1
|
Ji MJ, Zhang XY, Peng XC, Zhang YX, Chen Z, Yu L, Wang JJ, Zhu JN. Histamine Excites Rat GABAergic Ventral Pallidum Neurons via Co-activation of H1 and H2 Receptors. Neurosci Bull 2018; 34:1029-1036. [PMID: 30143981 DOI: 10.1007/s12264-018-0277-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022] Open
Abstract
The ventral pallidum (VP) is a crucial component of the limbic loop of the basal ganglia and participates in the regulation of reward, motivation, and emotion. Although the VP receives afferent inputs from the central histaminergic system, little is known about the effect of histamine on the VP and the underlying receptor mechanism. Here, we showed that histamine, a hypothalamic-derived neuromodulator, directly depolarized and excited the GABAergic VP neurons which comprise a major cell type in the VP and are responsible for encoding cues of incentive salience and reward hedonics. Both postsynaptic histamine H1 and H2 receptors were found to be expressed in the GABAergic VP neurons and co-mediate the excitatory effect of histamine. These results suggested that the central histaminergic system may actively participate in VP-mediated motivational and emotional behaviors via direct modulation of the GABAergic VP neurons. Our findings also have implications for the role of histamine and the central histaminergic system in psychiatric disorders.
Collapse
Affiliation(s)
- Miao-Jin Ji
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiao-Chun Peng
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zi Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lei Yu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Takei H, Yamamoto K, Bae YC, Shirakawa T, Kobayashi M. Histamine H 3 Heteroreceptors Suppress Glutamatergic and GABAergic Synaptic Transmission in the Rat Insular Cortex. Front Neural Circuits 2017; 11:85. [PMID: 29170631 PMCID: PMC5684127 DOI: 10.3389/fncir.2017.00085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/16/2017] [Indexed: 12/26/2022] Open
Abstract
Histamine H3 receptors are autoreceptors that regulate histamine release from histaminergic neuronal terminals. The cerebral cortex, including the insular cortex (IC), expresses abundant H3 receptors; however, the functions and mechanisms of H3 receptors remain unknown. The aim of this study was to elucidate the functional roles of H3 in synaptic transmission in layer V of the rat IC. Unitary excitatory and inhibitory postsynaptic currents (uEPSCs and uIPSCs) were obtained through paired whole-cell patch-clamp recording in cerebrocortical slice preparations. The H3 receptor agonist, R-α-methylhistamine (RAMH), reduced the uEPSC amplitude obtained from pyramidal cell to pyramidal cell or GABAergic interneuron connections. Similarly, RAMH reduced the uIPSC amplitude in GABAergic interneuron to pyramidal cell connections. RAMH-induced decreases in both the uEPSC and uIPSC amplitudes were accompanied by increases in the failure rate and paired-pulse ratio. JNJ 5207852 dihydrochloride or thioperamide, H3 receptor antagonists, inhibited RAMH-induced suppression of uEPSCs and uIPSCs. Unexpectedly, thioperamide alone increased the uIPSC amplitude, suggesting that thioperamide was likely to act as an inverse agonist. Miniature EPSC or IPSC recordings support the hypothesis that the activation of H3 receptors suppresses the release of glutamate and GABA from presynaptic terminals. The colocalization of H3 receptors and glutamate decarboxylase or vesicular glutamate transport protein 1 in presynaptic axon terminals was confirmed through double pre-embedding microscopy, using a combination of pre-embedding immunogold and immunoperoxidase techniques. The suppressive regulation of H3 heteroreceptors on synaptic transmission might mediate the regulation of sensory information processes, such as gustation and visceral sensation, in the IC.
