1
|
7,8-Dihydroxyflavone Enhanced Colonic Cholinergic Contraction and Relieved Loperamide-Induced Constipation in Rats. Dig Dis Sci 2021; 66:4251-4262. [PMID: 33528684 DOI: 10.1007/s10620-020-06817-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Whether 7,8-dihydroxyflavone (7,8-DHF), a tyrosine kinase receptor B (TrkB) agonist, modulates colonic smooth muscle motility and/or alleviates constipation has not yet been studied. AIMS Here, we aimed to determine how 7,8-DHF influences carbachol (CCh)-stimulated contraction of colonic strips and the in vivo effect of 7,8-DHF on constipation. METHODS Muscle strips were isolated from rat colons for recording contractile tension and performing western blotting. Constipation was induced in rats with loperamide. RESULTS Although it specifically activated TrkB, 7,8-DHF applied alone neither activated PLCγ1 in the colonic strips nor induced colonic strip contraction. However, 7,8-DHF enhanced CCh-stimulated PLCγ1 activation and strip contraction. The PLCγ1 antagonist U73122 suppressed both CCh-stimulated and 7,8-DHF-enhanced/CCh-stimulated contraction. While clarifying the underlying mechanism, we revealed that 7,8-DHF augmented muscarinic M3 receptor expression in the colonic strips. The M3-selective antagonist tarafenacin specifically inhibited the 7,8-DHF-enhanced/CCh-stimulated contraction of the colonic strips. Since 7,8-DHF increased Akt phosphorylation, and LY294002 (an antagonist of PI3K upstream of Akt) dramatically inhibited both 7,8-DHF-augmented M3 expression and 7,8-DHF-enhanced/CCh-stimulated contractions, we assumed that 7,8-DHF/TrkB/Akt was associated with the modulation of M3 expression in the colonic strips. ANA-12, a specific TrkB antagonist, not only inhibited TrkB activation by 7,8-DHF but also suppressed 7,8-DHF-enhanced cholinergic contraction, 7,8-DHF/CCh-mediated activation of PLCγ1/Akt, and M3 overexpression in colonic strips. In vivo 7,8-DHF, also by promoting intestinal motility and M3 expression, significantly alleviated loperamide-induced functional constipation in rats. CONCLUSIONS Our results suggest that 7,8-DHF regulates colonic motility possibly via a TrkB/Akt/M3 pathway and may be applicable for alleviating constipation.
Collapse
|
2
|
Ravasi L, Kiesewetter DO, Shimoji K, Lucignani G, Eckelman WC. Why does the agonist [18F]FP-TZTP bind preferentially to the M2 muscarinic receptor? Eur J Nucl Med Mol Imaging 2005; 33:292-300. [PMID: 16333673 DOI: 10.1007/s00259-005-1966-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 09/14/2005] [Indexed: 11/28/2022]
Abstract
PURPOSE Preferential binding of FP-TZTP at the M(2) receptor in vivo led to investigation of [(18)F]FP-TZTP as a potential PET tracer for Alzheimer's disease, in which a substantial reduction of M(2) receptors has been observed in autopsy studies. We hereby investigated in vitro the FP-TZTP behavior to further elucidate the properties of FP-TZTP that lead to its M(2) selectivity. METHODS Chinese hamster ovarian cells expressing the five subtypes of human muscarinic receptor as well as the wild type were harvested in culture to assess equilibrium binding. Specific binding was calculated by subtraction of non-specific binding from total binding. Internal specific binding was calculated by subtraction of external specific binding from the total specific binding. Saturation assays were also performed to calculate B(max), K(i), and IC(50). In addition, equilibrium binding and dissociation kinetic studies were performed on rat brain tissue. Selected regions of interest were drawn on the digital autoradiograms and [(18)F]FP-TZTP off-rates were determined by measurement of the rate of release into a buffer solution of [(18)F]FP-TZTP from slide-bound cells that had been preincubated with [(18)F]FP-TZTP. RESULTS At equilibrium in vitro, M(2) subtype selectivity of [(18)F]FP-TZTP was not evident. We demonstrated that ATP-dependent mechanisms are not responsible for FP-TZTP M(2) selectivity. In vitro off-rate studies from rat brain tissue showed that the off-rate of FP-TZTP varied with the percentage of M(2) subtype in the tissue region. CONCLUSION The slower dissociation kinetics of FP-TZTP from M(2) receptors compared with the four other muscarinic receptor subtypes may be a factor in its M(2) selectivity.
