1
|
Lippner DS, Xu J, Ma S, Reisert J, Zhao H. Phosphodiesterase 5A regulates the vomeronasal pump in mice. Genesis 2024; 62:e23603. [PMID: 38738564 PMCID: PMC11338583 DOI: 10.1002/dvg.23603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
The vomeronasal organ (VNO) is a specialized chemoreceptive structure in many vertebrates that detects chemical stimuli, mostly pheromones, which often elicit innate behaviors such as mating and aggression. Previous studies in rodents have demonstrated that chemical stimuli are actively transported to the VNO via a blood vessel-based pumping mechanism, and this pumping mechanism is necessary for vomeronasal stimulation in behaving animals. However, the molecular mechanisms that regulate the vomeronasal pump remain mostly unknown. In this study, we observed a high level of expression of phosphodiesterase 5A (PDE5A) in the vomeronasal blood vessel of mice. We provided evidence to support the potential role of PDE5A in vomeronasal pump regulation. Local application of PDE5A inhibitors-sildenafil or tadalafil-to the vomeronasal organ (VNO) reduced stimulus delivery into the VNO, decreased the pheromone-induced activity of vomeronasal sensory neurons, and attenuated male-male aggressive behaviors. PDE5A is well known to play a role in regulating blood vessel tone in several organs. Our study advances our understanding of the molecular regulation of the vomeronasal pump.
Collapse
Affiliation(s)
- Dennean S. Lippner
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Jiang Xu
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104
| | - Siqi Ma
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Johannes Reisert
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104
| | - Haiqing Zhao
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Iwanaga T, Nio-Kobayashi J. Unique blood vasculature and innervation in the cavernous tissue of murine vomeronasal organs. Biomed Res 2021; 41:243-251. [PMID: 33071260 DOI: 10.2220/biomedres.41.243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The vomeronasal organ (VNO) is an accessory olfactory device related to reproductive behavior. The soft tissue of the tubular organ is composed of sensory/non-sensory epithelia and a highly developed vasculature, which in the latter the dilation and contraction of blood vessels are thought to contribute to pumping in and out luminal fluid or air, like penile erectile tissue. The present histological observation of the murine VNO revealed a more complicated vasculature than previously evaluated ones with large differences along the rostro-caudal axis. An immunohistochemical study for vasoactive substances displayed extremely dense innervation by cholinergic nerves containing nitric oxide synthase and VIP/PHI in the thick smooth muscle layer surrounding venous sinuses at light and electron microscopic levels. Furthermore, the differential distribution of cholinergic nerves and adrenergic nerves may provide a novel insight into the pumping mechanism of VNO.
Collapse
Affiliation(s)
- Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine
| | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine
| |
Collapse
|
3
|
Salazar I, Sanchez-Quinteiro P, Barrios AW, López Amado M, Vega JA. Anatomy of the olfactory mucosa. HANDBOOK OF CLINICAL NEUROLOGY 2019; 164:47-65. [PMID: 31604563 DOI: 10.1016/b978-0-444-63855-7.00004-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The classic notion that humans are microsmatic animals was born from comparative anatomy studies showing the reduction in the size of both the olfactory bulbs and the limbic brain relative to the whole brain. However, the human olfactory system contains a number of neurons comparable to that of most other mammals, and humans have exquisite olfactory abilities. Major advances in molecular and genetic research have resulted in the identification of extremely large gene families that express receptors for sensing odors. Such advances have led to a renaissance of studies focused on both human and nonhuman aspects of olfactory physiology and function. Evidence that olfactory dysfunction is among the earliest signs of a number of neurodegenerative and neuropsychiatric disorders has led to considerable interest in the use of olfactory epithelial biopsies for potentially identifying such disorders. Moreover, the unique features of the olfactory ensheathing cells have made the olfactory mucosa a promising and unexpected source of cells for treating spinal cord injuries and other neural injuries in which cell guidance is critical. The olfactory system of humans and other primates differs in many ways from that of other species. In this chapter we provide an overview of the anatomy of not only the human olfactory mucosa but of mucosae from a range of mammals from which more detailed information is available. Basic information regarding the general organization of the olfactory mucosa, including its receptor cells and the large number of other cell types critical for their maintenance and function, is provided. Cross-species comparisons are made when appropriate. The polemic issue of the human vomeronasal organ in both the adult and fetus is discussed, along with recent findings regarding olfactory subsystems within the nose of a number of mammals (e.g., the septal organ and Grüneberg ganglion).