Collapse
Affiliation(s)
- Hiroki Takei
- Department of Pharmacology, Nihon University School of Dentistry, Chiyoda-ku, Japan.,Department of Pediatric Dentistry, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Kiyofumi Yamamoto
- Department of Pharmacology, Nihon University School of Dentistry, Chiyoda-ku, Japan.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Yong-Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Tetsuo Shirakawa
- Department of Pediatric Dentistry, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, Chiyoda-ku, Japan.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Chiyoda-ku, Japan.,Molecular Dynamics Imaging Unit, RIKEN Center for Life Science Technologies, Kobe, Japan
| |
Collapse
|
3
|
Tighilet B, Mourre C, Lacour M. Plasticity of the histamine H3 receptors after acute vestibular lesion in the adult cat. Front Integr Neurosci 2014; 7:87. [PMID: 24427120 PMCID: PMC3879797 DOI: 10.3389/fnint.2013.00087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/16/2013] [Indexed: 11/13/2022] Open
Abstract
After unilateral vestibular neurectomy (UVN) many molecular and neurochemical mechanisms underlie the neurophysiological reorganizations occurring in the vestibular nuclei (VN) complex, as well as the behavioral recovery process. As a key regulator, the histaminergic system appears to be a likely candidate because drugs interfering with histamine (HA) neurotransmission facilitate behavioral recovery after vestibular lesion. This study aimed at analyzing the post-lesion changes of the histaminergic system by quantifying binding to histamine H3 receptors (H3R; mediating namely histamine autoinhibition) using a histamine H3 receptor agonist ([3H]N-α-methylhistamine). Experiments were done in brain sections of control cats (N = 6) and cats submitted to UVN and killed 1 (N = 6) or 3 (N = 6) weeks after the lesion. UVN induced a bilateral decrease in binding density of the agonist [3H]N-α-methylhistamine to H3R in the tuberomammillary nuclei (TMN) at 1 week post-lesion, with a predominant down-regulation in the ipsilateral TMN. The bilateral decrease remained at the 3 weeks survival time and became symmetric. Concerning brainstem structures, binding density in the VN, the prepositus hypoglossi, the subdivisions of the inferior olive decreased unilaterally on the ipsilateral side at 1 week and bilaterally 3 weeks after UVN. Similar changes were observed in the subdivisions of the solitary nucleus only 1 week after the lesion. These findings indicate vestibular lesion induces plasticity of the histamine H3R, which could contribute to vestibular function recovery.
Collapse
Affiliation(s)
- Brahim Tighilet
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260, FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Centre Saint-Charles, Case B, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Christiane Mourre
- Laboratoire de Neurosciences Cognitives, UMR 7291, Centre Saint-Charles, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Michel Lacour
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260, FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Centre Saint-Charles, Case B, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| |
Collapse
|
4
|
Bao X, Lu S, Liow JS, Zoghbi SS, Jenko KJ, Clark DT, Gladding RL, Innis RB, Pike VW. Radiosynthesis and evaluation of an (18)F-labeled positron emission tomography (PET) radioligand for brain histamine subtype-3 receptors based on a nonimidazole 2-aminoethylbenzofuran chemotype. J Med Chem 2012; 55:2406-15. [PMID: 22313227 PMCID: PMC3303611 DOI: 10.1021/jm201690h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A known chemotype of H(3) receptor ligand was explored for development of a radioligand for imaging brain histamine subtype 3 (H(3)) receptors in vivo with positron emission tomography (PET), namely nonimidazole 2-aminoethylbenzofurans, represented by the compound (R)-(2-(2-(2-methylpyrrolidin-1-yl)ethyl)benzofuran-5-yl)(4-fluorophenyl)methanone (9). Compound 9 was labeled with fluorine-18 (t(1/2) = 109.7 min) in high specific activity by treating the prepared nitro analogue (12) with cyclotron-produced [(18)F]fluoride ion. [(18)F]9 was studied with PET in mouse and in monkey after intravenous injection. [(18)F]9 showed favorable properties as a candidate PET radioligand, including moderately high brain uptake with a high proportion of H(3) receptor-specific signal in the absence of radiodefluorination. The nitro compound 12 was found to have even higher H(3) receptor affinity, indicating the potential of this chemotype for the development of further promising PET radioligands.