Collapse
Affiliation(s)
- L Ravasi
- PET Radiochemistry Group, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
3
|
Jagoda EM, Kiesewetter DO, Shimoji K, Ravasi L, Yamada M, Gomeza J, Wess J, Eckelman WC. Regional brain uptake of the muscarinic ligand, [18F]FP-TZTP, is greatly decreased in M2 receptor knockout mice but not in M1, M3 and M4 receptor knockout mice. Neuropharmacology 2003; 44:653-61. [PMID: 12668051 DOI: 10.1016/s0028-3908(03)00050-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A muscarinic receptor radioligand, 3-(3-(3-fluoropropyl)thio) -1,2,5,thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine (fP-TZTP) radiolabeled with the positron emitting radionuclide (18)F ([(18)F]FP-TZTP) displayed regional brain distribution consistent with M2 receptor densities in rat brain. The purpose of the present study is to further elucidate the subtype selectivity of [(18)F]FP-TZTP using genetically engineered mice which lacked functional M1, M2, M3, or M4 muscarinic receptors. Using ex vivo autoradiography, the regional brain localization of [(18)F]FP-TZTP in M2 knockout (M2 KO) was significantly decreased (51.3 to 61.4%; P<0.01) when compared to the wild-type (WT) mice in amygdala, brain stem, caudate putamen, cerebellum, cortex, hippocampus, hypothalamus, superior colliculus, and thalamus. In similar studies with M1KO, M3KO and M4KO compared to their WT mice, [(18)F]FP-TZTP uptakes in the same brain regions were not significantly decreased at P<0.01. However, in amygdala and hippocampus small decreases of 19.5% and 22.7%, respectively, were observed for M1KO vs WT mice at P<0.05. Given the fact that large decreases in [(18)F]FP-TZTP brain uptakes were seen only in M2 KO vs. WT mice, we conclude that [(18)F]FP-TZTP preferentially labels M2 receptors in vivo.
Collapse
Affiliation(s)
- E M Jagoda
- PET Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Cohen VI, Jin B, McRee RC, Boulay SF, Cohen EI, Sood VK, Zeeberg BR, Reba RC. In vitro and in vivo m2 muscarinic subtype selectivity of some dibenzodiazepinones and pyridobenzodiazepinones. Brain Res 2000; 861:305-15. [PMID: 10760492 DOI: 10.1016/s0006-8993(00)02020-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) involves selective loss of muscarinic m2, but not m1, subtype receptors in cortical and hippocampal regions of the human brain. Emission tomographic study of the loss of m2 receptors in AD has been limited by the absence of available m2-selective radioligands, which can penetrate the blood-brain barrier. We now report on the in vitro and in vivo m2 muscarinic subtype selectivity of a series of dibenzodiazepinones and pyridobenzodiazepinones determined by competition studies against (R)-3-quinuclidinyl (S)-4-iodobenzilate ((R,S)-[125I]IQNB) or [3H]QNB. Of the compounds examined, three of the 5-[[4-[(4-dialkylamino)butyl]-1-piperidinyl]acetyl]-10, 11-dihydro-5-H-dibenzo[b,e][1,4]diazepin-11-ones (including DIBA) and three of the 11-[[4-[4-(dialkylamino)butyl]-1-phenyl]acetyl]-5, 11-dihydro-6H-pyrido [2,3-b][1,4]benzodiazepin-6-ones (including PBID) exhibited both high binding affinity for the m2 subtype (</=5 nM) and high m2/m1 selectivity (>/=10). In vivo rat brain dissection studies of the competition of PBID or DIBD against (R,S)[125I]IQNB or [3H]QNB exhibited a dose-dependent preferential decrease in the binding of the radiotracer in brain regions that are enriched in the m2 muscarinic subtype. In vivo rat brain autoradiographic studies of the competition of PBID, BIBN 99, or DIBD against (R,S)[125I]IQNB exhibited an insignificant effect of BIBN 99 and confirmed the effect of PBID and DIBD in decreasing the binding of (R,S)[125I]IQNB in brain regions that are enriched in the m2 muscarinic subtype. We conclude that PBID and DIBD are potentially useful parent compounds from which in vivo m2 selective derivatives may be prepared for potential use in positron emission tomographic (PET) study of the loss of m2 receptors in AD.
