velocity or arc of motion. CONCLUSION The data indicated that the duration of an isometric contraction prior to a single lengthening contraction determined the extent of muscle injury irrespective of two different angular velocities.
Collapse
Affiliation(s)
- Richard M. Lovering
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Marc Hakim
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Claude T. Moorman
- Division of Orthopedic Surgery and Duke Sports Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Patrick G. De Deyne
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
- Corresponding author. DePuy Biologics, Soft Tissue Technology Group, 325 Paramount Drive, Raynham, MA 02767, USA. Tel: +1-508-828-2762; fax: +1-508-828-3731. (P.G. De Deyne)
| |
Collapse
|
39
|
Collazos-Castro JE, Soto VM, Gutiérrez-Dávila M, Nieto-Sampedro M. Motoneuron loss associated with chronic locomotion impairments after spinal cord contusion in the rat. J Neurotrauma 2005; 22:544-58. [PMID: 15892600 DOI: 10.1089/neu.2005.22.544] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Information on the nature of deficits and adaptive mechanisms occurring after spinal cord injury is essential to the design of strategies for promoting functional recovery. Motor impairments and compensations were quantified by three-dimensional kinematic analysis in freely walking rats, 6 months after mild cervical (C7) or moderate lumbar (L2) spinal cord contusion. After C7 contusion, the animals showed reduced elbow extension and wrist movement, whereas reduced knee extension was the main impairment after L2 contusion. In both cases, the duration of the walking cycle increased and forward velocity was reduced due to a longer stance phase. Histology revealed reproducible lesions extending approximately to one spinal cord segment. In the transverse plane, the lesion involved the central gray matter and adjacent axons, including the dorsal corticospinal tract, but partially spared the ventrolateral tracts. Retrograde motoneuron tracing by nerve exposure to HRP or intramuscular injection of aminostilbamidine demonstrated that C7 contusion caused the loss of approximately 40% of triceps brachii motoneurons, whereas approximately 30% of quadriceps femoris motoneurons were lost after L2 contusion. These results demonstrate permanent deficits after incomplete lesions at the spinal cord enlargements and suggest that motoneuron loss contributes to their production.
Collapse
Affiliation(s)
- Jorge E Collazos-Castro
- Laboratorio de Reparación Neural, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Unidad Asociada al CSIC, Toledo, Spain.
| | | | | | | |
Collapse
|
40
|
Thota AK, Watson SC, Knapp E, Thompson B, Jung R. Neuromechanical control of locomotion in the rat. J Neurotrauma 2005; 22:442-65. [PMID: 15853462 DOI: 10.1089/neu.2005.22.442] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rodent models are being extensively used to investigate the effects of traumatic injury and develop and assess the mechanisms of repair and regeneration. We present quantitative assessment of two-dimensional (2D) kinematics of overground walking and for the first time three-dimensional (3D) joint angle kinematics of all four limbs during treadmill walking in intact adult female Long-Evans rats. Gait cycle with subphases and intralimb and interlimb cyclograms are presented. Phase relationships between joint angles on a cycle-by-cycle basis and interlimb footfalls are assessed using a simple technique. Electromyogram (EMG) data from major flexor and extensor muscles for each of the hindlimb joints and elbow extensor muscles of the forelimbs synchronized to the 3D kinematics are also obtained. Overground walking kinematics, provides information on base of support, stride length, and hindfoot rotation. Treadmill walking kinematics indicate primarily monophasic angle trajectories for the hip and shoulder joints, weak double peak patterns for the knee and elbow joints, and a prominent double peak pattern for the ankle joints. Maximum flexion of the knee during swing precedes that of the ankle, which precedes that of the hip. A mild exercise regimen over 8 weeks does not alter the kinematics. EMG activity indicates specific relationships of the neural activity to joint angle kinematics. We find that the ankle flexors as well as the hip and elbow extensors maintain constant burst duration with changing cycle duration. Data and techniques described here are likely to be useful for quantitative assessment of altered gait and neural control mechanisms after neurotrauma.
