1
|
Basting TM, Abe C, Viar KE, Stornetta RL, Guyenet PG. Is plasticity within the retrotrapezoid nucleus responsible for the recovery of the PCO2 set-point after carotid body denervation in rats? J Physiol 2016; 594:3371-90. [PMID: 26842799 DOI: 10.1113/jp272046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/01/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Arterial PCO2 is kept constant via breathing adjustments elicited, at least partly, by central chemoreceptors (CCRs) and the carotid bodies (CBs). The CBs may be active in a normal oxygen environment because their removal reduces breathing. Thereafter, breathing slowly returns to normal. In the present study, we investigated whether an increase in the activity of CCRs accounts for this return. One week after CB excision, the hypoxic ventilatory reflex was greatly reduced as expected, whereas ventilation and blood gases at rest under normoxia were normal. Optogenetic inhibition of Phox2b-expressing neurons including the retrotrapezoid nucleus, a cluster of CCRs, reduced breathing proportionally to arterial pH. The hypopnoea was greater after CB excision but only in a normal or hypoxic environment. The difference could be simply explained by the loss of fast feedback from the CBs. We conclude that, in rats, CB denervation may not produce CCR plasticity. We also question whether the transient hypoventilation elicited by CB denervation means that these afferents are active under normoxia. ABSTRACT Carotid body denervation (CBD) causes hypoventilation and increases the arterial PCO2 set-point; these effects eventually subside. The hypoventilation is attributed to reduced CB afferent activity and the PCO2 set-point recovery to CNS plasticity. In the present study, we investigated whether the retrotrapezoid nucleus (RTN), a group of non-catecholaminergic Phox2b-expressing central respiratory chemoreceptors (CCRs), is the site of such plasticity. We evaluated the contribution of the RTN to breathing frequency (FR ), tidal volume (VT ) and minute volume (VE ) by inhibiting this nucleus optogenetically for 10 s (archaerhodopsinT3.0) in unanaesthetized rats breathing various levels of O2 and/or CO2 . The measurements were made in seven rats before and 6-7 days after CBD and were repeated in seven sham-operated rats. Seven days post-CBD, blood gases and ventilation in 21% O2 were normal, whereas the hypoxic ventilatory reflex was still depressed (95.3%) and hypoxia no longer evoked sighs. Sham surgery had no effect. In normoxia or hypoxia, RTN inhibition produced a more sustained hypopnoea post-CBD than before; in hyperoxia, the responses were identical. Post-CBD, RTN inhibition reduced FR and VE in proportion to arterial pH or PCO2 (ΔVE : 3.3 ± 1.5% resting VE /0.01 pHa). In these rats, 20.7 ± 8.9% of RTN neurons expressed archaerhodopsinT3.0. Hypercapnia (3-6% FiCO2 ) increased FR and VT in CBD rats (n = 4). In conclusion, RTN regulates FR and VE in a pH-dependent manner after CBD, consistent with its postulated CCR function. RTN inhibition produces a more sustained hypopnoea after CBD than before, although this change may simply result from the loss of the fast feedback action of the CBs.
Collapse
Affiliation(s)
- Tyler M Basting
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Chikara Abe
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Kenneth E Viar
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
2
|
Wang X, Guo R, Zhao W, Pilowsky PM. Medullary mediation of the laryngeal adductor reflex: A possible role in sudden infant death syndrome. Respir Physiol Neurobiol 2016; 226:121-7. [PMID: 26774498 DOI: 10.1016/j.resp.2016.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/08/2016] [Accepted: 01/10/2016] [Indexed: 10/22/2022]
Abstract
The laryngeal adductor reflex (LAR) is a laryngeal protective reflex. Vagal afferent polymodal sensory fibres that have cell bodies in the nodose ganglion, originate in the sub-glottal area of the larynx and upper trachea. These polymodal sensory fibres respond to mechanical or chemical stimuli. The central axons of these sensory vagal neurons terminate in the dorsolateral subnuclei of the tractus solitarius in the medulla oblongata. The LAR is a critical, reflex in the pathways that play a protective role in the process of ventilation, and the sychronisation of ventilation with other activities that are undertaken by the oropharyngeal systems including: eating, speaking and singing. Failure of the LAR to operate properly at any time after birth can lead to SIDS, pneumonia or death. Despite the critical nature of this reflex, very little is known about the central pathways and neurotransmitters involved in the management of the LAR and any disorders associated with its failure to act properly. Here, we review current knowledge concerning the medullary nuclei and neurochemicals involved in the LAR and propose a potential neural pathway that may facilitate future SIDS research.