Collapse
Affiliation(s)
- Ignacio Salazar
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Unit of Anatomy and Embryology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain.
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Unit of Anatomy and Embryology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Arthur W Barrios
- Laboratory of Histology, Embryology and Animal Pathology, Faculty of Veterinary Medicine, University Nacional Mayor of San Marcos, Lima, Peru
| | - Manuel López Amado
- Department of Otorhinolaryngology, University Hospital La Coruña, La Coruña, Spain
| | - José A Vega
- Unit of Anatomy, Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| |
Collapse
|
4
|
Ibrahim D, Abdel-Maksoud F, Taniguchi K, Yamamoto Y, Taniguchi K, Nakamuta N. Immunohistochemical studies for the neuronal elements in the vomeronasal organ of the one-humped camel. J Vet Med Sci 2014; 77:241-5. [PMID: 25319516 PMCID: PMC4363031 DOI: 10.1292/jvms.14-0424] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The neuronal elements of the vomeronasal organ (VNO) of camel were investigated immunohistochemically. PGP 9.5 labeled the receptor cells in the vomeronasal sensory epithelium, but not the supporting or basal cells. OMP stained some receptor cells, but no immunoreactive signals for OMP were detected in the non-sensory epithelium. PLCβ2 labeled scattered cells in the sensory epithelium and a larger number of cells in the non-sensory epithelium. Double labeling immunohistochemistry revealed that the PLCβ2-positive cells were surrounded by substance P-positive nerve fibers. Collectively, these data suggest that the camel VNO bears, in addition to the mature vomeronasal receptor cells, trigeminally-innervated solitary chemosensory cells which are expected to play a substantial role in the control of stimulus access to the VNO.
Collapse
Affiliation(s)
- Dalia Ibrahim
- United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Ferrando S, Gallus L, Gambardella C, Amaroli A, Cutolo A, Masini MA, Vallarino M, Vacchi M. Neuronal nitric oxide synthase (nNOS) immunoreactivity in the olfactory system of a cartilaginous fish. J Chem Neuroanat 2012; 43:133-40. [PMID: 22469920 DOI: 10.1016/j.jchemneu.2012.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/14/2012] [Accepted: 03/05/2012] [Indexed: 11/16/2022]
Abstract
Nitric oxide is a regulative molecule with important roles in the olfactory system of vertebrates. Chondrichtyans have a key position in vertebrate evolution and nothing is known about nitric oxide in their olfactory system. Aim of this work was to investigate the neuronal nitric oxide synthase (nNOS) immunoreactivity in the olfactory system of the shark Scyliorhinus canicula. Because nitric oxide is often related to GABA in the olfactory system, also the distribution of GABA and its synthesis enzyme GAD has been investigated. In the olfactory epithelium scattered cells in the basal and medial zone of the epithelium thickness presented nNOS-like immunoreactivity. In the olfactory bulb the nNOS-like immunoreactivity has been highlighted in nerve fibers around some blood vessels and in scattered GABAergic granule cells. The presence of nNOS in the olfactory system of S. canicula is overall lesser than that described in other vertebrates, even if nitric oxide probably keeps some essential functions.
Collapse
|
6
|
Ogura T, Krosnowski K, Zhang L, Bekkerman M, Lin W. Chemoreception regulates chemical access to mouse vomeronasal organ: role of solitary chemosensory cells. PLoS One 2010; 5:e11924. [PMID: 20689832 PMCID: PMC2912856 DOI: 10.1371/journal.pone.0011924] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 07/09/2010] [Indexed: 11/18/2022] Open
Abstract
Controlling stimulus access to sensory organs allows animals to optimize sensory reception and prevent damage. The vomeronasal organ (VNO) detects pheromones and other semiochemicals to regulate innate social and sexual behaviors. This semiochemical detection generally requires the VNO to draw in chemical fluids, such as bodily secretions, which are complex in composition and can be contaminated. Little is known about whether and how chemical constituents are monitored to regulate the fluid access to the VNO. Using transgenic mice and immunolabeling, we found that solitary chemosensory cells (SCCs) reside densely at the entrance duct of the VNO. In this region, most of the intraepithelial trigeminal fibers innervate the SCCs, indicating that SCCs relay sensory information onto the trigeminal fibers. These SCCs express transient receptor potential channel M5 (TRPM5) and the phospholipase C (PLC) beta2 signaling pathway. Additionally, the SCCs express choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) for synthesizing and packaging acetylcholine, a potential transmitter. In intracellular Ca2+ imaging, the SCCs responded to various chemical stimuli including high concentrations of odorants and bitter compounds. The responses were suppressed significantly by a PLC inhibitor, suggesting involvement of the PLC pathway. Further, we developed a quantitative dye assay to show that the amount of stimulus fluid that entered the VNOs of behaving mice is inversely correlated to the concentration of odorous and bitter substances in the fluid. Genetic knockout and pharmacological inhibition of TRPM5 resulted in larger amounts of bitter compounds entering the VNOs. Our data uncovered that chemoreception of fluid constituents regulates chemical access to the VNO and plays an important role in limiting the access of non-specific irritating and harmful substances. Our results also provide new insight into the emerging role of SCCs in chemoreception and regulation of physiological actions.