Collapse
Affiliation(s)
- Anil K Thota
- Center for Rehabilitation Neuroscience and Rehabilitation Engineering, The Biodesign Institute and The Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | |
Collapse
|
41
|
Matsakas A, Friedel A, Hertrampf T, Diel P. Short-term endurance training results in a muscle-specific decrease of myostatin mRNA content in the rat. ACTA ACUST UNITED AC 2005; 183:299-307. [PMID: 15743390 DOI: 10.1111/j.1365-201x.2005.01406.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM Myostatin has been characterized as a negative regulator of skeletal muscle growth. To examine a probable function of myostatin during the adaptation of skeletal muscle in response to training, we analysed the effect of short-term endurance training on myostatin and insulin-like growth factor-I (IGF-I) mRNA contents in rat skeletal muscles. To assess the impact of the training stimulus, mRNA levels of metabolic genes were analysed simultaneously. METHODS Male Wistar rats were trained for 5 days by swimming, while another group remained untrained. Myostatin, IGF-I, glucose transporter 4 (GLUT4), hexokinase II (HK II) and hydroxyacyl-CoA dehydrogenase (HAD) mRNA levels were determined by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) in gastrocnemius, vastus lateralis and soleus muscles. A time course experiment was conducted, in order to examine transient changes of myostatin mRNA contents in gastrocnemius 7 and 24 h after one-swimming session as well as 24 h after a 3-day swimming training. RESULTS No significant changes in IGF-I and GLUT4 mRNA levels were found in any of the muscles analysed. mRNA contents of myostatin were significantly reduced in gastrocnemius and vastus lateralis but not in soleus. In agreement to this pattern, we found significantly higher mRNA levels of HK II and HAD in the trained group. The time course experiment revealed significantly reduced myostatin mRNA contents in gastrocnemius 7 but not 24 h post-exercise. The 3-day swimming training resulted also in significantly lower myostatin mRNA levels in the trained group. CONCLUSION This study demonstrated that short-term endurance training may modulate myostatin mRNA levels, implying a probable role of myostatin in remodelling of skeletal muscle in response to training.
Collapse
Affiliation(s)
- A Matsakas
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Carl-Diem-Weg 6, 50933 Cologne, Germany
| | | | | | | |
Collapse
|
42
|
Courtine G, Roy RR, Hodgson J, McKay H, Raven J, Zhong H, Yang H, Tuszynski MH, Edgerton VR. Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus). J Neurophysiol 2005; 93:3127-45. [PMID: 15647397 DOI: 10.1152/jn.01073.2004] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that the activation patterns of flexor and extensor muscles and the resulting kinematics of the forelimbs and hindlimbs during locomotion in the Rhesus would have unique characteristics relative to other quadrupedal mammals. Adaptations of limb movements and in motor pool recruitment patterns in accommodating a range of treadmill speeds similar to other terrestrial animals in both the hindlimb and forelimb were observed. Flexor and extensor motor neurons from motor pools in the lumbar segments, however, were more highly coordinated than in the cervical segments. Unlike the lateral sequence characterizing subprimate quadrupedal locomotion, non-human primates use diagonal coordination between the hindlimbs and forelimbs, similar to that observed in humans between the legs and arms. Although there was a high level of coordination between hind- and forelimb locomotion kinematics, limb-specific neural control strategies were evident in the intersegmental coordination patterns and limb endpoint trajectories. Based on limb kinematics and muscle recruitment patterns, it appears that the hindlimbs, and notably the distal extremities, contribute more to body propulsion than the forelimbs. Furthermore, we found adaptive changes in the recruitment patterns of distal muscles in the hind- and forelimb with increased treadmill speed that likely correlate with the anatomical and functional evolution of hand and foot digits in monkeys. Changes in the properties of both the spinal and supraspinal circuitry related to stepping, probably account for the peculiarities in the kinematic and EMG properties during non-human primate locomotion. We suggest that such adaptive changes may have facilitated evolution toward bipedal locomotion.
