1
|
Rask-Andersen H, Li H, Löwenheim H, Müller M, Pfaller K, Schrott-Fischer A, Glueckert R. Supernumerary human hair cells-signs of regeneration or impaired development? A field emission scanning electron microscopy study. Ups J Med Sci 2017; 122:11-19. [PMID: 28145795 PMCID: PMC5361427 DOI: 10.1080/03009734.2016.1271843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Current attempts to regenerate cochlear sensorineural structures motivate further inspection of the human organ of hearing. Here, we analyzed the supernumerary inner hair cell (sIHC), a possible sign of regeneration and cell replacement. METHODS Human cochleae were studied using field emission scanning electron microscopy (FESEM; maximum resolution 2 nm) obtained from individuals aged 44, 48, and 58 years with normal sensorineural pure-tone average (PTA) thresholds (PTA <20 dB). The wasted tissue was harvested during trans-cochlear approaches and immediately fixed for ultrastructural analysis. RESULTS All specimens exhibited sIHCs at all turns except at the extreme lower basal turn. In one specimen, it was possible to image and count the inner hair cells (IHCs) along the cochlea representing the 0.2 kHz-8 kHz region according to the Greenwood place/frequency scale. In a region with 2,321 IHCs, there were 120 scattered one-cell losses or 'gaps' (5%). Forty-two sIHCs were present facing the modiolus. Thirty-eight percent of the sIHCs were located near a 'gap' in the IHC row (±6 IHCs). CONCLUSIONS The prevalence of ectopic inner hair cells was higher than expected. The morphology and placement could reflect a certain ongoing regeneration. Further molecular studies are needed to verify if the regenerative capacity of the human auditory periphery might have been underestimated.
Collapse
Affiliation(s)
- Helge Rask-Andersen
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
- Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
- CONTACT Helge Rask-Andersen Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - Hao Li
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
- Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
| | - Hubert Löwenheim
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
- Medical Campus University of Oldenburg School of Medicine and Health Sciences, European Medical School, Oldenburg, Germany
- Research Center of Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Marcus Müller
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
- Medical Campus University of Oldenburg School of Medicine and Health Sciences, European Medical School, Oldenburg, Germany
- Research Center of Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Kristian Pfaller
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
| | - Annelies Schrott-Fischer
- Department of Histology and Molecular Cell Biology, Institute of Anatomy and Histology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Glueckert
- Department of Histology and Molecular Cell Biology, Institute of Anatomy and Histology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Ouji Y, Ishizaka S, Nakamura-Uchiyama F, Wanaka A, Yoshikawa M. Induction of inner ear hair cell-like cells from Math1-transfected mouse ES cells. Cell Death Dis 2013; 4:e700. [PMID: 23828563 PMCID: PMC3730404 DOI: 10.1038/cddis.2013.230] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/10/2013] [Accepted: 06/03/2013] [Indexed: 12/31/2022]
Abstract
Math1, a basic helix-loop-helix transcription factor homolog of the Drosophila atonal gene, is considered to be a key factor for induction of sensory hair cells (HCs) during development of the organ of Corti or cochlea. Although embryonic stem (ES) cells are able to produce HC-like cells, the role of Math1 in induction of those cells has not been thoroughly elucidated. In the present study, we introduced Math1 into ES cells in order to achieve efficient generation of HC-like cells. ES cells carrying Tet-inducible Math1, Math1-ES cells, were generated using a Tet-On gene expression system. Embryoid bodies (EBs) formed in the absence of doxycycline (Dox) for 4 days were allowed to grow for an additional 14 days in the dishes in the presence of 400 μg/ml of Dox. At the end of those 14-day cultures, approximately 10% of the cells in EB outgrowths expressed the HC-related markers myosin6, myosin7a, calretinin, α9AchR, and Brn3c (also known as Pou4f3) and showed formation of stereocilia-like structures, whereas few cells in EB outgrowths grown without Dox showed those markers. Reporter assays of Math1-ES cells using a Brn3c-promoter plasmid demonstrated positive regulation of Brn3c by Math1. Furthermore, such HC-related marker-positive cells derived from Math1-ES cells were found to be incorporated in the developing inner ear after transplantation into chick embryos. Math1-ES cells are considered to be an efficient source of ES-derived HC-like cells, and Math1 may be an important factor for induction of HC-like cells from differentiating ES cells.
