1
|
Hutchinson DS, Summers RJ, Gibbs ME. Energy metabolism and memory processing: role of glucose transport and glycogen in responses to adrenoceptor activation in the chicken. Brain Res Bull 2008; 76:224-34. [PMID: 18498935 DOI: 10.1016/j.brainresbull.2008.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 01/22/2008] [Accepted: 02/11/2008] [Indexed: 11/28/2022]
Abstract
From experiments using a discriminated bead task in young chicks, we have defined when and where adrenoceptors (ARs) are involved in memory modulation. All three ARs subtypes (alpha(1)-, alpha(2)- and beta-ARs) are found in the chick brain and in regions associated with memory. Glucose and glycogen are important in the role of memory consolidation in the chick since increasing glucose levels improves memory consolidation while inhibiting glucose transporters (GLUTs) or glycogen breakdown inhibits memory consolidation. The selective beta(3)-AR agonist CL316243 enhances memory consolidation by a glucose-dependent mechanism and the administration of the non-metabolized glucose analogue 2-deoxyglucose reduces the ability of CL316243 to enhance memory. Agents that reduce glucose uptake by GLUTs and its incorporation into the glycolytic pathway also reduce the effectiveness of CL316243, but do not alter the dose-response relationship to the beta(2)-AR agonist zinterol. However, beta(2)-ARs do have a role in memory related to glycogen breakdown and inhibition of glycogenolysis reduces the ability of zinterol to enhance memory. Both beta(2)- and beta(3)-ARs are found on astrocytes from chick forebrain, and the actions of beta(3)-ARs on glucose uptake, and beta(2)-ARs on the breakdown of glycogen is consistent with an effect on astrocytic metabolism at the time of memory consolidation 30 min after training. We have shown that both beta(2)- and beta(3)-ARs can increase glucose uptake in chick astrocytes but do so by different mechanisms. This review will focus on the role of ARs on memory consolidation and specifically the role of energy metabolism on AR modulation of memory.
Collapse
Affiliation(s)
- Dana S Hutchinson
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | |
Collapse
|
2
|
Delaney AJ, Crane JW, Sah P. Noradrenaline modulates transmission at a central synapse by a presynaptic mechanism. Neuron 2008; 56:880-92. [PMID: 18054863 DOI: 10.1016/j.neuron.2007.10.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 09/14/2007] [Accepted: 10/09/2007] [Indexed: 10/22/2022]
Abstract
The lateral division of the central amygdala (CeAL) is the target of ascending fibers from the pain-responsive and stress-responsive nuclei in the brainstem. We show that single fiber inputs from the nociceptive pontine parabrachial nucleus onto CeAL neurons form suprathreshold glutamatergic synapses with multiple release sites. Noradrenaline, acting at presynaptic alpha2 receptors, potently inhibits this synapse. This inhibition results from a decrease in the number of active release sites with no change in release probability. Introduction of a presynaptic scavenger of Gbetagamma subunits blocked the effects of noradrenaline, and botulinum toxin A reduced its effects, showing a direct action of betagamma subunits on the release machinery. These data illustrate a mechanism of presynaptic modulation where the output of a large multiple-release-site synapse is potently regulated by endogenously released noradrenaline and suggests that the CeA may be a target for the central nociceptive actions of noradrenaline.