Collapse
Affiliation(s)
- Tatsuya Ogura
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Kurt Krosnowski
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Lana Zhang
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Mikhael Bekkerman
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
7
|
Nitric oxide neurons and neurotransmission. Prog Neurobiol 2010; 90:246-55. [DOI: 10.1016/j.pneurobio.2009.10.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 04/22/2009] [Accepted: 10/09/2009] [Indexed: 11/24/2022]
|
8
|
Role of nitric oxide in pheromone-mediated intraspecific communication in mice. Physiol Behav 2009; 98:608-13. [PMID: 19799918 DOI: 10.1016/j.physbeh.2009.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/14/2009] [Accepted: 09/18/2009] [Indexed: 11/20/2022]
Abstract
Nitric oxide is known to take part in the control of sexual and agonistic behaviours. This is usually attributed to its role in neural transmission in the hypothalamus and other structures of the limbic system. However, socio-sexual behaviours in rodents are mainly directed by chemical signals detected by the vomeronasal system, and nitric oxide is abundant in key structures along the vomeronasal pathway. Thus, here we check whether pharmacological treatments interfering with nitrergic transmission could affect socio-sexual behaviour by impairing the processing of chemical signals. Treatment with an inhibitor of nitric oxide synthesis (Nomega-Nitro-l-arginine methyl ester hydrochloride, L-NAME, 100mg/kg) blocks the innate preference displayed by female mice for sexual pheromones contained in male-soiled bedding, with a lower dose of the drug (50mg/kg) having no effect. Animals treated with the high dose of L-NAME show no reduction of olfactory discrimination of male urine in a habituation-dishabituation test, thus suggesting that the effect of the drug on the preference for male pheromones is not due to an inability to detect male urine. Alternatively, it may result from an alteration in processing the reinforcing value of pheromones as sexual signals. These results add a new piece of evidence to our understanding of the neurochemistry of intraspecific chemical communication in rodents, and suggest that the role of nitric oxide in socio-sexual behaviours should be re-evaluated taking into account the involvement of this neuromodulator in the processing of chemical signals.
Collapse
|
9
|
Salazar I, Sánchez-Quinteiro P, Alemañ N, Prieto D. Anatomical, immnunohistochemical and physiological characteristics of the vomeronasal vessels in cows and their possible role in vomeronasal reception. J Anat 2008; 212:686-96. [PMID: 18430091 DOI: 10.1111/j.1469-7580.2008.00889.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The general morphology of the vomeronasal vessels in adult cows was studied following a classic protocol, including optical, confocal and ultrastructural approaches. This anatomical work was completed immunohistochemically. The vomeronasal organ in cows is well developed, and its vessels are considerable in size. This fact allowed some functional properties of the vomeronasal arteries to be evaluated and, for the first time, their isometric tension to be recorded. Our functional studies were in agreement with the immunohistochemistry, and both corroborated the morphological data on the similarity between the vomeronasal vessels and those of the typical erectile tissue. In consequence, the vasoconstriction and vasodilation of the vomeronasal vessels would facilitate an influx and outflow of fluids in the vomeronasal organ, that is to say, this organ in cows would be able to work as a pump mechanism to send chemical signals to the vomeronasal receptor neurones.