Collapse
Affiliation(s)
- Y Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan.
| | | | | | | | | |
Collapse
|
3
|
In vitro differentiation of mouse embryonic stem cells into inner ear hair cell-like cells using stromal cell conditioned medium. Cell Death Dis 2012; 3:e314. [PMID: 22622133 PMCID: PMC3366087 DOI: 10.1038/cddis.2012.56] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hearing loss is mainly caused by loss of sensory hair cells (HCs) in the organ of Corti or cochlea. Although embryonic stem (ES) cells are a promising source for cell therapy, little is known about the efficient generation of HC-like cells from ES cells. In the present study, we developed a single-medium culture method for growing embryoid bodies (EBs), in which conditioned medium (CM) from cultures of ST2 stromal cells (ST2-CM) was used for 14-day cultures of 4-day EBs. At the end of the 14-day cultures, up to 20% of the cells in EB outgrowths expressed HC-related markers, including Math1 (also known as Atoh1), myosin6, myosin7a, calretinin, α9AchR and Brn3c (also known as Pou4f3), and also showed formation of stereocilia-like structures. Further, we found that these cells were incorporated into the developing inner ear after transplantation into chick embryos. The present inner ear HC induction method using ST2-CM (HIST2 method) is quite simple and highly efficient to obtain ES-derived HC-like cells with a relatively short cultivation time.
Collapse
|
4
|
Effects of DAPT and Atoh1 overexpression on hair cell production and hair bundle orientation in cultured Organ of Corti from neonatal rats. PLoS One 2011; 6:e23729. [PMID: 22028767 PMCID: PMC3197578 DOI: 10.1371/journal.pone.0023729] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 07/26/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In mammals, hair cells do not undergo spontaneous regeneration when they are damaged and result in permanent hearing loss. Previous studies in cultured Organ of Corti dissected from neonatal animals have shown that both DAPT (r-secretase inhibitor in the Notch signal pathway) treatment and Atoh1 overexpression can induce supernumerary hair cells. The effects of simultaneous DAPT treatment and Atoh1 over expression in the cells of cultured Organ of Corti from neonatal rats are still obscure. PRINCIPAL FINDINGS In this study, we set out to investigate the interaction of DAPT treatment and Atoh1 overexpression as well as culture time and the location of basilar fragment isolated form neonatal rat inner ear. Our results showed that DAPT treatment induced more hair cells in the apical turn, while Atoh1 overexpression induced more extra hair cells in the middle turn of the cultured Organ of Corti. When used together, their effects are additive but not synergistic. In addition, the induction of supernumerary hair cells by both DAPT and Atoh1 overexpression is dependent on the treatment time and the location of the cochlear tissue. Moreover, DAPT treatment causes dramatic changes in the orientation of the stereociliary bundles of hair cells, whereas Atoh1 overexpression didn't induce drastic change of the polarity of stereociliary bundles. CONCLUSIONS/SIGNIFICANCE Taken together, these results suggest that DAPT treatment are much more potent in inducing supernumerary hair cells than Atoh1 overexpression and that the new hair cells mainly come from the trans-differentiation of supporting cells around hair cells. The orientation change of stereociliary bundle of hair cells may be attributed to the insertion of the newly formed hair cells. The immature hair bundles on the newly formed hair cells may also contribute to the overall chaos of the stereociliary bundle of the sensory epithelia.