Collapse
Affiliation(s)
- Grégoire Courtine
- Dept. of Physiological Science, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1527, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
In both vertebrates and invertebrates, the elaboration of locomotion, and its neural control by the central nervous system, are extremely flexible. This is due not only to the network properties of relevant sets of central neurons, but also to the active participation of mutually co-operative central and peripheral loops of neural projections and activity. In this chapter, we describe experiments in which the above concepts have been advanced by comparing locomotor properties in the adult vs. neonatal rat preparation. Data obtained from the in vivo vs. in vitro preparation, and swimming vs. walking behavior, suggest that the locomotor pattern progressively exhibited after birth corresponds to successive steps in the maturation of locomotor networks. Our work emphasises that during the late pre- and early postnatal period, three distinct neural entities--segmental sensory input, descending pathways, and motoneurons--play a key role in the maturation of locomotion and its neural control. We propose that the neonatal rat preparation is an excellent model for studying the conversion from immature to adult locomotion. Some neural controls are more clearly demonstrable in the developing animal preparation than in the adult because the latter exhibits an array of complex and redundant adaptive mechanisms.
Collapse
Affiliation(s)
- Francois Clarac
- Institut de Neurosciences Physiologiques et Cognitives-INPC, CNRS, Aix-Marseille II, 13402 Marseille, France.
| | | | | |
Collapse
|
44
|
Plant DR, Gregorevic P, Warmington SA, Williams DA, Lynch GS. Endurance training adaptations modulate the redox-force relationship of rat isolated slow-twitch skeletal muscles. Clin Exp Pharmacol Physiol 2003; 30:77-81. [PMID: 12542458 DOI: 10.1046/j.1440-1681.2002.03794.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Studies have shown that, in isolated skeletal muscles, maximum isometric force production (Po) is dependent on muscle redox state. Endurance training increases the anti-oxidant capacity of skeletal muscles, a factor that could impact on the force-producing capacity following exogenous exposure to an oxidant. We tested the hypothesis that 12 weeks treadmill training would increase anti-oxidant capacity in rat skeletal muscles and alter their response to exogenous oxidant exposure. 2. At the conclusion of the 12 week endurance-training programme, soleus (slow-twitch) muscles from trained rats had greater citrate synthase (CS) and catalase (CAT) activity compared with soleus muscles from untrained rats (P < 0.05). In contrast, CAT activity of extensor digitorum longus (EDL; fast-twitch) muscles from trained rats was not different to EDL muscles of untrained rats. The CS activity was lower in EDL muscles from trained compared with untrained rats (P < 0.05). 3. Equilibration with exogenous hydrogen peroxide (H2O2, 5 mmol/L) increased the Po of soleus muscles from untrained rats for the duration of treatment (30 min), whereas the Po of EDL muscles was affected biphasically, with a small increase initially (after 5 min), followed by a more marked decrease in Po (after 30 min). The H2O2-induced increase in Po of soleus muscles from trained rats was less than that in untrained rats (P < 0.05), but no differences were observed in the Po of EDL muscles following training. 4. The results indicate that 12 weeks endurance running training conferred adaptations in soleus but not EDL muscles. These adaptations were associated with an attenuation of the oxidant-induced increase in Po of soleus muscles from trained compared with untrained rats. We conclude that endurance training-adapted soleus muscles have a slightly altered redox-force relationship.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Antioxidants/metabolism
- Body Weight
- Catalase/metabolism
- Citrate (si)-Synthase/metabolism
- Hydrogen Peroxide/metabolism
- Muscle Contraction/physiology
- Muscle Fibers, Fast-Twitch/enzymology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Slow-Twitch/enzymology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/physiology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Oxidants/metabolism
- Oxidation-Reduction
- Physical Conditioning, Animal/physiology
- Physical Exertion/physiology
- Rats
Collapse
Affiliation(s)
- David R Plant
- Department of Physiology, The University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
45
|
de Leon RD, Reinkensmeyer DJ, Timoszyk WK, London NJ, Roy RR, Edgerton VR. Use of robotics in assessing the adaptive capacity of the rat lumbar spinal cord. PROGRESS IN BRAIN RESEARCH 2002; 137:141-9. [PMID: 12440365 DOI: 10.1016/s0079-6123(02)37013-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
We have developed a robotic device that can record the trajectory of the hindlimb movements in rats. The robotic device can also impose programmed forces on the limbs during stepping. In the present paper we describe experiments using this robotic device, i.e. the rat stepper, to determine whether step training improves the locomotor capacity of adult rats that received complete spinal cord transections as neonates. We also determined to what extent the locomotor patterns can be maintained when the step cycle is physically perturbed by the robotic device. The results of the present study demonstrate that a robotic device can be used effectively to quantify the improvements in the locomotor capacity of spinal transected rats that occurs over a period of step training. The present results also demonstrate that when an external force is imposed to disrupt the step cycle, the spinal cord has the neural control elements necessary to normalize the kinematics over a number of steps, in the face of the disrupted forces.