Collapse
Affiliation(s)
- Ignacio Salazar
- Department of Anatomy and Animal Production, Unit of Anatomy and Embryology, Veterinary Faculty, University of Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|
10
|
Uddman R, Malm L, Cardell LO. Neurotransmitter candidates in the vomeronasal organ of the rat. Acta Otolaryngol 2007; 127:952-6. [PMID: 17712675 DOI: 10.1080/00016480601110220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CONCLUSION The rich supply of nerve fibres containing neurotransmitters, particularly those containing SP and CGRP, is suggested to be a prerequisite for the recognition of chemical irritants as part of a chemical sense. OBJECTIVE The present study was designed to examine the distribution of different neurotransmitter candidates in the vomeronasal organ (VNO) of rats. MATERIALS AND METHODS The distribution of neurotransmitter candidates was studied in the vomeronasal organ of the rat using immunocytochemistry. RESULTS The neuronal marker protein gene product 9.5 revealed a very rich supply of nerve fibres within and beneath the sensory epithelium, around blood vessels and glands. A moderate supply of nerve fibres containing tyrosine hydroxylase and neuropeptide Y was mostly seen close to blood vessels. Numerous nerve fibres containing nitric oxide synthase and vasoactive intestinal peptide were seen around blood vessels and in the subepithelial layer, with occasional fibres within the epithelium. Only few fibres located in the subepithelial layer contained pituitary adenylate cyclase activating peptide. Nerve fibres containing substance P and in particular calcitonin gene-related peptide were abundant in and beneath the epithelium and scattered in the submucosal layers around blood vessels.
Collapse
Affiliation(s)
- Rolf Uddman
- Department of Oto-Rhino-Laryngology, Malmö University Hospital, Malmö, Sweden.
| | | | | |
Collapse
|
11
|
Ding C, Walcott B, Keyser KT. Neuronal nitric oxide synthase is expressed in the mouse lacrimal gland and neurons of pterygopalatine ganglion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 506:91-5. [PMID: 12613893 DOI: 10.1007/978-1-4615-0717-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Chuanqing Ding
- Vision Science Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
12
|
Zancanaro C, Merigo F, Mucignat-Caretta C, Cavaggioni A. Neuronal nitric oxide synthase expression in the mouse vomeronasal organ during prenatal development. Eur J Neurosci 2002; 16:659-64. [PMID: 12270041 DOI: 10.1046/j.1460-9568.2002.02113.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The presence and distribution of immunoreactivity for nitric oxide synthase type I and a panel of regulatory neuropeptides was investigated in the vomeronasal organ (VNO) of mouse embryos. Results show that nitric oxide synthase type I is first expressed in putative extrinsic nerve fibers reaching areas of vascular development at embryonic day 16 and in the vomeronasal nerve at embryonic day 15. Immunoreactivity for vasoactive intestinal peptide appears around developing vessels of the VNO during embryonic day 18. No immunoreactivity for atrial natriuretic peptide, substance P and calcitonin gene-related peptide is present in the VNO. It is concluded that, in the mouse, nitric oxide synthesis is a precocious event in the development of peripheral and central neural vomeronasal structures, representing a very early step in the neurochemical maturation of the VNO.
Collapse
Affiliation(s)
- Carlo Zancanaro
- Dipartimento di Scienze Morfologico-Biomediche, Sezione di Anatomia e Istologia, Università di Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | | | | | | |
Collapse
|
13
|
Lazarov NE. Comparative analysis of the chemical neuroanatomy of the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus. Prog Neurobiol 2002; 66:19-59. [PMID: 11897404 DOI: 10.1016/s0301-0082(01)00021-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A characteristic peculiarity of the trigeminal sensory system is the presence of two distinct populations of primary afferent neurons. Most of their cell bodies are located in the trigeminal ganglion (TG) but part of them lie in the mesencephalic trigeminal nucleus (MTN). This review compares the neurochemical content of central versus peripheral trigeminal primary afferent neurons. In the TG, two subpopulations of primary sensory neurons, containing immunoreactive (IR) material, are identified: a number of glutamate (Glu)-, substance P (SP)-, neurokinin A (NKA)-, calcitonin gene-related peptide (CGRP)-, cholecystokinin (CCK)-, somatostatin (SOM)-, vasoactive intestinal polypeptide (VIP)- and galanin (GAL)-IR ganglion cells with small and medium-sized somata, and relatively less numerous larger-sized neuropeptide Y (NPY)- and peptide 19 (PEP 19)-IR trigeminal neurons. In addition, many nitric oxide synthase (NOS)- and parvalbumin (PV)-IR cells of all sizes as well as fewer, mostly large, calbindin D-28k (CB)-containing neurons are seen. The majority of the large ganglion cells are surrounded by SP-, CGRP-, SOM-, CCK-, VIP-, NOS- and serotonin (SER)-IR perisomatic networks. In the MTN, the main subpopulation of large-sized neurons display Glu-immunoreactivity. Additionally, numerous large MTN neurons exhibit PV- and CB-immunostaining. On the other hand, certain small MTN neurons, most likely interneurons, are found to be GABAergic. Furthermore, NOS-containing neurons can be detected in the caudal and the mesencephalic-pontine junction portions of the nucleus. Conversely, no immunoreactivity to any of the examined neuropeptides is observed in the cell bodies of MTN neurons but these are encircled by peptidergic, catecholaminergic, serotonergic and nitrergic perineuronal arborizations in a basket-like manner. Such a discrepancy in the neurochemical features suggests that the differently fated embryonic migration, synaptogenesis, and peripheral and central target field innervation can possibly affect the individual neurochemical phenotypes of trigeminal primary afferent neurons.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy, Faculty of Medicine, Thracian University, 11 Armejska Street, BG-6003 Stara Zagora, Bulgaria.