Collapse
Affiliation(s)
- V I Cohen
- Section of Radiopharmaceutical Chemistry, George Washington University Medical Center, Walter G. Ross Hall, 2300 Eye St., N.W., Washington, DC 20037, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
McPherson DW, Greenbaum M, Luo H, Beets AL, Knapp FF. Evaluation of Z-(R,R)-IQNP for the potential imaging of m2 mAChR rich regions of the brain and heart. Life Sci 2000; 66:885-96. [PMID: 10714889 DOI: 10.1016/s0024-3205(99)00672-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alterations in the function or density of the m2 muscarinic (mAChR) subtype have been postulated to play an important role in various dementias such as Alzheimer's disease. The ability to image and quantify the m2 mAChR subtype is of importance for a better understanding of the m2 subtype function in various dementias. Z-(R)-1-Azabicyclo[2.2.2]oct-3-y (R)-alpha-hydroxy-alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (Z-(R,R)-IQNP) has demonstrated significant uptake in cerebral regions that contain a high concentration of m2 mAChR subtype in addition to heart tissue. The present study was undertaken to determine if the uptake of Z-(R,R)-IQNP in these regions is a receptor mediated process and to identify the radiospecies responsible for binding at the receptor site. A blocking study demonstrated cerebral and cardiac levels of activity were significantly reduced by pretreatment (2-3 mg/kg) of (R)-3-quinuclidinyl benzilate, dexetimide and scopolamine, established muscarinic antagonists. A direct comparison of the cerebral and cardiac uptake of [I-125]-Z-(R,R)-IQNP and [I-131]-E-(R,R)-IQNP (high uptake in ml, m4 rich mAChR cerebral regions) demonstrated Z-(R,R)-IQNP localized to a higher degree in cerebral and cardiac regions containing a high concentration of the m2 mAChR subtype as directly compared to E-(R,R)-IQNP. In addition, a study utilizing [I-123]-Z-(R,R)-IQNP, [I-131]-iododexetimide and [I-125]-R-3-quinuclidinyl S-4-iodobenzilate, Z-(R,R)-IQNP demonstrated significantly higher uptake and longer residence time in those regions which contain a high concentration of the m2 receptor subtype. Folch extraction of global brain and heart tissue at various times post injection of [I-125]-Z-(R,R)-IQNP demonstrated that approximately 80% of the activity was extracted in the lipid soluble fraction and identified as the parent ligand by TLC and HPLC analysis. These results demonstrate Z-(R,R)-IQNP has significant uptake, long residence time and high stability in cerebral and cardiac tissues containing high levels of the m2 mAChR subtype. These combined results strongly suggest that Z-(R,R)-IQNP is an attractive ligand for the in vivo imaging and evaluation of m2 rich cerebral and cardiac regions by SPECT.
Collapse
Affiliation(s)
- D W McPherson
- Nuclear Medicine Group, Life Sciences Division, Oak Ridge National Laboratory, TN 37831-6229, USA.
