1
|
Three-dimensional electron spin resonance imaging of endogenous nitric oxide radicals generated in living plants. BIOPHYSICS REPORTS 2018. [DOI: 10.1007/s41048-018-0051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
2
|
Stamenković S, Pavićević A, Mojović M, Popović-Bijelić A, Selaković V, Andjus P, Bačić G. In vivo EPR pharmacokinetic evaluation of the redox status and the blood brain barrier permeability in the SOD1 G93A ALS rat model. Free Radic Biol Med 2017; 108:258-269. [PMID: 28366802 DOI: 10.1016/j.freeradbiomed.2017.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting the motor pathways of the central nervous system. Although a number of pathophysiological mechanisms have been described in the disease, post mortem and animal model studies indicate blood-brain barrier (BBB) disruption and elevated production of reactive oxygen species as major contributors to disease pathology. In this study, the BBB permeability and the brain tissue redox status of the SOD1G93A ALS rat model in the presymptomatic (preALS) and symptomatic (ALS) stages of the disease were investigated by in vivo EPR spectroscopy using three aminoxyl radicals with different cell membrane and BBB permeabilities, Tempol, 3-carbamoyl proxyl (3CP), and 3-carboxy proxyl (3CxP). Additionally, the redox status of the two brain regions previously implicated in disease pathology, brainstem and hippocampus, was investigated by spectrophotometric biochemical assays. The EPR results indicated that among the three spin probes, 3CP is the most suitable for reporting the intracellular redox status changes, as Tempol was reduced in vivo within minutes (t1/2 =2.0±0.5min), thus preventing reliable kinetic modeling, whereas 3CxP reduction kinetics gave divergent conclusions, most probably due to its membrane impermeability. It was observed that the reduction kinetics of 3CP in vivo, in the head of preALS and ALS SOD1G93A rats was altered compared to the controls. Pharmacokinetic modeling of 3CP reduction in vivo, revealed elevated tissue distribution and tissue reduction rate constants indicating an altered brain tissue redox status, and possibly BBB disruption in these animals. The preALS and ALS brain tissue homogenates also showed increased nitrilation, superoxide production, lipid peroxidation and manganese superoxide dismutase activity, and a decreased copper-zinc superoxide dismutase activity. The present study highlights in vivo EPR spectroscopy as a reliable tool for the investigation of changes in BBB permeability and for the unprecedented in vivo monitoring of the brain tissue redox status, as early markers of ALS.
Collapse
Affiliation(s)
- Stefan Stamenković
- University of Belgrade - Faculty of Biology, Center for Laser Microscopy, Studentski trg 3, 11158 Belgrade, Serbia
| | - Aleksandra Pavićević
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Miloš Mojović
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Ana Popović-Bijelić
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Vesna Selaković
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Pavle Andjus
- University of Belgrade - Faculty of Biology, Center for Laser Microscopy, Studentski trg 3, 11158 Belgrade, Serbia.
| | - Goran Bačić
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
3
|
Caia GL, Efimova OV, Velayutham M, El-Mahdy MA, Abdelghany TM, Kesselring E, Petryakov S, Sun Z, Samouilov A, Zweier JL. Organ specific mapping of in vivo redox state in control and cigarette smoke-exposed mice using EPR/NMR co-imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 216:21-7. [PMID: 22296801 PMCID: PMC4073597 DOI: 10.1016/j.jmr.2011.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 05/31/2023]
Abstract
In vivo mapping of alterations in redox status is important for understanding organ specific pathology and disease. While electron paramagnetic resonance imaging (EPRI) enables spatial mapping of free radicals, it does not provide anatomic visualization of the body. Proton MRI is well suited to provide anatomical visualization. We applied EPR/NMR co-imaging instrumentation to map and monitor the redox state of living mice under normal or oxidative stress conditions induced by secondhand cigarette smoke (SHS) exposure. A hybrid co-imaging instrument, EPRI (1.2 GHz)/proton MRI (16.18 MHz), suitable for whole-body co-imaging of mice was utilized with common magnet and gradients along with dual EPR/NMR resonators that enable co-imaging without sample movement. The metabolism of the nitroxide probe, 3-carbamoyl-proxyl (3-CP), was used to map the redox state of control and SHS-exposed mice. Co-imaging allowed precise 3D mapping of radical distribution and reduction in major organs such as the heart, lungs, liver, bladder and kidneys. Reductive metabolism was markedly decreased in SHS-exposed mice and EPR/NMR co-imaging allowed quantitative assessment of this throughout the body. Thus, in vivo EPR/NMR co-imaging enables in vivo organ specific mapping of free radical metabolism and redox stress and the alterations that occur in the pathogenesis of disease.