Collapse
|
5
|
Abstract
The sensory epithelium of the mammalian cochlea is composed of a regular mosaic of sensory hair cells and nonsensory supporting cells. During development, differentiation occurs in a gradient that progresses along the axis of the cochlea from base to apex. To begin to identify some of the factors that regulate this developmental process, the potential roles of planar and vertical signals were examined during early stages of cochlear development. We demonstrate roles for both underlying mesenchymal cells and adjacent epithelial cells in the differentiation and patterning of the sensory epithelium, and in particular in the development of mechanosensory hair cells. As development proceeds, the requirements for both planar and vertical signals decrease, and development of the sensory epithelium becomes essentially independent from these cues. Finally, we demonstrate that the temporal gradient of cellular differentiation is not dependent on planar signals within the developing sensory epithelium.
Collapse
|
6
|
Affiliation(s)
- Raymond Romand
- Institut Clinique de la Souris, 67404 Illkirch Cedex, France
| |
Collapse
|
7
|
Affiliation(s)
- Allen F Ryan
- Department of Surgery/Otolaryngology, University of California San Diego School of Medicine and San Diego Veterans Administration Medical Center, La Jolla, California 92093, USA
| |
Collapse
|
8
|
Abstract
One of the most striking aspects of the cellular pattern within the sensory epithelium of the mammalian cochlea is the presence of two rows of pillar cells in the region between the single row of inner hair cells and the first row of outer hair cells. The factors that regulate pillar cell development have not been determined; however, previous results suggested a key role for fibroblast growth factor receptor 3 (FGFR3). To examine the specific effects of FGFR3 on pillar cell development, we inhibited receptor activation in embryonic cochlear explant cultures. Results indicated that differentiation of pillar cells is dependent on continuous activation of FGFR3. Moreover, transient inhibition of FGFR3 did not inhibit the pillar cell fate permanently, because reactivation of FGFR3 resulted in the resumption of pillar cell differentiation. The effects of increased FGFR3 activation were determined by exposing cochlear explants to FGF2, a strong ligand for several FGF receptors. Treatment with FGF2 led to a significant increase in the number of pillar cells and to a small increase in the number of inner hair cells. These effects were not dependent on cellular proliferation, suggesting that additional pillar cells and inner hair cells were a result of increased recruitment into the prosensory domain. These results indicate that FGF signaling plays a critical role in the commitment and differentiation of pillar cells. Moreover, the position of the pillar cells appears to be determined by the activation of FGFR3 in a subset of the progenitor cells that initially express this receptor.
Collapse
|
9
|
Daudet N, Ripoll C, Lenoir M. Transforming growth factor-alpha-induced cellular changes in organotypic cultures of juvenile, amikacin-treated rat organ of corti. J Comp Neurol 2002; 442:6-22. [PMID: 11754363 DOI: 10.1002/cne.1418] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hair cell losses in the mammalian cochlea following an ototoxic insult are irreversible. However, past studies have shown that amikacin treatment in rat cochleae resulted in the transient presence of atypical Deiters' cells (ACs) in the damaged organ of Corti. These ACs arise through a transformation of Deiters' cells, which produce, at their apical pole, densely packed microvilli reminiscent of early-differentiating stereociliary bundles. The ACs do not, however, express typical hair cell markers such as parvalbumin or calbindin. The present study was designed to determine whether specific growth factors could influence the survival and differentiation of these ACs and stimulate hair cell regeneration processes in vitro. Apical-medial segments of organ of Corti of juvenile amikacin-treated rats were established as organotypic cultures, and the effects of epidermal growth factor (EGF), insulin-like growth factor 1 (IGF-1), transforming growth factor-alpha (TGFalpha), and retinoic acid were studied using morphological and molecular approaches. Our results indicate that TGFalpha supports the survival of the damaged organ of Corti and influences ACs differentiation in vitro, possibly acting through reorganization of the actin cytoskeleton. These effects could be directly mediated through activation of the EGF receptor, which is expressed by supporting cells in the mature organ of Corti. TGFalpha does not, however, allow the ACs to progress towards a hair cell phenotype.