| | | | | | | | | |
Collapse
|
6
|
Visser TJ, Van Waarde A, Doze P, Wegman T, Vaalburg W. Preclinical testing of N-[(11)c]-methyl-piperidin-4-yl 2-cyclohexyl-2-hydroxy-2-phenylacetate, a novel radioligand for detection of cerebral muscarinic receptors using PET. Synapse 2000; 35:62-7. [PMID: 10579809 DOI: 10.1002/(sici)1098-2396(200001)35:1<62::aid-syn8>3.0.co;2-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The muscarinic antagonist N-[(11)C]methyl-piperidin-4-yl 2-cyclohexyl-2-hydroxy-2-phenylacetate (VC-004) 1 was tested for visualization of muscarinic receptors in the brain. The active (R)-isomer (pKb = 10.92) was labeled by reacting [(11)C]-CH(3)I with the secondary amine precursor (40-60% decay-corrected radiochemical yield, specific activity 13.0-34.3 TBq/mmol, 45 min after end of bombardment). Biodistribution studies were performed in male Wistar rats. Brain uptake of (R)-[(11)C]-VC-004 was high, standard uptake values (SUVs) ranging from 1.6 in cerebellum to 3.3 in frontal cortex. In all brain regions, the nonsubtype selective muscarinic antagonist scopolamine (2.5 mg/kg) blocked (R)-[(11)C]-VC-004 binding to the same extent (84.6 +/- 3.3%) as nonlabeled (R)-VC-004 (2.0 mg/kg, 83.2 +/- 4.6%). In contrast, the fraction of [(11)C]VC-004 binding which was blocked by atropine (2.5 mg/kg) was significantly smaller (54 +/- 17%). The reduction of (R)-[(11)C]-VC-004 binding by low-dose atropine (0.5 mg/kg) was not significantly different from that caused by (R)-(-)-QNB (20 microg/kg). The decrease in specific binding of (R)-[(11)C]VC-004 after (R)-(-)-QNB block correlated well with literature values for the percentages of M(2) receptors in the brain regions studied. (R)-[(11)C]VC-004 was rapidly cleared from plasma (92% with a half-life of 0.27 min) and the fraction of total plasma radioactivity representing parent compound decreased from 99% to 42% at 10 min postinjection. Although (R)-[(11)C]VC-004 can visualize muscarinic receptors in the brain, it does not show selectivity for the M(2)-subtype. A low dose (0.5 mg/kg) of atropine seems to preferentially block M(2)-receptors in vivo, as has been reported for (R)-(-)-QNB.
Collapse
Affiliation(s)
- T J Visser
- Positron Emission Tomography (PET) Center, Groningen University Hospital, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
7
|
Zeeberg BR. Pharmacokinetic computer simulations of the relationship between in vivo and in vitro neuroreceptor subtype selectivity of radioligands. Nucl Med Biol 1999; 26:803-9. [PMID: 10628560 DOI: 10.1016/s0969-8051(99)00061-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pharmacokinetic computer simulations reveal a discrepancy between the in vivo and in vitro neuroreceptor subtype selectivity of radioligands. For radioligands with an in vitro neuroreceptor subtype selectivity between 0.1 and 10.0, the in vivo neuroreceptor subtype selectivity appears to be constrained to be between 0.1 and 10.0, but, in general, is not equal to the in vitro selectivity. For example, if the in vitro selectivity is 1.0 (that is, the radioligand is nonselective in vitro) the in vivo selectivity may be thought of as a random variable having a significant nonzero probability for values as low as 0.1 or as high as 10.0, with a moderate peak at a value of 1.0. For a radioligand whose in vitro subtype selectivity is greater than 10.0, the in vivo selectivity is bounded above by the in vitro subtype selectivity, but may be several orders of magnitude lower than the in vitro subtype selectivity. Thus, in spite of the discrepancy between the in vivo and in vitro neuroreceptor subtype selectivity of radioligands, there are two useful inferences about the in vivo selectivity that might be drawn from knowledge of the in vitro selectivity: (1) If the in vitro selectivity is between 0.1 and 10.0, then, at best, the in vivo selectivity might be as high as 10.0. (2) If the in vitro selectivity is greater than 10.0, then, at best, the in vivo selectivity might be as high as the in vitro selectivity.