Collapse
Affiliation(s)
- George L. Caia
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Olga V. Efimova
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Murugesan Velayutham
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Mohamed A. El-Mahdy
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Tamer M. Abdelghany
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Eric Kesselring
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Sergey Petryakov
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Ziqi Sun
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Alexandre Samouilov
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Jay L. Zweier
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| |
Collapse
|
4
|
Matsumoto KI, Narazaki M, Ikehira H, Anzai K, Ikota N. Comparisons of EPR imaging and T1-weighted MRI for efficient imaging of nitroxyl contrast agents. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 187:155-62. [PMID: 17433743 DOI: 10.1016/j.jmr.2007.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 01/12/2007] [Accepted: 03/03/2007] [Indexed: 05/14/2023]
Abstract
The resolution and signal to noise ratio of EPR imaging and T(1)-weighted MRI were compared using an identical phantom. Several solutions of nitroxyl contrast agents with different EPR spectral shapes were tested. The feasibility of T(1)-weighted MRI to detect nitroxyl contrast agents was described. T(1)-weighted MRI can detect nitroxyl contrast agents with a complicated EPR spectrum easier and quicker; however, T(1)-weighted MRI has less quantitative ability especially for lipophilic nitroxyl contrast agents, because T(1)-relaxivity, i.e. accessibility to water, is affected by the hydrophilic/hydrophobic micro-environment of a nitroxyl contrast agent. The less quantitative ability of T(1)-weighted MRI may not be a disadvantage of redox imaging, which obtains reduction rate of a nitroxyl contrast. Therefore, T(1)-weighted MRI has a great advantage to check the pharmacokinetics of newly modified and/or designed nitroxyl contrast agents.
Collapse
Affiliation(s)
- Ken-ichiro Matsumoto
- Radiation Modifier Research Team, Heavy-Ion Radiobiology Research Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan.
| | | | | | | | | |
Collapse
|
5
|
Ohnishi T, Johnson JE, Yano T, Lobrutto R, Widger WR. Thermodynamic and EPR studies of slowly relaxing ubisemiquinone species in the isolated bovine heart complex I. FEBS Lett 2004; 579:500-6. [PMID: 15642366 DOI: 10.1016/j.febslet.2004.11.107] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 11/12/2004] [Accepted: 11/21/2004] [Indexed: 11/21/2022]
Abstract
Previously, we investigated ubisemiquinone (SQ) EPR spectra associated with NADH-ubiquinone oxidoreductase (complex I) in the tightly coupled bovine heart submitochondrial particles (SMP). Based upon their widely differing spin relaxation rate, we distinguished SQ spectra arising from three distinct SQ species, namely SQ(Nf) (fast), SQ(Ns) (slow), and SQ(Nx) (very slow). The SQ(Nf) signal was observed only in the presence of the proton electrochemical gradient (deltamu(H)(+)), while SQ(Ns) and SQ(Nx) species did not require the presence of deltamu(H+). We have now succeeded in characterizing the redox and EPR properties of SQ species in the isolated bovine heart complex I. The potentiometric redox titration of the g(z,y,x)=2.00 semiquinone signal gave the redox midpoint potential (E(m)) at pH 7.8 for the first electron transfer step [E(m1)(Q/SQ)] of -45 mV and the second step [E(m2)(SQ/QH(2))] of -63 mV. It can also be expressed as [E(m)(Q/QH(2))] of -54 mV for the overall two electron transfer with a stability constant (K(stab)) of the SQ form as 2.0. These characteristics revealed the existence of a thermodynamically stable intermediate redox state, which allows this protein-associated quinone to function as a converter between n=1 and n=2 electron transfer steps. The EPR spectrum of the SQ species in complex I exhibits a Gaussian-type spectrum with the peak-to-peak line width of approximately 6.1 G at the sample temperature of 173 K. This indicates that the SQ species is in an anionic Q(-) state in the physiological pH range. The spin relaxation rate of the SQ species in isolated complex I is much slower than the SQ counterparts in the complex I in situ in SMP. We tentatively assigned slow relaxing anionic SQ species as SQ(Ns), based on the monophasic power saturation profile and several fold increase of its spin relaxation rate in the presence of reduced cluster N2. The current study also suggests that the very slowly relaxing SQ(Nx) species may not be an intrinsic complex I component. The functional role of SQ(Ns) is further discussed in connection with the SQ(Nf) species defined in SMP in situ.