| |
Collapse
|
14
|
Shimizu T, Morris JL, Gibbins IL. Expression of immunoreactivity to neurokinin-1 receptor by subsets of cranial parasympathetic neurons: correlation with neuropeptides, nitric oxide synthase, and pathways. Exp Neurol 2001; 172:293-306. [PMID: 11716554 DOI: 10.1006/exnr.2001.7799] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the patterns of coexistence of immunoreactivity to the neurokinin-1 (NK(1)) tachykinin receptor, nitric oxide synthase, and neuropeptides in the sphenopalatine and otic ganglia of guinea pigs using a combination of multiple-labeling immunohistochemistry and pathway tracing in vitro. Most neurons had immunoreactivity to vasoactive intestinal peptide (85-96%) and neuropeptide Y (60%). Subpopulations of vasoactive intestinal peptide-immunoreactive neurons also had immunoreactivity to nitric oxide synthase (37-48%) or enkephalin (25-35%), but these formed mutually exclusive populations. Almost all neurons expressing NK(1) receptor immunoreactivity contained immunoreactivity to enkephalin, vasoactive intestinal peptide, and neuropeptide Y, but not nitric oxide synthase. Using a combination of retrograde axonal tracing and axonal crushing, we found that most neurons with immunoreactivity to nitric oxide synthase projected along the nasopalatine and ethmoidal nerves to the nasal mucosa. In contrast, most neurons with immunoreactivity to enkephalin followed the zygomatic nerve to the facial skin and lacrimal gland. Based on their peptide content, we conclude that the neurons with immunoreactivity to enkephalin and NK(1) receptor projected selectively to the skin. In both the sphenopalatine and the otic ganglia, about half of the neurons with NK(1) receptor immunoreactivity were surrounded by varicose nerve fibers with substance P immunoreactivity. Many of these fibers are likely to have originated in the trigeminal ganglion. Taken together, these observations establish a strong anatomical basis for a range of interactions between trigeminal and cranial parasympathetic pathways that may underlie pathophysiological conditions such as trigeminal neuralgia.
Collapse
Affiliation(s)
- T Shimizu
- Department of Anatomy & Histology, Flinders University of South Australia, Adelaide, South Australia, 5001, Australia
| | | | | |
Collapse
|
15
|
Abstract
The vomeronasal organ (VNO) is a chemoreceptor organ enclosed in a cartilaginous capsule and separated from the main olfactory epithelium. The vomeronasal neurons have two distinct types of receptor that differ from each other and from the large family of odorant receptors. The VNO receptors are seven-transmembrane receptors coupled to GTP-binding protein, but appear to activate inositol 1,4,5-trisphosphate signaling as opposed to cyclic adenosine monophosphate. The nature of stimulus access suggests that the VNO responds to nonvolatile cues, leading to activation of the hypothalamus by way of the accessory olfactory bulb and amygdala. The areas of hypothalamus innervated regulate reproductive, defensive, and ingestive behavior as well as neuroendocrine secretion.