Collapse
Affiliation(s)
- B R Zeeberg
- Department of Radiology, George Washington University Medical Center, Washington, DC, USA.
| |
Collapse
|
8
|
Strijckmans V, Luo H, Coulon C, McPherson DW, Loc'h C, Knapp FF, Mazière B. Z-(-,-)-[76Br]BrQNP: A high affinity PET radiotracer for central and cardiac muscarinic receptors. J Labelled Comp Radiopharm 1998. [DOI: 10.1002/(sici)1099-1344(199610)38:10<883::aid-jlcr902>3.0.co;2-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Kiesewetter DO, Carson RE, Jagoda EM, Endres CJ, Der MG, Herscovitch P, Eckelman WC. In vivo muscarinic binding selectivity of (R,S)- and (R,R)-[18F]-fluoromethyl QNB. Bioorg Med Chem 1997; 5:1555-67. [PMID: 9313861 DOI: 10.1016/s0968-0896(97)00100-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have developed a multistep radiochemical synthesis of two diastereomers of quinuclidinyl-4-[18F]-fluoromethyl-benzilate ([18F]-FMeQNB), a high-affinity ligand for muscarinic acetylcholine receptors. Previously, we have shown that the nonradioactive (R,R)-diastereomer displays an eightfold selectivity for M1 over M2 while the nonradioactive (R,S)-diastereomer displays a sevenfold selectivity for M2 over M1 in vitro. This paper reports the results of in vivo comparison studies. In the rat, uptake of (R,S)-[18F]-FMeQNB was nearly uniform in all brain regions following the concentration of M2 subtype. The uptake was reduced by 36-54% in all brain regions on coinjection with 50 nmol of unlabeled ligand. An injection of (R,S)-[18F]-FMeQNB followed at 60 min by injection of unlabeled ligand and subsequent sacrifice at 120 min displaced 30-50% of radioactivity in the pons, medulla, and cerebellum, which contain a high proportion of M2 subtype. The most dramatic displacement and inhibition of uptake on coinjection of (R,S)-[18F]-FMeQNB was observed in the heart. In rhesus monkey, the compound showed prolonged uptake and retention in the brain. In the blood, the parent compound degraded rapidly to a single radiolabeled polar metabolite believed to be fluoride. Within 30 min the parent compound represented less than 5% of the plasma activity. Displacement with (R)-QNB was generally slow, but was more rapid from those tissues which contain a higher proportion of M2 subtype. The results are consistent with the hypothesis that (R,S)-[18F]-FMeQNB is M2 selective in vivo. On the other hand, (R,R)-[18F]-FMeQNB showed higher uptake in those brain regions containing a higher concentration of M1 subtype. Uptake in the heart at 60 min was much lower than that observed with the (R,S)-diastereomer. Inhibition of uptake on coinjection with unlabeled (R,S)-FMeQNB is only significant in the heart, thalamus, and pons. Inhibition of uptake on coinjection with unlabeled (R,R)-FMeQNB is quite uniform in all brain regions. Displacement with (R)-QNB shows a more varying amount displaced. These results are consistent with (R,R)-[18F]-FMeQNB being M1 selective in vivo.
Collapse
Affiliation(s)
- D O Kiesewetter
- National Institutes of Health, Positron Emission Tomography Department, Warren G. Magnusen Clinical Center, Bethesda, MD 20892-1180, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Strijckmans V, Bottlaender M, Luo H, Ottaviani M, McPherson DW, Loc'h C, Fuseau C, Knapp FF, Mazière B. Positron emission tomographic investigations of central muscarinic cholinergic receptors with three isomers of [76Br]BrQNP. EUROPEAN JOURNAL OF NUCLEAR MEDICINE 1997; 24:475-82. [PMID: 9142726 DOI: 10.1007/bf01267677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We studied the potential of three radiobrominated isomers of BrQNP, (Z(-,-)-[76Br]BrQNP, E(-,-)-[76Br]BrQNP and E(-,+)-[76Br]BrQNP), as suitable radioligands for imaging of central muscarinic cholinergic receptors in the human brain. These radioligands were stereospecifically prepared by electrophilic radiobromodestannylation of the respective tributylstannyl precursors using no-carrier-added [76Br]BrNH4 and peracetic acid. Preliminary pharmacological characterizations were determined by biodistribution, autoradiography, competition, displacement and metabolite studies in rats. The (-,-)-configuration presented important specific uptakes in brain muscarinic cholinergic receptor (mAChR)-rich structures and in heart, low metabolization rates and an apparent M2 selectivity. The (-,+)-configuration revealed more rapid clearance, lower uptake, a higher metabolization rate and an apparent M1 selectivity. Reversibility of