Collapse
Affiliation(s)
- Xiaofeng Bao
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, Maryland, 20892, United States
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, Maryland, 20892, United States
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, Maryland, 20892, United States
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, Maryland, 20892, United States
| | - Kimberly J. Jenko
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, Maryland, 20892, United States
| | - David T. Clark
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, Maryland, 20892, United States
| | - Robert L. Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, Maryland, 20892, United States
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, Maryland, 20892, United States
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, Maryland, 20892, United States
| |
Collapse
|
5
|
Involvement of the brain histaminergic system in addiction and addiction-related behaviors: a comprehensive review with emphasis on the potential therapeutic use of histaminergic compounds in drug dependence. Prog Neurobiol 2010; 92:421-41. [PMID: 20638439 DOI: 10.1016/j.pneurobio.2010.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 07/01/2010] [Accepted: 07/10/2010] [Indexed: 01/13/2023]
Abstract
Neurons that produce histamine are exclusively located in the tuberomamillary nucleus of the posterior hypothalamus and send widespread projections to almost all brain areas. Neuronal histamine is involved in many physiological and behavioral functions such as arousal, feeding behavior and learning. Although conflicting data have been published, several studies have also demonstrated a role of histamine in the psychomotor and rewarding effects of addictive drugs. Pharmacological and brain lesion experiments initially led to the proposition that the histaminergic system exerts an inhibitory influence on drug reward processes, opposed to that of the dopaminergic system. The purpose of this review is to summarize the relevant literature on this topic and to discuss whether the inhibitory function of histamine on drug reward is supported by current evidence from published results. Research conducted during the past decade demonstrated that the ability of many antihistaminic drugs to potentiate addiction-related behaviors essentially results from non-specific effects and does not constitute a valid argument in support of an inhibitory function of histamine on reward processes. The reviewed findings also indicate that histamine can either stimulate or inhibit the dopamine mesolimbic system through distinct neuronal mechanisms involving different histamine receptors. Finally, the hypothesis that the histaminergic system plays an inhibitory role on drug reward appears to be essentially supported by place conditioning studies that focused on morphine reward. The present review suggests that the development of drugs capable of activating the histaminergic system may offer promising therapeutic tools for the treatment of opioid dependence.
Collapse
|
6
|
Mezzomo K, Cumming P, Minuzzi L. Comparison of the binding distribution of agonist and antagonist ligands for histamine H3 receptors in pig brain by quantitative autoradiography. Eur J Pharmacol 2007; 564:75-9. [PMID: 17350614 DOI: 10.1016/j.ejphar.2007.01.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 01/22/2007] [Accepted: 01/25/2007] [Indexed: 11/22/2022]
Abstract
The relationship between the abundances of agonist and antagonist-binding sites for monoamine receptors is poorly established. Therefore, we used quantitative autoradiography to investigate the distribution and concentration of binding sites for histamine H(3) receptor ligands in cryostat sections of pig brain. As in other species, binding of the histamine H(3) receptor agonist [(3)H]N(alpha)-methylhistamine was highly heterogeneous in the pig brain, with highest B(max) in the substantia nigra, followed by the nucleus accumbens and caudate, intermediate binding in frontal cortex, diencephalon, and mesencephalon, and absent specific binding in cerebellum: the affinity of [(3)H]N(alpha)-methylhistamine was close to 1 nM in all regions of pig brain. Thus, the saturation binding parameters for this H(3) receptor agonist in pig brain were similar to the earlier reports in rat, guinea pig, and human. The distribution of histamine H(3) receptors labeled with the receptor antagonist [(125)I]iodophenpropit in adjacent cryostat sections from the same group of pigs was very similar to that of [(3)H]N(alpha)-methylhistamine. However, the B(max) of the receptor antagonist was 40% higher in the basal ganglia than was the B(max) of the receptor agonist. The K(d) for the receptor antagonist ligand was close to 0.9 nM in all regions. These results suggest that histamine H(3) receptor agonist-binding sites, i.e. those linked to intracellular G-protein, comprise a subset of the total receptor antagonist-binding sites in the basal ganglia, as has been reported for dopamine D(2) receptors.