Collapse
Affiliation(s)
- Xiaolu Wang
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
| | - Ruichen Guo
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjing Zhao
- Heart Research Institute, University of Sydney,7 Eliza St., Newtown, Australia
| | - Paul M Pilowsky
- Heart Research Institute, University of Sydney,7 Eliza St., Newtown, Australia.
| |
Collapse
|
3
|
Potent hyperglycemic and hyperinsulinemic effects of thyrotropin-releasing hormone microinjected into the rostroventrolateral medulla and abnormal responses in type 2 diabetic rats. Neuroscience 2010; 169:706-19. [PMID: 20457219 DOI: 10.1016/j.neuroscience.2010.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 04/28/2010] [Accepted: 05/03/2010] [Indexed: 02/07/2023]
Abstract
We identified ventrolateral medullary nuclei in which thyrotropin-releasing hormone (TRH) regulates glucose metabolism by modulating autonomic activity. Immunolabeling revealed dense prepro-TRH-containing fibers innervating the rostroventrolateral medulla (RVLM) and nucleus ambiguus (Amb), which contain, respectively, pre-sympathetic motor neurons and vagal motor neurons. In anesthetized Wistar rats, microinjection of the stable TRH analog RX77368 (38-150 pmol) into the RVLM dose-dependently and site-specifically induced hyperglycemia and hyperinsulinemia. At 150 pmol, blood glucose reached a peak of 180+/-18 mg% and insulin increased 4-fold. The strongest hyperglycemic effect was induced when RX77368 was microinjected into C1 area containing adrenalin cells. Spinal cord transection at cervical-7 abolished the hyperglycemia induced by RVLM RX77368, but not the hyperinsulinemic effect. Bilateral vagotomy prevented the rise in insulin, resulting in a prolonged hyperglycemic response. The hyperglycemic and hyperinsulinemic effects of the TRH analog in the RVLM was peptide specific, since angiotensin II or a substance P analog at the same dose had weak or no effects. Microinjection of RX77368 into the Amb stimulated insulin secretion without influencing glucose levels. In conscious type 2 diabetic Goto-Kakizaki (GK) rats, intracisternal injection of RX77368 induced a remarkably amplified hyperglycemic effect with suppressed insulin response compared to Wistar rats. RX77368 microinjected into the RVLM of anesthetized GK rats induced a significantly potentiated hyperglycemic response and an impaired insulin response, compared to Wistar rats. These results indicate that the RVLM is a site at which TRH induces sympathetically-mediated hyperglycemia and vagally-mediated hyperinsulinemia, whereas the Amb is mainly a vagal activating site for TRH. Hyperinsulinemia induced by TRH in the RVLM is not secondary to the hyperglycemic response. The potentiated hyperglycemic and suppressed hyperinsulinemic responses in diabetic GK rats indicate that an unbalanced "sympathetic-over-vagal" activation by TRH in brainstem RVLM contributes to the pathophysiology of impaired glucose homeostasis in type 2 diabetes.
Collapse
|
4
|
Pilowsky PM, Lung MSY, Spirovski D, McMullan S. Differential regulation of the central neural cardiorespiratory system by metabotropic neurotransmitters. Philos Trans R Soc Lond B Biol Sci 2009; 364:2537-52. [PMID: 19651655 DOI: 10.1098/rstb.2009.0092] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Central neurons in the brainstem and spinal cord are essential for the maintenance of sympathetic tone, the integration of responses to the activation of reflexes and central commands, and the generation of an appropriate respiratory motor output. Here, we will discuss work that aims to understand the role that metabotropic neurotransmitter systems play in central cardiorespiratory mechanisms. It is well known that blockade of glutamatergic, gamma-aminobutyric acidergic and glycinergic pathways causes major or even complete disruption of cardiorespiratory systems, whereas antagonism of other neurotransmitter systems barely affects circulation or ventilation. Despite the lack of an 'all-or-none' role for metabotropic neurotransmitters, they are nevertheless significant in modulating the effects of central command and peripheral adaptive reflexes. Finally, we propose that a likely explanation for the plethora of neurotransmitters and their receptors on cardiorespiratory neurons is to enable differential regulation of outputs in response to reflex inputs, while at the same time maintaining a tonic level of sympathetic activity that supports those organs that significantly autoregulate their blood supply, such as the heart, brain, retina and kidney. Such an explanation of the data now available enables the generation of many new testable hypotheses.