Collapse
Affiliation(s)
- Andrew J Delaney
- The Queensland Brain Institute, The University of Queensland, QLD 4072 Australia
| | | | | |
Collapse
|
3
|
Jackson G, Hudson AL, Lalis M, Raj ABM. Pharmacological characterisation of the electrically evoked release of monoamines from chicken brainin vitro. Br Poult Sci 2007; 48:76-83. [PMID: 17364544 DOI: 10.1080/00071660601157485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
1. A study was conducted to develop an in vitro model for examining the basal and electrical-stimulation-induced release of [3H]monoamines from chicken hyperstriatal neurones in order to demonstrate the presence of presynaptic autoreceptors for the three main monoamine transmitters: noradrenaline, dopamine and 5-HT. 2. Two sets of experiments were carried out: the first was to evaluate the effect of calcium and tetrodotoxin (TTX, sodium channel conductance inhibitor) in order to demonstrate that evoked release of monoamines was a consequence of exocytotic processes; the second to investigate the effect of selective agonists and antagonists on neurotransmitter release. 3. Ross and Cobb broiler chickens of either sex (approximately 7 to 8 weeks old) were used. Slices of hyperstriatal tissue were preincubated with [3H]noradrenaline, [3H]dopamine or [3H]5-hydroxytryptamine (5-HT), washed, perfused and electrically stimulated at three time points (S1, S2 and S3) which released [3H]noradrenaline, [3H]dopamine and [3H]5-HT, as determined by scintillation spectrometry. 4. When calcium was removed from, or TTX added to, the superfusion medium prior to and including the second period of electrical stimulation (S2) the evoked releases of [3H]noradrenaline, [3H]dopamine and [3H]5-HT at S2 were abolished. 5. In the presence of the selective alpha2-adrenoceptor agonist UK 14304 during the S2 period, the S2/S1 ratio was lower than the control ratio due to a reduction in the stimulated release of [3H]noradrenaline. The selective alpha2-adrenoceptor antagonist RX 821002 blocked the UK 14304-induced reduction of evoked release and the S2/S1 ratio was similar to the control ratio. 6. The D2-like receptor agonist quinpirole reduced the S2/S1 ratio for [3H]dopamine release, an effect blocked by the antagonist AJ 76. The 5-HT1B receptor agonist CP 94253 during S2 reduced the S2/S1 ratio due to a reduction in evoked [3H]5-HT. This effect was blocked by the 5-HT1B receptor antagonist GR 55562. 7. The results demonstrate, for the first time, the functional presence of presynaptic alpha2-adrenoceptors, presynaptic 5-HT1B autoreceptors and presynaptic D2-like autoreceptors in broiler chicken hyperstriatal neurones in vitro.
Collapse
Affiliation(s)
- G Jackson
- Department of Clinical Veterinary Science, University of Bristol, Langford, England
| | | | | | | |
Collapse
|
4
|
Uhrenholt TR, Nedergaard OA. Calcium channels involved in noradrenaline release from sympathetic neurones in rabbit carotid artery. PHARMACOLOGY & TOXICOLOGY 2003; 92:226-33. [PMID: 12753410 DOI: 10.1034/j.1600-0773.2003.920505.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transmitter release from nerve terminals is dependent on the entry of Ca(2+) through neuronal voltage-gated calcium channels. In sympathetic neurones both N- and L-type calcium channels are present. Potassium channel blockade increases Ca(2+) entry into sympathetic neurones. We examined the participation of N- and L-type calcium channels in the stimulation-evoked release of noradrenaline from vascular sympathetic neurones. Rings of rabbit carotid artery were preincubated with [3H]-noradrenaline. Electrical field stimulation was used to evoke 3H overflow. The selective N-type calcium channel blocking agent omega-conotoxin GVIA (single concentrations: 3 x 10(-10)-10(-8) M) caused a slowly developing reduction of the stimulation-evoked 3H overflow. At 3 x 10(-8) M, omega-conotoxin GVIA caused an equilibrium block with a rapid (15 min.) onset. After 2 hr exposure to omega-conotoxin the inhibition was steady (pIC50 (-log M): 9.43; Emax: 91%). The selective L-type calcium blocking agents nifedipine (10(-7)-10(-5) M) and nimodipine (10(-8)-10(-5) M) had no effect on the stimulation-evoked 3H overflow. The calcium channel opener Bay K 8644 (10-6 M) likewise had no effect. The potassium channel blocking agent 4-aminopyridine (10-5-10-3 M) enhanced the stimulation-evoked 3H overflow up to 5 times. 4-Aminopyridine (10(-4) M) did not alter the inhibitory effect of omega-conotoxin GVIA (3 x 10(-8) M). In the presence of 4-aminopyridine (10(-4) M), nifedipine (10(-5) M) and nimodipine (10(-6) M) enhanced the 3H overflow. We conclude that the stimulation-evoked release of noradrenaline from sympathetic neurones in rabbit carotid artery is mediated by N-type calcium channels and that L-type channels are not involved even when potassium channels are blocked by 4-aminopyridine.