Collapse
Affiliation(s)
- Kelin Mezzomo
- Fundacao Faculdade Federal de Ciencias Medicas de Porto Alegre, Brazil
| | | | | |
Collapse
|
7
|
Sallmen T, Lozada AF, Anichtchik OV, Beckman AL, Leurs R, Panula P. Changes in hippocampal histamine receptors across the hibernation cycle in ground squirrels. Hippocampus 2003; 13:745-54. [PMID: 12962318 DOI: 10.1002/hipo.10120] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hibernation is a physiological state characterized by a dramatic reduction in various functions, such as body temperature, heart rate, and metabolism. The hippocampus is thought to be important for regulation of the hibernation bout because it remains electrophysiologically active throughout this extremely depressed state. The question arises as to what neuronal influences act within the hippocampus during hibernation to sustain its activity. We hypothesized that histaminergic input might be an important contributor. Brain histamine is involved in functions relevant to hibernation, such as the regulation of diurnal rhythms, body temperature, and energy metabolism. Furthermore, we have previously shown that the histaminergic system appears to be activated during the hibernating state. In this study, we used receptor binding autoradiography, in situ hybridization, and GTP-gamma-S binding autoradiography to study changes in histamine receptors across the hibernation bout. We were able to demonstrate an increase in histamine H1 and H2 receptors in the hippocampus during hibernation, whereas the mRNA expression and receptor density of the inhibitory H3 receptor decreased. Histamine H3 receptors were shown to exhibit both histamine-activated and constitutive GTP-gamma-S-binding activity in the ground squirrel hippocampus, both of which decreased during hibernation, indicating a decrease in H3 receptor G-protein activation. Taken together, our results indicate that histamine may be involved in maintaining hibernation by sustaining hippocampal activity, possibly through H1 and H2 receptor activity and decreased inhibition by H3 receptors. The involvement of brain histamine, which is generally thought of as an arousal molecule, in maintaining a depressed state of the brain suggests a more general role for the amine in controlling arousal state.
Collapse
MESH Headings
- Afferent Pathways/cytology
- Afferent Pathways/metabolism
- Animals
- Arousal/physiology
- Binding, Competitive/physiology
- Down-Regulation/physiology
- Female
- GTP-Binding Proteins/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)
- Hibernation/physiology
- Hippocampus/cytology
- Hippocampus/metabolism
- Histamine/metabolism
- Neurons/cytology
- Neurons/metabolism
- RNA, Messenger/metabolism
- Receptors, Histamine/genetics
- Receptors, Histamine/metabolism
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/metabolism
- Receptors, Histamine H2/genetics
- Receptors, Histamine H2/metabolism
- Receptors, Histamine H3/genetics
- Receptors, Histamine H3/metabolism
- Sciuridae/anatomy & histology
- Sciuridae/physiology
Collapse
Affiliation(s)
- Tina Sallmen
- Department of Biology, Abo Akademi University, Turku, Finland
| | | | | | | | | | | |
Collapse
|
8
|
Sallmen T, Lozada AF, Anichtchik OV, Beckman AL, Panula P. Increased brain histamine H3 receptor expression during hibernation in golden-mantled ground squirrels. BMC Neurosci 2003; 4:24. [PMID: 14505495 PMCID: PMC212552 DOI: 10.1186/1471-2202-4-24] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 09/24/2003] [Indexed: 12/02/2022] Open
Abstract
Background Hibernation is a state of extremely reduced physiological functions and a deep depression of CNS activity. We have previously shown that the histamine levels increase in the brain during hibernation, as does the ratio between histamine and its first metabolite, suggesting increased histamine turnover during this state. The inhibitory histamine H3 receptor has both auto- and heteroreceptor function, rendering it the most likely histamine receptor to be involved in regulating the activity of histamine as well as other neurotransmitters during hibernation. In view of accumulating evidence that there is a global depression of transcription and translation during hibernation, of all but a few proteins that are important for this physiological condition, we reasoned that an increase in histamine H3 receptor expression would clearly indicate an important hibernation-related function for the receptor. Results In this study we show, using in situ hybridization, that histamine H3 receptor mRNA increases in the cortex, caudate nucleus and putamen during hibernation, an increase that is accompanied by elevated receptor binding in the cerebral cortex, globus pallidus and substantia nigra. These results indicate that there is a hibernation-related increase in H3 receptor expression in cortical neurons and in striatopallidal and striatonigral GABAergic neurons. GTP-γ-S binding autoradiography shows that the H3 receptors in the globus pallidus and substantia nigra can be stimulated by histamine throughout the hibernation cycle, suggesting that they are functionally active during hibernation. Conclusions These results show that the histamine H3 receptor gene is one of the few with a transcript that increases during hibernation, indicating an important role for the receptor in regulating this state. Moreover, the receptor is functionally active in the basal ganglia, suggesting a function for it in regulating e.g. dopaminergic transmission during hibernation.