Collapse
Affiliation(s)
- Nicolas Daudet
- INSERM UR 254, Université Montpellier I, 71 rue de Navacelles, 34090 Montpellier, France.
| | | | | |
Collapse
|
10
|
Pujol R, Lavigne-Rebillard M, Lenoir M. Development of Sensory and Neural Structures in the Mammalian Cochlea. DEVELOPMENT OF THE AUDITORY SYSTEM 1998. [DOI: 10.1007/978-1-4612-2186-9_4] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Chardin S, Romand R. Factors modulating supernumerary hair cell production in the postnatal rat cochlea in vitro. Int J Dev Neurosci 1997; 15:497-507. [PMID: 9263028 DOI: 10.1016/s0736-5748(96)00106-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It has been shown in the past that extra hair cells or supernumerary cells can be produced when neonatal cochleae are maintained in vitro. In this report, we investigated the effects of the culture methods, molecules and growth factors that are thought to be involved in cell proliferation. Quantitative studies of supernumerary hair cells were made by measuring the cell density over the entire spiral lamina at two postnatal stages: birth and 3 days after birth. With a standard feeding solution without serum, a difference in cell density was observed between the two methods of culture. Cochlear explants in a standard feeding solution supplemented with serum showed an increase of cell density only when the explantation is made at birth. Retinoic acid added to the standard feeding solution did not increase the hair cell density, while insulin induced an increase, especially at 5 micrograms/ml. Several growth factors were tested. Epidermal growth factor (EGF) presented a dose dependent effect with an increase of up to 30% of hair cell density that was observed in the basal region when the explantation was made at birth. Transforming growth factor-alpha did not induce an increase of cell density, whereas transforming growth factor-beta presented an effect on hair cell density, with a dose dependent effect reaching 37.4% for the basal inner hair cells. Interpretation of these results is limited because of the lack of data concerning the presence of specific membrane receptors. One possibility is that insulin stimulates hair cell differentiation from existing undifferentiated cells. Another hypothesis may be related to the EGF and transforming growth factor-beta, where these molecules might induce transdifferentiation of cells by acting on the transmembrane molecules and the extracellular matrix.
Collapse
Affiliation(s)
- S Chardin
- Laboratoire de Neurobiologie, Université Blaise Pascal-Clermont II, 63177 Aubicre, France
| | | |
Collapse
|
12
|
Mu MY, Chardin S, Avan P, Romand R. Ontogenesis of rat cochlea. A quantitative study of the organ of Corti. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 99:29-37. [PMID: 9088563 DOI: 10.1016/s0165-3806(96)00194-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A systematic quantitative set of data concerning the organ of Corti in developing Sprague-Dawley rats at intervals from 18 days of gestation to 10 days after birth (DAB) is provided in this study. Using phalloidin staining, the total number of inner and outer hair cells, the whole length of cochlea, as well as the diameter of inner and outer hair cells and the intercellular space between inner hair cells were determined in order to analyze the quantitative change of inner and outer hair cells during development and to explore some roles of the factors regulating the growth of cochlea. The results show that: (1) The length of cochlea approached its adult size by 7DAB. (2) The growth of the extreme part of the apex was responsible for the delayed elongation of the cochlea. (3) Growth in the cochlear length mainly results from an increase of cell diameter tempered by a decrease of intercellular space. (4) The adult size of inner and outer hair cells was obtained by 7-14DAB. (5) The final number of inner and outer hair cells was reached at 3DAB and remained constant through adulthood. No significant hair cell overproduction and cell death were observed during ontogenesis of the cochlea. The negligible importance of overproduction and missing hair cells during hair cell differentiation suggest that there is a precise regulation phenomenon for producing the right spatial organization of the organ of Corti.