Collapse
Affiliation(s)
- Ray D de Leon
- Department of Kinesiology and Nutritional Science, California State University, Los Angeles, CA 90032-8162, USA
| | | | | | | | | | | |
Collapse
|
46
|
Timoszyk WK, De Leon RD, London N, Roy RR, Edgerton VR, Reinkensmeyer DJ. The rat lumbosacral spinal cord adapts to robotic loading applied during stance. J Neurophysiol 2002; 88:3108-17. [PMID: 12466434 DOI: 10.1152/jn.01050.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Load-related afferent information modifies the magnitude and timing of hindlimb muscle activity during stepping in decerebrate animals and spinal cord-injured humans and animals, suggesting that the spinal cord mediates load-related locomotor responses. In this study, we found that stepping on a treadmill by adult rats that received complete, midthoracic spinal cord transections as neonates could be altered by loading the hindlimbs using a pair of small robotic arms. The robotic arms applied a downward force to the lower shanks of the hindlimbs during the stance phase and measured the position of the lower shank during stepping. No external force was applied during the swing phase of the step. When applied bilaterally, this stance force field perturbed the hindlimb trajectories so that the ankle position was shifted downward during stance. In response to this perturbation, both the stance and step cycle durations decreased. During swing, the hindlimb initially accelerated toward the normal, unperturbed swing trajectory and then tracked the normal trajectory. Bilateral loading increased the magnitude of the medial gastrocnemius electromyographic (EMG) burst during stance and increased the amplitude of the semitendinosus and rectus femoris EMG bursts. When the force field was applied unilaterally, stance duration decreased in the loaded hindlimb, while swing duration was decreased in the contralateral hindlimb, thereby preserving interlimb coordination. These results demonstrate the feasibility of using robotic devices to mechanically modulate afferent input to the injured spinal cord during weight-supported locomotion. In addition, these results indicate that the lumbosacral spinal cord responds to load-related input applied to the lower shank during stance by modifying step timing and muscle activation patterns, while preserving normal swing kinematics and interlimb coordination.
Collapse
Affiliation(s)
- W K Timoszyk
- Department of Mechanical and Aerospace Engineering and Center for Biomedical Engineering, University of California, Irvine, 92697-3975, California, USA
| | | | | | | | | | | |
Collapse
|
47
|
Gillis GB, Biewener AA. Effects of surface grade on proximal hindlimb muscle strain and activation during rat locomotion. J Appl Physiol (1985) 2002; 93:1731-43. [PMID: 12381761 DOI: 10.1152/japplphysiol.00489.2002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sonomicrometry and electromyography were used to determine how surface grade influences strain and activation patterns in the biceps femoris and vastus lateralis of the rat. Muscle activity is generally present during much of stance and is most intense on an incline, intermediate on the level, and lowest on a decline, where the biceps remains inactive except at high speeds. Biceps fascicles shorten during stance, with strains ranging from 0.07-0.30 depending on individual, gait, and grade. Shortening strains vary significantly among grades (P = 0.05) and average 0.21, 0.16, and 0.14 for incline, level, and decline walking, respectively; similar trends are present during trotting and galloping. Vastus fascicles are stretched while active over the first half of stance on all grades, and then typically shorten over the second half of stance. Late-stance shortening is highest during galloping, averaging 0.14, 0.10, and 0.02 in the leading limb on incline, level, and decline surfaces, respectively. Our results suggest that modulation of strain and activation in these proximal limb muscles is important for accommodating different surface grades.