Collapse
Affiliation(s)
- Tomoko Ohnishi
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | | | | | | | | |
Collapse
|
6
|
Velayutham M, Li H, Kuppusamy P, Zweier JL. Mapping ischemic risk region and necrosis in the isolated heart using EPR imaging. Magn Reson Med 2003; 49:1181-7. [PMID: 12768597 DOI: 10.1002/mrm.10473] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reperfusion of ischemic tissue is a common event in the treatment of heart attack and stroke. To study disease pathogenesis, methods are required to measure tissue perfusion and area at risk, as well as localized regions of injury. While histology can provide this information, its destructive nature precludes assessment of time course. Thus, there is a critical need for a noninvasive technique to obtain this information. To map myocardial redox state as a possible index of cellular ischemia and viability, electron paramagnetic resonance (EPR) imaging experiments were performed on isolated rat hearts before and after the onset of regional ischemia using nitroxide spin labels. With coronary artery occlusion, the EPR images clearly showed the risk region as a void of lower intensity that reversed upon reperfusion. The extent of risk region in the heart was similar in EPR imaging and histological measurements. The unique information obtained regarding the time course of changes in redox metabolism of the risk region and normal myocardium can provide important insights regarding the mechanisms of myocardial injury during and following ischemia.
Collapse
|
7
|
Togashi H, Shinzawa H, Matsuo T, Takeda Y, Takahashi T, Aoyama M, Oikawa K, Kamada H. Analysis of hepatic oxidative stress status by electron spin resonance spectroscopy and imaging. Free Radic Biol Med 2000; 28:846-53. [PMID: 10802214 DOI: 10.1016/s0891-5849(99)00280-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Real-time detection of free radicals generated within the body may contribute to clarify the pathophysiological role of free radicals in disease processes. Of the techniques available for studying the generation of free radicals in biological systems, electron spin resonance (ESR) has emerged as a powerful tool for detection and identification. This article begins with a review of spin trapping detection of oxygen-centered radicals using X-band ESR spectroscopy and then describes the detection of superoxide and hydroxyl radicals by the spin trap 5,5-dimethyl-1-pyrroline-N-oxide and ESR spectroscopy in the perfusate from isolated perfused rat livers subjected to ischemia/reperfusion. This article also reviews the current status of ESR for the in vivo detection of free radicals and in vivo imaging of exogenously administered free radicals. Moreover, we show that in vivo ESR-computed tomography with 3-carbamoyl-2,2,5, 5-tetramethylpyrrolidine-1-oxyl may be useful for noninvasive anatomical imaging and also for imaging of hepatic oxidative stress in vivo.
Collapse
Affiliation(s)
- H Togashi
- The Second Department of Internal Medicine, Yamagata University School of Medicine, Iida-Nishi, Yamagata, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Nishino N, Yasui H, Sakurai H. In vivo L-band ESR and quantitative pharmacokinetic analysis of stable spin probes in rats and mice. Free Radic Res 1999; 31:35-51. [PMID: 10489118 DOI: 10.1080/10715769900300581] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Free radical species in animals have been measured by X-band ESR spectrometric method on a block of organs or a portion of homogenized samples. However, a nondestructive in vivo ESR measurement has been realized by using a recently developed L-band ESR spectrometry. With this L-band ESR method, we measured ESR spectra in animals, who received stable nitroxide radicals. L-band ESR spectra were observed at the upper abdomen of mice as well as at the heads of mice and rats at various ages immediately after the intravenous injections of nitroxide radicals such as 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4-hydroxy-TEMPO) and 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3-carbamoyl-PROXYL), in which ESR measurements of the radicals were performed noninvasively at the real time. On the basis of the observed time-dependent free radical clearance curves, the following important results were obtained: (1) Free radical clearances were able to analyze by the pharmacokinetic method. (2) The radicals at the head of mice, given 4-hydroxy-TEMPO, were determined quantitatively by a new analytical method using L-band ESR for the first time. (3) The elimination of the radical was found to be saturated in mice. (4) The clearance rate constant of 4-hydroxy-TEMPO detected at the head of mice was decreased in dose- and age-dependent manners. While, no age-dependent clearance rate constant of 4-hydroxy-TEMPO was observed at the upper abdomen of mice. (5) Ratios of the amount of the detected radicals to that of the administered radicals were decreased age-dependently, but they were independent of the dose of the radicals, suggesting the age-dependent decrease of distribution capacity ratio of the radical at the head of animals. (6) Clearance rate constants of 4-hydroxy-TEMPO and 3-carbamoyl-PROXYL, that were estimated by X- and L-band ESR for the collected blood of mice and rats, were found to be remarkably smaller than those in whole living animals observed by in vivo L-band ESR method. The results suggest that the clearance of the nitroxide radical is relevant to the alteration of the radical in animals following the change of organ distribution and metabolism. (7) Both the radical and its corresponding hydroxylamine, which is the reduced form of the radical, were detectable by X-band ESR method in the collected urine of mice and rats without and with an oxidizing agent, respectively. On the basis of the results on L-band ESR spectrometry, the first quantitative pharmacokinetic analysis of stable spin probes in animals is proposed.