the binding was confirmed for the three radiotracers. Positron emission tomography in the living baboon brain revealed high and rapid uptake in the brain and accumulation in the mAChR-rich structures studied. At 30 min p.i., the E(-,-)-radiotracer reached a plateau in cortex, pons and thalamus with concentrations of 29%, 24% and 19% ID/l, respectively. Z(-,-)-[76Br]BrQNP also accumulated in these structures, reaching a maximal uptake (27% ID/l) in the cortex 2 h p.i. At 5 min p.i. a plateau (17% ID/l) was only observed in the cortex for the E(-, +)-[76Br]BrQNP; by contrast, the other structures showed slow washout. After 3 weeks, the (-,-)-radiotracers were studied in the same baboon pretreated with dexetimide (1 mg/kg), a well-known muscarinic antagonist. In all the mAChR structures, the highly reduced uptake observed after this preloading step indicates that these radiotracers specifically bind to muscarinic receptors. Z(-, -)-[76Br]BrQNP, which is displaced in higher amounts from M2 mAChR-enriched structures, reveals an M2 affinity. The two isomers having the (-,-)-configuration are potential probes for investigating central muscarinic receptors. The absolute configuration on the acetate chiral centre influences their muscarinic subtype selectivity and the cis-trans isomerism of the vinyl moiety affects their specific fixation.
Collapse
Affiliation(s)
- V Strijckmans
- Service Hospitalier Frédéric Joliot, CEA, DRM, F-91406 Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zeeberg BR, Boulay SF, Gitler MS, Sood VK, Reba RC. Correction of the stereochemical assignment of the benzilic acid center in (R)-(-)-3-quinuclidinyl (S)-(+)-4-iodobenzilate [(R,S)-4-IQNB]. Appl Radiat Isot 1997; 48:463-7. [PMID: 9106987 DOI: 10.1016/s0969-8043(96)00290-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Radioiodinated (R)-quinuclidinyl-4-iodobenzilate (4IQNB) is a high affinity muscarinic antagonist which has been utilized for in vitro and in vivo assays, and for SPECT imaging in humans. 4IQNB exists in four different diastereomeric forms, since there are two asymmetric centers at the quinuclidinyl and benzilic acid centers. Based upon our in vivo studies, we have determined that the absolute stereochemistry previously assigned to the benzilic center was incorrect for the diastereomer that had been previously referred to as '(R)-quinuclidinyl-(R)-4-iodobenzilate' [(R,R)-4IQNB]. The correct designation for this diastereomer is '(R)-quinuclidinyl-(S)-4-iodobenzilate' [(R,S)-4IQNB].
Collapse
Affiliation(s)
- B R Zeeberg
- Department of Radiology, George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | | | |
Collapse
|
12
|
Sood VK, Lee KS, Boulay SF, Rayeq MR, McRee RC, Cohen EI, Zeeberg BR, He XS, Weinberger DR, Rice K, Reba RC. In vivo autoradiography of radioiodinated (R)-3-quinuclidinyl (S)-4-iodobenzilate [(R, S)-IQNB] and (R)-3-quinuclidinyl (R)-4-iodobenzilate [(R,R)-IQNB]. Comparison of the radiolabelled products of a novel tributylstannyl precursor with those of the established triazene and exchange methods. Appl Radiat Isot 1997; 48:27-35. [PMID: 9022211 DOI: 10.1016/s0969-8043(96)00125-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Radioiodinated (R,S)-IQNB and (R,R)-IQNB are prepared either from a triazene precursor or using an exchange reaction. In both cases the radiochemical yield is low. The product of the exchange reaction also suffers from having a fairly low specific activity. A new method for preparing radioiodinated (R,S)-IQNB and (R,R)-IQNB from a tributylstannyl precursor has recently been developed. This method is more convenient and much faster than the triazene and exchange methods, and it reliably results in a high radiochemical yield of a high specific activity product. In rat brain, the in vivo properties of the radioiodinated products of the tributylstannyl method are identical to those of the corresponding radioiodinated (R,S)-IQNB and (R,R)-IQNB prepared using the triazene and exchange methods. Dissection studies of selected brain regions show that at 3 h post injection (R,S)-[125I]IQNB prepared by all three methods have indistinguishable % dose g-1 values in all brain regions studied. Autoradiographic comparison of coronal slices through the anteroventral nucleus of the thalamus, through the hippocampus and through the pons at 2 h post injection shows that (R,S)-[125I]IQNB prepared by the triazene and tributylstannyl methods have indistinguishable patterns of binding.