Collapse
Affiliation(s)
- Gary B Gillis
- Department of Organismic and Evolutionary Biology, Harvard University, Bedford, Massachusetts 01730, USA.
| | | |
Collapse
|
48
|
Li D, Jung R. Tracking rhythmicity in nonstationary quasi-periodic biomedical signals using adaptive time-varying covariance. Comput Biol Med 2002; 32:261-82. [PMID: 11931864 DOI: 10.1016/s0010-4825(02)00022-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A time-varying covariance method for detecting and quantifying the evolution of rhythmicity (frequency) in persistently varying quasi-periodic nonstationary signals is presented. The basic method, evaluated using chirp signals, utilizes a shifting window of fixed length. A substantial reduction in estimation bias and variability are obtained by utilizing an adaptive window whose length is dependent on past frequency estimates. The adaptive window yields estimates that are comparable in accuracy to those obtained using high-resolution time-frequency representation but with lower computation requirements and the potential for on-line application. Finally, an example of the application of the method for analyzing a neural recording is also illustrated.
Collapse
Affiliation(s)
- Dan Li
- Center for Biomedical Engineering, University of Kentucky, Rose Street, Lexington, KY 40506-0070, USA
| | | |
Collapse
|
49
|
Abstract
The ability to perform stepping and standing can be reacquired after complete thoracic spinal cord transection in adult cats with appropriate, repetitive training. We now compare GAD(67)A levels in the spinal cord of cats that were trained to step or stand. We confirmed that a complete spinal cord transection at approximately T12 increases glutamic acid decarboxylase (GAD)(67) in both the dorsal and ventral horns of L5-L7. We now show that step training decreases these levels toward control. Kinematic analyses show that this downward modulation is correlated inversely with stepping ability. Compared with intact cats, spinal cord-transected cats had increased punctate GAD(67) immunoreactivity around neurons in lamina IX at cord segments L5-L7. Compared with spinal nontrained cats, those trained to stand on both hindlimbs had more GAD(67) puncta bilaterally in a subset of lamina IX neurons. In cats trained to stand unilaterally, this elevated staining pattern was limited to the trained side and extended for at least 4 mm in the L6 and L7 segments. The location of this asymmetric GAD(67) staining corresponded to the motor columns of primary knee flexors, which are minimally active during standing, perhaps because of extensor-activated inhibitory interneuron projections. The responsiveness to only a few days of motor training, as well as the GABA-synthesizing potential in the spinal cord, persists for at least 25 months after the spinal cord injury. This modulation is specific to the motor task that is performed repetitively and is closely linked to the ability of the animal to perform a specific motor task.
Collapse
|
50
|
Hutchinson KJ, Linderman JK, Basso DM. Skeletal muscle adaptations following spinal cord contusion injury in rat and the relationship to locomotor function: a time course study. J Neurotrauma 2001; 18:1075-89. [PMID: 11686494 DOI: 10.1089/08977150152693764] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Experimental spinal cord injury (SCI) via contusion of moderate severity results in residual locomotor deficits, including a lack of coordination and trunk stability. Given that muscle contractile properties and fiber composition adapt to reduced neural input and/or weight bearing, contusion-induced locomotor deficits may reflect changes in hindlimb skeletal muscle. Therefore, we examined muscle adaptations during early (1 week), intermediate (3 week), and late (10 week) stages of motor recovery after moderate SCI. Forty-two Sprague Dawley rats underwent SCI via 1.1mm cord displacement with the OSU impact device or served as age and weight-matched or laminectomy controls. Subsets of rats had soleus (SOL) in vitro physiological testing or SOL and extensor digitorum longus (EDL) myosin heavy chain (MHC) fiber type analysis. At 1 week post-SCI during paralysis/paresis, a significant decrease in wet weight occurred in the plantaris, medial/lateral gastrocnemius (MG/LG), tibialis anterior, and SOL. Changes in contractile properties of the SOL did not accompany muscle wet weight changes. By 3 weeks, the loss of weight-bearing activity early after SCI induced significant decreases in SOL peak twitch and peak tetanic tension as well as significantly greater IIx MHC expression in the EDL. By 10 weeks post-SCI, after several weeks of weight supported stepping, muscle wet weight, contractile properties and MHC composition returned to baseline levels except for MG/LG atrophy. Thus, muscle plasticity appears to be extremely sensitive to locomotor deficits and their resolution after moderate spinal cord contusion.
Collapse
Affiliation(s)
- K J Hutchinson
- Physical Therapy Department, Northeastern University, Boston, Massachusetts, USA
| | | | | |
Collapse
|