Collapse
MESH Headings
- Actins/analysis
- Analysis of Variance
- Animals
- Biomarkers/chemistry
- Cell Count
- Cell Differentiation/physiology
- Embryonic and Fetal Development/physiology
- Gestational Age
- Hair Cells, Auditory, Inner/chemistry
- Hair Cells, Auditory, Inner/embryology
- Hair Cells, Auditory, Inner/growth & development
- Hair Cells, Auditory, Outer/chemistry
- Hair Cells, Auditory, Outer/embryology
- Hair Cells, Auditory, Outer/growth & development
- Organ of Corti/chemistry
- Organ of Corti/embryology
- Organ of Corti/growth & development
- Phalloidine
- Rats
- Rats, Sprague-Dawley
- Staining and Labeling
Collapse
Affiliation(s)
- M Y Mu
- ENT Institute of Shanghai Medical University, China
| | | | | | | |
Collapse
|
13
|
Abstract
The dimensions of the apical surfaces of hair cells were measured in guinea pigs, aged from 3 weeks before term to 25 weeks after birth. In the basal two-thirds of the cochlea, the apical surfaces of the outer hair cells and their supporting cells changed with age, shrinking in a direction radial across the cochlear duct. There was an associated widening of the angle of the 'V' of the rows of stereocilia. Further apically, between 12 and 16 mm from the base of the cochlea, the outer hair cells and their supporting cells underwent the opposite change, becoming wider in a radial direction with age. The changes were seen before birth and continued for more than 3 weeks after birth. The results suggest that the guinea pig cochlea continues certain developmental processes for a considerable time after birth.
Collapse
Affiliation(s)
- S Zhou
- Department of Physiology and Pharmacology, University of Queensland, Australia.
| | | |
Collapse
|
14
|
Abstract
Fetal and postnatal ontogenesis of the rat cochlea, from the 16th gestational day (16DG) until 3 months post partum, were studied using scanning electron microscopy with emphasis on the stereocilia during the earliest stages of development. The epithelium of the cochlear duct in 16DG rat consisted of plygonal cells topped with numerous microvilli and one central kinocilium, which form the so-called Kölliker's organ. Inner hair cells (IHCs) appeared at 18DG in the basal cochlea. They were characterized by tufts of cilia of the same height and with a kinocilium. The first outer hair cells (OHCs) can be seen at 20DG. The earliest stages of ciliary differentiation, at 18DG for IHCs and 20DG for OHCs, were similar on both types of cells and were characterized by the presence of round bundles of cilia arising from the surrounding microvilli. A three-dimensional V-shaped organization for OHCs and the linear arrangement for IHCs appeared by the end of the first postnatal week, accompanied by the disappearance of transient cilia on the modiolar side of the hair cell and the kinocilium on the external side. The apical pole of OHCs reached adult-like morphology before that of IHCs. Various links between stereocilia were detected already at birth. Morphometric analysis showed that auditory cells from the base of the cochlea reached adult size by the end of the first postnatal week while those from the apex increased their size later. A review of the literature including comparative observations across species on the ontogenesis of the stereocilia shows that hair cells of the stato-acoustic system may present the same early ontogenesis.
Collapse
Affiliation(s)
- A Zine
- Laboratoire de Neurobiologie, Université Blaise Pascal-Clermont II, Aubière, France
| | | |
Collapse
|
15
|
MESH Headings
- Animals
- Cell Survival/drug effects
- Cilia/ultrastructure
- Culture Media
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/physiology
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/physiology
- Hair Cells, Auditory, Outer/ultrastructure
- Neomycin/pharmacology
- Organ Culture Techniques
- Organ of Corti/drug effects
- Organ of Corti/physiology
- Organ of Corti/ultrastructure
- Rats
- Rats, Sprague-Dawley
- Regeneration/drug effects
- Tretinoin/pharmacology
Collapse
|