Collapse
Affiliation(s)
- V K Sood
- Department of Radiology, George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
McPherson DW, Knapp FF. Structure Elucidation Via Stereoselective Synthesis of the Acetate Center of 1-Azabicyclo[2.2.2]oct-3-yl alpha-Hydroxy- alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (IQNP). A High Affinity Muscarinic Imaging Agent for SPECT. J Org Chem 1996; 61:8335-8337. [PMID: 11667831 DOI: 10.1021/jo961033t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel W. McPherson
- Nuclear Medicine Group, Health Sciences Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6229
| | | |
Collapse
|
14
|
Boulay SF, Sood VK, Rayeq MR, Zeeberg BR, Eckelman WC. Autoradiographic evidence that (R)-3-quinuclidinyl (S)-4-fluoromethylbenzilate ((R,S)-FMeQNB) displays in vivo selectivity for the muscarinic m2 subtype. Nucl Med Biol 1996; 23:889-96. [PMID: 8971856 DOI: 10.1016/s0969-8051(96)00121-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) involves selective loss of muscarinic m2, but not m1, subtype neuroreceptors in cortical and hippocampal regions of the human brain. Until recently, emission tomographic study of the loss of m2 receptors in AD has been limited by the absence of available m2-selective radioligands that can penetrate the blood-brain barrier. We now demonstrate the in vivo m2 selectivity of a fluorinated derivative of QNB, (R)-3-quinuclidinyl (S)-4-fluoromethylbenzilate ((R,S)-FMeQNB), by studying autoradiographically the in vivo inhibition of radioiodinated (R)-3-quinuclidinyl (S)-4-iodobenzilate ((R,S)-[125I]IQNB) binding by unlabelled (R,S)-FMeQNB. In the absence of (R,S)-FMeQNB, (R,S)-[125I]IQNB labels brain regions in proportion to the total muscarinic receptor concentration; in the presence of 75 nmol of (R,S)-FMeQNB, (R,S)-[125I]IQNB labelling in those brain regions containing predominantly m2 subtype is reduced to background levels. We conclude that (R,S)-FMeQNB is m2-selective in vivo, and that (R,S)-[18F]FMeQNB may be of potential use in positron emission tomographic (PET) study of the loss of m2 receptors in AD.
Collapse
Affiliation(s)
- S F Boulay
- Department of Radiology, George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | | | |
Collapse
|
15
|
Boulay SF, McRee RC, Cohen VI, Sood VK, Zeeberg BR, Reba RC. Specific binding component of the "inactive" stereoisomer (S,S)-[125I] IQNB to rat brain muscarinic receptors in vivo. Nucl Med Biol 1996; 23:211-9. [PMID: 8782228 DOI: 10.1016/0969-8051(95)02047-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In vivo nonspecific binding can be estimated using the inactive stereoisomer of a receptor radioligand. However, the binding of the inactive stereoisomer may be partially specific. Specific binding of the inactive (S,S)-[125I]IQNB was estimated from the inhibition induced by a competing nonradioactive ligand. This technique differed from the usual approach, since it was used to study the inactive rather than the active stereoisomer. The results indicate that there is substantial specific binding for (S,S)-[125I]IQNB.
Collapse
Affiliation(s)
- S F Boulay
- Department of Radiology, George Washington University Medical Center, Washington DC 20037, USA
| | | | | | | | | | | |
Collapse
|