Collapse
Affiliation(s)
- E B Keverne
- Sub-Department of Animal Behaviour, University of Cambridge, Madingley, Cambridge CB3 8AA, UK.
| |
Collapse
|
16
|
Zancanaro C, Mucignat-Caretta C, Merigo F, Cavaggioni A. Immunohistochemical investigation of the vomeronasal organ. Nitric oxide synthase expression in the mouse during postnatal development. Neurosci Lett 1999; 269:5-8. [PMID: 10821631 DOI: 10.1016/s0304-3940(99)00391-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The expression of nitric oxide synthase type I (NOS-I), the key enzyme for the synthesis of the gaseous neurotransmitter nitric oxide, was investigated by means of immunohistochemistry in the vomeronasal organ (VNO) of mice from postnatal day 1 for 2 months. The results show that NOS is expressed in extrinsic nerve supplying the developing erectile tissue of VNO (the so-called VNO pump) as well as blood vessels in the connective tissue laying under the receptor epithelium at postnatal day 1. At 8, 15 and 21 postnatal days, and at 2 months the density of NOS-1-immunoreactive nerves goes along with the development of the erectile tissue. From postnatal day 8 onwards, NOS-1-immunoreactive fibers are found also in the vicinity of the VNO glands. These data suggest that nitric oxide (NO) modulates VNO activity early after birth in the mouse.
Collapse
Affiliation(s)
- C Zancanaro
- Institute of Anatomy and Histology, University of Verona, Italy.
| | | | | | | |
Collapse
|
17
|
Matsuda H, Kusakabe T, Hayashida Y, Furukawa M, Kawakami T, Takenaka T, Tsukuda M. Substance P- and calcitonin gene-related peptide-containing nerve fibers in the nasal mucosa of chronically hypoxic rats. Brain Res Bull 1998; 45:563-9. [PMID: 9566499 DOI: 10.1016/s0361-9230(97)00450-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The distribution of substance P-immunoreactive and calcitonin gene-related peptide-immunoreactive nerve fibers in the nasal mucosa was compared between normoxic and chronically hypoxic rats (10% O2 and 3.0-4.0% CO2 for 3 months). In the normoxic nasal mucosa, substance P- and calcitonin gene-related peptide-immunoreactive nerve fibers were found within and under the epithelium and around the glands and blood vessels in the lamina propria. These immunoreactive fibers have many varicosities. In the chronically hypoxic nasal mucosa, the relative density of intra- and subepithelial substance P-immunoreactive and calcitonin gene-related peptide-immunoreactive fibers and those in the lamina propria was higher than in normoxic mucosa. The length of substance P-positive fibers within the chronically hypoxic olfactory and respiratory epithelium was 1.66 and 2.45 times higher than within the normoxic epithelium, respectively. The length of calcitonin gene-related peptide-immunostained fibers within the chronically hypoxic olfactory and respiratory epithelium was 1.56 and 1.84 times higher, respectively. Because substance P and calcitonin gene-related peptide are the predominant signal peptides of primary sensory neurons, the increased number of these fibers may represent enhanced sensory mechanisms in the hypoxic nasal mucosa. In addition, considered together with the findings in chronically hypoxic tracheal mucosa, the increased density of intraepithelial fibers containing substance P and calcitonin gene-related peptide suggests that this is a predominant feature of hypoxic adaptation throughout the upper and lower respiratory tracts.
Collapse
Affiliation(s)
- H Matsuda
- Department of Otorhinolaryngology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Kusakabe T, Kawakami T, Ono M, Syoui N, Kurihara K, Takenaka T, Sawada H. Precise coexistence of regulatory peptides in the nerve fibers of the amphibian carotid labyrinth demonstrated by a combination of double immunofluorescence labelling and a multiple dye filter. Brain Res 1996; 735:307-10. [PMID: 8911669 DOI: 10.1016/0006-8993(96)00788-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An application of double-immunolabelling in combination with a multiple dye filter system demonstrated new findings regarding the distribution pattern of peptidergic fibers in the carotid labyrinth to addition to our previous findings shown by the individual filter system. In high magnification images of about 10% of the yellowish fibers which represent the coexistence of two neuropeptides, there was a definite difference in localization between the fluorescence originating from rhodamine (substance P fibers) and from FITC (vasoactive intestinal polypeptide and neuropeptide Y fibers), but it was clear that they are intertwined within a single nerve bundle. This combination method was able to discriminate two different peptidergic fibers which run side by side. The coexistence suggested previously by the individual filter system may actually be due to the phenomenon described above. This means that it is necessary to apply the multiple dye filter system for reliable evidence of coexistence of different two substances in a single nerve fiber.
Collapse
Affiliation(s)
- T Kusakabe
- Department of Anatomy, Yokohama City University, School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|