Collapse
Affiliation(s)
- Paul M Pilowsky
- Australian School of Advanced Medicine, Dow-Corning Building, Level 1, 3 Innovation Road, Macquarie University, 2109 NSW, Australia.
| | | | | | | |
Collapse
|
5
|
Moon EA, Goodchild AK, Pilowsky PM. Lateralisation of projections from the rostral ventrolateral medulla to sympathetic preganglionic neurons in the rat. Brain Res 2002; 929:181-90. [PMID: 11864623 DOI: 10.1016/s0006-8993(01)03388-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spinally projecting sympathoexcitatory neurons in the rostral ventrolateral medulla (RVLM), synapse with sympathetic preganglionic neurons (SPN) and regulate the activity of sympathetic nerves that control the heart, blood pressure and the adrenal medulla (AM). However, the degree of lateralization of the bulbospinal projections to SPN innervating specific targets is poorly understood. Three approaches were used in this study. Anterograde tracer was iontophoresed into a pressor site in the RVLM (left or right) and retrograde tracer injected into the superior cervical ganglion (SCG, right) and the AM (left). Close appositions between anterogradely labelled axons and retrogradely labelled SCG- or AM-SPN were counted. Projections to the SCG were bilateral. Projections to the AM were markedly ipsilateral. In the second part, retrograde tracers were injected unilaterally into the region of the intermediolateral cell column at spinal segment T2 or T8 on one side and the number of labelled neurons in the RVLM counted. The results from each level of injection were similar showing that approximately 63-64% of the neurons were ipsilateral. Responses to glutamate microinjection into the RVLM on adrenal nerve (left) and superior cervical nerve (left) activity were measured. The ratio of the nerve responses was the same even when different sides of the RVLM were injected. The anterograde data strongly suggest that the RVLM projections to AM-SPN are predominantly ipsilateral. Although other experimental approaches also attempted to investigate lateralization, the retrograde data target different and functionally heterogeneous pools of SPN that may mask the ipsilateral projection to the AM. Similarly, chemical stimulation of the RVLM will excite not only monosynaptic projections but also polysynaptic projections that may also mask the predominant ipsilateral monosynaptic projection to AM.
Collapse
Affiliation(s)
- Elizabeth A Moon
- Hypertension and Stroke Research Laboratories, Department of Physiology, University of Sydney, Block 3 Ground Floor, Royal North Shore Hospital, St. Leonards, 2065 Sydney, NSW, Australia
| | | | | |
Collapse
|
6
|
Okazaki M, Takeda R, Haji A, Yamazaki H. Glutamic acid decarboxylase-immunoreactivity of bulbar respiratory neurons identified by intracellular recording and labeling in rats. Brain Res 2001; 914:34-47. [PMID: 11578595 DOI: 10.1016/s0006-8993(01)02788-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To distinguish the GABAergic neuron in the ventral respiratory group (VRG) of rats, immunohistochemical staining of glutamic acid decarboxylase (GAD) was performed in neurons that had been individually identified by in vivo intracellular recording and labeling with neurobiotin. A total of five types of respiratory neurons were identified and labeled; augmenting inspiratory (aug-I, n=12), decrementing or early inspiratory (early-I, n=3), inspiration-expiration phase spanning or late inspiratory (late-I, n=3), decrementing expiratory or postinspiratory (PI, n=8), and augmenting or stage 2 expiratory (E2, n=3). In addition, expiration-inspiration phase-spanning or pre-inspiratory neurons (pre-I, n=2) were recorded, but not labeled. The membrane potential trajectory of each neuron type resembled that previously described in cat, suggesting a comparable neuronal organization between the two species. According to the axonal arborization, those labeled neurons were further classified as propriobulbar (6 aug-I, all early-I, all late-I, and 3 PI), bulbospinal (2 aug-I and all E2) and cranial-motor neurons (4 aug-I and 5 PI). GAD-immunoreactivity was consistently detected in the propriobulbar neurons, while it was not seen in cranial-motor and bulbospinal neurons. In addition, GAD-immunoreactive varicosities were found surrounding the somatic and dendritic surface of all labeled neurons. The present results illustrate that the propriobulbar types of early-I, aug-I, late-I and PI neurons are GABAergic inhibitory neurons and virtually all types of respiratory neurons receive GABAergic inputs in the rat's VRG.