Collapse
Affiliation(s)
- Tina Sallmen
- Department of Biology, Abo Akademi University, Åbo/Turku, Finland
| | - Adrian F Lozada
- Department of Biology, Abo Akademi University, Åbo/Turku, Finland
| | - Oleg V Anichtchik
- Department of Biology, Abo Akademi University, Åbo/Turku, Finland
- Institute for Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Alexander L Beckman
- Department of Psychology, California State University, Long Beach, California
| | - Pertti Panula
- Department of Biology, Abo Akademi University, Åbo/Turku, Finland
- Institute for Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Tighilet B, Trottier S, Mourre C, Chotard C, Lacour M. Betahistine dihydrochloride interaction with the histaminergic system in the cat: neurochemical and molecular mechanisms. Eur J Pharmacol 2002; 446:63-73. [PMID: 12098586 DOI: 10.1016/s0014-2999(02)01795-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Drugs interfering with the histaminergic system facilitate behavioral recovery after vestibular lesion, likely by increasing histamine turnover and release. The effects of betahistine (structural analogue of histamine) on the histaminergic system were tested by quantifying messenger RNA for histidine decarboxylase (enzyme synthesizing histamine) by in situ hybridization and binding to histamine H(3) receptors (mediating, namely, histamine autoinhibition) using a histamine H(3) receptor agonist ([(3)H]N-alpha-methylhistamine) and radioautography methods. Experiments were done in brain sections of control cats (N=6) and cats treated with betahistine for 1 (N=6) or 3 (N=6) weeks. Betahistine treatment induced symmetrical changes with up-regulation of histidine decarboxylase mRNA in the tuberomammillary nucleus and reduction of [(3)H]N-alpha-methylhistamine labeling in both the tuberomammillary nucleus, the vestibular nuclei complex and nuclei of the inferior olive. These findings suggest that betahistine upregulates histamine turnover and release, very likely by blocking presynaptic histamine H(3) receptors, and induces histamine H(3) receptor downregulation. This action on the histaminergic system could explain the effectiveness of betahistine in the treatment of vertigo and vestibular disease.
Collapse
Affiliation(s)
- Brahim Tighilet
- UMR 6149 "Neurobiologie Intégrative et Adaptative", Université de Provence/CNRS, 52 Faculté de Saint Jérôme-Case 361, F-13397 Cedex 20, Marseille, France.
| | | | | | | | | |
Collapse
|
10
|
Abstract
Histamine-releasing neurons are located exclusively in the TM of the hypothalamus, from where they project to practically all brain regions, with ventral areas (hypothalamus, basal forebrain, amygdala) receiving a particularly strong innervation. The intrinsic electrophysiological properties of TM neurons (slow spontaneous firing, broad action potentials, deep after hyperpolarisations, etc.) are extremely similar to other aminergic neurons. Their firing rate varies across the sleep-wake cycle, being highest during waking and lowest during rapid-eye movement sleep. In contrast to other aminergic neurons somatodendritic autoreceptors (H3) do not activate an inwardly rectifying potassium channel but instead control firing by inhibiting voltage-dependent calcium channels. Histamine release is enhanced under extreme conditions such as dehydration or hypoglycemia or by a variety of stressors. Histamine activates four types of receptors. H1 receptors are mainly postsynaptically located and are coupled positively to phospholipase C. High densities are found especially in the hypothalamus and other limbic regions. Activation of these receptors causes large depolarisations via blockade of a leak potassium conductance, activation of a non-specific cation channel or activation of a sodium-calcium exchanger. H2 receptors are also mainly postsynaptically located and are coupled positively to adenylyl cyclase. High densities are found in hippocampus, amygdala and basal ganglia. Activation of these receptors also leads to mainly excitatory effects through blockade of calcium-dependent potassium channels and modulation of the hyperpolarisation-activated cation channel. H3 receptors are exclusively presynaptically located and are negatively coupled to adenylyl cyclase. High densities are found in the basal ganglia. These receptors mediated presynaptic inhibition of histamine release and the release of other neurotransmitters, most likely via inhibition of presynaptic calcium channels. Finally, histamine modulates the glutamate NMDA receptor via an action at the polyamine binding site. The central histamine system is involved in many central nervous system functions: arousal; anxiety; activation of the sympathetic nervous system; the stress-related release of hormones from the pituitary and of central aminergic neurotransmitters; antinociception; water retention and suppression of eating. A role for the neuronal histamine system as a danger response system is proposed.