Collapse
Affiliation(s)
- N Nishino
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Japan
| | | | | |
Collapse
|
9
|
Togashi H, Shinzawa H, Ogata T, Matsuo T, Ohno S, Saito K, Yamada N, Yokoyama H, Noda H, Oikawa K, Kamada H, Takahashi T. Spatiotemporal measurement of free radical elimination in the abdomen using an in vivo ESR-CT imaging system. Free Radic Biol Med 1998; 25:1-8. [PMID: 9655515 DOI: 10.1016/s0891-5849(97)00385-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electron spin resonance (ESR) imaging can visualize the distribution of free radicals in living systems according to their concentrations. However, the application of ESR imaging to living animals has not been well established. Using a rapid field scan L-band ESR imaging system, we have successfully obtained two-dimensional ESR projection (xz-plane projection) and three-dimensional ESR-CT (trans-axial section along the y-axis) images of the abdomen of living mice after an injection of 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (carbamoyl-PROXYL) into the tail vein. The in vivo two-dimensional ESR projection imaging clearly visualized the carbamoyl-PROXYL distribution and the rapid decay process in the abdomen. Because among the viscera, the liver is most abundantly associated with a blood volume, the outline of the image can be composed mainly of this organ. We therefore attempted to find whether there will be a difference in spatiotemporal dynamics of carbamoyl-PROXYL in the abdomens between the control and the mice with liver damage by two-dimensional ESR projection. In the control mice, carbamoyl-PROXYL was almost completely eliminated from the abdomen within 5 minutes after administration. On the other hand, in mice with carbon tetrachloride-damaged livers, the decay of carbamoyl-PROXYL was markedly prolonged. Even at 5 min after administration, carbamoyl-PROXYL remained clearly visible in the abdomen. In vivo three-dimensional ESR-CT imaging showed an even distribution of carbamoyl-PROXYL throughout the whole liver, which corresponded well with the images of trans-axial sections of the murine abdomen. We have succeeded in displaying two-dimensional ESR projection and three-dimensional ESR-CT images of carbamoyl-PROXYL distribution and clearance in the abdomen of a living animal. The ESR-CT imaging technique is considered to be a powerful new tool for noninvasive investigations of the in vivo spatiotemporal dynamics of free radical distribution and elimination in the organs.
Collapse
Affiliation(s)
- H Togashi
- The Second Department of Internal Medicine, Yamagata University School of Medicine, Iida-Nishi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Quaresima V, Ferrari M. Current status of electron spin resonance (ESR) for in vivo detection of free radicals. Phys Med Biol 1998; 43:1937-47. [PMID: 9703057 DOI: 10.1088/0031-9155/43/7/015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Much outstanding progress concerning the application of ESR spectroscopy/imaging in the biomedical field has been made in recent years. The literature in this field has already been specifically covered by several reviews. The aim of this article is to provide an overview of the most important findings, obtained in the last four years, in the detection and localization of different exogenous free radicals, as well as of endogenous free radicals in diverse experimental animal models.
Collapse
Affiliation(s)
- V Quaresima
- Dipartimento di Scienze e Tecnologie Biomediche, Università di L'Aquila, Italy.
| | | |
Collapse
|
11
|
|