Collapse
Affiliation(s)
- M Okazaki
- Department of Pharmacology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, 930-0194, Toyama, Japan
| | | | | | | |
Collapse
|
7
|
Pilowsky PM, Makeham J. Juxtacellular labeling of identified neurons: kiss the cells and make them dye. J Comp Neurol 2001; 433:1-3. [PMID: 11283944 DOI: 10.1002/cne.1120] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Haji A, Takeda R, Okazaki M. Neuropharmacology of control of respiratory rhythm and pattern in mature mammals. Pharmacol Ther 2000; 86:277-304. [PMID: 10882812 DOI: 10.1016/s0163-7258(00)00059-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes the current understanding of the neurotransmitters and neuromodulators that are involved, firstly, in respiratory rhythm and pattern generation, where glutamate plays an essential role in the excitatory mechanisms and glycine and gamma-aminobutyric acid mediate inhibitory postsynaptic effects, and secondly, in the transmission of input signals from the central and peripheral chemoreceptors and of motor outputs to respiratory motor neurons. Finally, neuronal mechanisms underlying respiratory modulations caused by respiratory depressants and excitants, such as general anesthetics, benzodiazepines, opioids, and cholinergic agents, are described.
Collapse
Affiliation(s)
- A Haji
- Department of Pharmacology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, 930-0194, Toyama, Japan
| | | | | |
Collapse
|
9
|
Ballanyi K, Onimaru H, Homma I. Respiratory network function in the isolated brainstem-spinal cord of newborn rats. Prog Neurobiol 1999; 59:583-634. [PMID: 10845755 DOI: 10.1016/s0301-0082(99)00009-x] [Citation(s) in RCA: 271] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The in vitro brainstem-spinal cord preparation of newborn rats is an established model for the analysis of respiratory network functions. Respiratory activity is generated by interneurons, bilaterally distributed in the ventrolateral medulla. In particular non-NMDA type glutamate receptors constitute excitatory synaptic connectivity between respiratory neurons. Respiratory activity is modulated by a diversity of neuroactive substances such as serotonin, adenosine or norepinephrine. Cl(-)-mediated IPSPs provide a characteristic pattern of membrane potential fluctuations and elevation of the interstitial concentration of (endogenous) GABA or glycine leads to hyperpolarisation-related suppression of respiratory activity. Respiratory rhythm is not blocked upon inhibition of IPSPs with bicuculline, strychnine and saclofen. This indicates that GABA- and glycine-mediated mutual synaptic inhibition is not crucial for in vitro respiratory activity. The primary oscillatory activity is generated by neurons of a respiratory rhythm generator. In these cells, a set of intrinsic conductances such as P-type Ca2+ channels, persistent Na+ channels and G(i/o) protein-coupled K+ conductances mediates conditional bursting. The respiratory rhythm generator shapes the activity of an inspiratory pattern generator that provides the motor output recorded from cranial and spinal nerve rootlets in the preparation. Burst activity appears to be maintained by an excitatory drive due to tonic synaptic activity in concert with chemostimulation by H+. Evoked anoxia leads to a sustained decrease of respiratory frequency, related to K+ channel-mediated hyperpolarisation, whereas opiates or prostaglandins cause longlasting apnea due to a fall of cellular cAMP. The latter observations show that this in vitro model is also suited for analysis of clinically relevant disturbances of respiratory network function.
Collapse
Affiliation(s)
- K Ballanyi
- II Physiologisches Institut, Universität Göttingen, Germany
| | | | | |
Collapse
|
10
|
Mutolo D, Bongianni F, Carfì M, Pantaleo T. Respiratory responses to thyrotropin-releasing hormone microinjected into the rabbit medulla oblongata. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R1331-8. [PMID: 10564204 DOI: 10.1152/ajpregu.1999.277.5.r1331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the respiratory role of thyrotropin-releasing hormone (TRH) input to medullary structures involved in the control of breathing in anesthetized, vagotomized, paralyzed, and artificially ventilated rabbits. Microinjections (10-20 nl) of 1 or 10 mM TRH were performed in different regions of the ventral respiratory group (VRG), namely the rostral expiratory portion or Bötzinger complex (Böt. c.), the inspiratory portion, the transition zone between these two neuronal pools, and the caudal expiratory component. TRH microinjections were also performed in the dorsal respiratory group (DRG) and the area postrema (AP). Injection sites were localized by using stereotaxic coordinates and extracellular recordings of neuronal activity; their locations were confirmed by subsequent histological control. TRH microinjections in the Böt. c. and the directly caudally located region where a mix of inspiratory and expiratory neurons were encountered elicited depressant respiratory responses. TRH microinjections were completely ineffective at sites within the inspiratory and the caudal expiratory components of the VRG. TRH microinjections in either the DRG or the AP induced excitatory effects on inspiratory activity. The results show for the first time that TRH may exert inhibitory influences on respiration at medullary levels by acting on rostral expiratory neurons and that not only the DRG, as previously suggested, but also the AP may mediate TRH-induced excitatory effects on respiration.