Collapse
Affiliation(s)
- R E Brown
- Institut für Neurophysiologie, Heinrich-Heine-Universität, D-40001, Düsseldorf, Germany.
| | | | | |
Collapse
|
11
|
Chazot PL, Hann V, Wilson C, Lees G, Thompson CL. Immunological identification of the mammalian H3 histamine receptor in the mouse brain. Neuroreport 2001; 12:259-62. [PMID: 11209931 DOI: 10.1097/00001756-200102120-00016] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Affinity-purified antibodies raised against the peptide sequence H3 (349-358) receptor specifically recognized two protein species with Mr 62,000 and 93,000 in adult mouse forebrain membranes. Both immunoreactive species were suppressed greatly by preincubation of the antibody with the respective peptide. Immunohistochemical analysis using affinity-purified anti-H3 (349-358) antibodies yielded a high degree of coincidence with ligand-autoradiographical information, with high levels detected in the CA3 and dentate gyrus of the hippocampus, laminae V of the cerebral cortex, the olfactory tubercle, Purkinje cell layer of the cerebellum, substantia nigra, globus pallidus, thalamus and striatum. This study suggests further biochemical evidence for multiple H3 receptor subtypes and the widespread distribution of the H3 receptor in the mammalian brain.
Collapse
Affiliation(s)
- P L Chazot
- Institute of Pharmacy and Chemistry, School of Sciences, University of Sunderland, Tyne and Wear, UK
| | | | | | | | | |
Collapse
|
12
|
Effects of histamine H(3)-ligands on the levodopa-induced turning behavior of hemiparkinsonian rats. Parkinsonism Relat Disord 2000; 6:159-164. [PMID: 10817955 DOI: 10.1016/s1353-8020(00)00007-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Histamine H(3)-receptors act as heteroreceptors on many neurons. The effects of H(3)-ligands (an agonist, R-alpha-methylhistamine and an antagonist, thioperamide) on levodopa-induced turning behavior in a rat model of Parkinson's disease were quite similar to those seen with alpha(2)-adrenoceptor ligands (dexmedetomidine and atipamezole). R-alpha-methylhistamine clearly reduced contralateral turning behavior but the increase of turning behavior after thioperamide was less clear. The lack of effect of H(3)-ligands, in contrast to alpha(2)-ligands, on the amphetamine-induced ipsilateral turning behavior points to different roles or neuronal distribution of these two presynaptic receptors. We propose that in this lesion model, H(3)-receptors modify those pathways participating striatal outflow.
Collapse
|
13
|
Tardivel-Lacombe J, Rouleau A, Héron A, Morisset S, Pillot C, Cochois V, Schwartz JC, Arrang JM. Cloning and cerebral expression of the guinea pig histamine H3 receptor: evidence for two isoforms. Neuroreport 2000; 11:755-9. [PMID: 10757514 DOI: 10.1097/00001756-200003200-00020] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We cloned the full length guinea pig H3 receptor cDNA using RT-PCR amplification with primers from the human receptor and templates from brain areas. Evidence was obtained for two isoforms, designated H3L and H3S, differing by a 30 amino acid stretch within the third cytosolic loop, presumably generated by alternative splicing. In situ hybridization using a selective cRNA probe showed the gene transcripts to be highly expressed in discrete neuronal populations, e.g. pyramidal cells in the cerebral cortex or cerebellar Purkinje cells, in some instances already known to express other histamine receptor subtypes.
Collapse
Affiliation(s)
- J Tardivel-Lacombe
- Unité de Neurobiologie et Pharmacologie Moléculaire (U 109) INSERM, Centre Paul Broca, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Subclassification of histamine receports, H3-receptor subtypes? Localization of H3 receptors in the brain. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0165-7208(98)80021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|