Collapse
Affiliation(s)
- D Mutolo
- Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze, I-50134 Firenze, Italy
| | | | | | | |
Collapse
|
11
|
Affiliation(s)
- E A Nillni
- Department of Medicine, Brown University School of Medicine, Rhode Island Hospital, Providence 02903, USA.
| | | |
Collapse
|
12
|
Abstract
1. The central pattern generator (CPG) for respiration is located in the brainstem and produces rhythmic synaptic drive for motoneurons controlling respiratory muscles. Based on respiratory nerve discharge, the respiratory cycle can be divided into three phases: inspiration, postinspiration and stage 2 expiration. 2. Six basic types of respiratory neuron participate in respiratory rhythmogenesis. Their firing and membrane potential patterns are locked to different phases of the respiratory cycle. 3. In adult mammals, respiratory neurons are subject to excitatory and inhibitory synaptic inputs and show extensive synaptic interconnections that are mainly inhibitory. There are differences in the relative importance of excitatory and inhibitory synaptic drives and the neurotransmitters involved in respiratory rhythmogenesis in neonates compared with adults. 4. Respiratory neurons possess a number of intrinsic membrane currents that may be involved in central pattern generation, including low- and high-voltage-activated calcium, potassium, calcium-dependent potassium, sodium and mixed cationic currents. More quantitative information is needed about the distribution and characteristics of these ionic currents if we are to understand rhythmogenesis. 5. The two main theories for the origin of respiratory rhythm are those of pacemaker neuron-driven and synaptic network-driven CPG. Evidence derived from in vivo and in vitro experiments exists to support both of these theories. There may be a significant switch in the underlying mechanism driving the respiratory CPG during postnatal development.
Collapse
Affiliation(s)
- M C Bellingham
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| |
Collapse
|
13
|
Pilowsky PM, Arnoida LF, Chalmers JP, Llewellyn-Smith IJ, Minson JB, Sun QJ. CENTRAL NEUROTRANSMITTERS IN CARDIORESPIRATORY CONTROL MECHANISMS. Fundam Clin Pharmacol 1997. [DOI: 10.1111/j.1472-8206.1997.tb00868.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Tavares I, Lima D, Coimbra A. The pontine A5 noradrenergic cells which project to the spinal cord dorsal horn are reciprocally connected with the caudal ventrolateral medulla in the rat. Eur J Neurosci 1997; 9:2452-61. [PMID: 9464939 DOI: 10.1111/j.1460-9568.1997.tb01662.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A disynaptic pathway linking the caudal ventrolateral medulla (VLM) to the spinal cord via the A5 noradrenergic cell group of the pons has recently been described in the rat. In the present work, the projections of the A5 to the VLM and to the spinal dorsal horn were studied with double-tracing techniques combined with immunostaining of the noradrenaline-synthesizing enzyme dopamine-beta-hydroxylase. Cholera toxin subunit B (CTb) injected into the VLM and fluoro-gold injected into the spinal dorsal horn produced double retrograde labelling of A5 neurons immunoreactive for dopamine-beta-hydroxylase, which received appositions of fibre varicosities labelled anterogradely with CTb injected into the VLM. After injecting CTb into the A5, retrogradely labelled neurons occurred in the VLM. These neurons were contacted by anterogradely labelled fibres from the A5 group. These observations indicate that the VLM cells acting upon the A5 spinally projecting neurons, which are likely to exert an alpha2-adrenoreceptor-mediated inhibition on the spinal cord, are targeted by collaterals of the A5 spinal cord-bound axons. The A5-VLM pathway may be the anatomical substrate of a negative feedback circuit whereby the modulatory action of the VLM on the spinal cord is self-inhibited through activation of the A5.
Collapse
Affiliation(s)
- I Tavares
- Institute of Histology and Embryology, Faculty of Medicine and IBMC of the University of Oporto, Porto, Portugal
| | | | | |
Collapse
|