Collapse
Affiliation(s)
- Torben R Uhrenholt
- Department of Physiology and Pharmacology, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
5
|
Dolezal V, Lisá V, Diebler MF, Kasparová J, Tucek S. Differentiation of NG108-15 cells induced by the combined presence of dbcAMP and dexamethasone brings about the expression of N and P/Q types of calcium channels and the inhibitory influence of muscarinic receptors on calcium influx. Brain Res 2001; 910:134-41. [PMID: 11489263 DOI: 10.1016/s0006-8993(01)02701-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Differentiation of cholinergic cell line NG108-15 induced by a combination of dibutyryl cyclic AMP (dbcAMP) and dexamethasone enhances the cholinergic phenotype of the cells more than that induced by either agent alone. We investigated the effect of treatment with dbcAMP and dexamethasone on potassium depolarization-evoked influx of calcium and its regulation by the muscarinic agonist carbachol. Depolarization of control cells and of cells differentiated in the presence of dbcAMP or dexamethasone alone, or in the combined presence of dbcAMP and dexamethasone induced, respectively, 2.2-, 4.3-, 2.7- and 10.7-fold increases of the resting [Ca(2+)](i). Dexamethasone alone and the combination of dbcAMP and dexamethasone augmented the number of muscarinic receptors by 25 and 40%, respectively. Inhibitors of N (omega-conotoxin GVIA) or P/Q (omega-agatoxin TK) calcium channels had no effect on Ca(2+) influx in control cells, whereas in cells differentiated in the combined presence of dbcAMP and dexamethasone they significantly diminished the influx of Ca(2+) by 20 and 5%, respectively. Carbachol attenuated calcium influx in differentiated cells in an atropine-insensitive manner if it was present during stimulation. This effect of carbachol was probably due to an open-channel block of L type channels. In the presence of nifedipine, carbachol attenuated the influx of Ca(2+) into cells differentiated with dbcAMP and dexamethasone by 20% in an atropine-sensitive way. Data show that differentiation of NG108-15 cells by dbcAMP and dexamethasone promotes the expression of functional nifedipine-insensitive N and P/Q types of Ca(2+) channels and that the nifedipine-insensitive calcium influx becomes subject to inhibitory regulation by muscarinic receptors.
Collapse
Affiliation(s)
- V Dolezal
- Institute of Physiology, Czech Academy of Sciences, Vídenská 1083, 14220 Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
6
|
Baran H, Kepplinger B, Hörtnagl H. Clonidine modulates BAY K 8644-induced rat behavior and neurotransmitter changes in the brain. Eur J Pharmacol 2000; 401:31-7. [PMID: 10915834 DOI: 10.1016/s0014-2999(00)00404-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BAY K 8644 (methyl-1,4-dihydro-2, 6-dimethyl-3-nitro-4[2-trifluoromethyl-phenyl]-pyridine-5-carboxylate), an activator of dihydropyridine-sensitive Ca(2+) channels, injected in rats [2 mg/kg intraperitoneally (i.p.)], induces behavioral changes including ataxia, increased sensitivity to auditory stimulation, stiff tail, arched back, limb tonus and clonus, and rolling over. Neurochemical changes in the brain 45 min after application of 2 mg/kg were characterized by a significant decrease of noradrenaline in the amygdala (-27.8%, P<0.02) and piriform cortex (-16.3%, P<0.02). No significant changes of catecholamines were found in the hippocampal subregions CA1, CA3 and dentate gyrus or in the septum as compared to controls. The dopamine metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the amygdala were elevated by 60% (P<0.02) and 66.7% (P<0.02), respectively. In the septum, a 52.6% (P<0.02) increase of HVA was observed. Analysis of amino acids revealed a marked increase of gamma-aminobutyric acid (GABA) content (+50.4%, P<0.001) in the septum. Pretreatment of the rats with the alpha(2)-adrenoceptor agonist, clonidine (0.1 mg/kg i.p.), 30 min before BAY K 8644 (2 mg/kg i.p.) injection completely abolished the behavioral and neurochemical changes. The data suggest that the Ca(2+)-dependent neurotransmitter release provoked by BAY K 8644 can be modulated by stimulation of presynaptic alpha(2)-adrenoceptors. The effect of clonidine on the GABAergic system may represent an important mechanism involved in the prevention of BAY K 8644-induced behavior.
Collapse
Affiliation(s)
- H Baran
- Institute of Pharmacology and Toxicology, Veterinary University Vienna, A-1210, Vienna, Austria.
| | | | | |
Collapse
|
7
|
Trendelenburg AU, Gaiser EG, Cox SL, Meyer A, Starke K. Mouse postganglionic sympathetic neurons: primary culturing and noradrenaline release. J Neurochem 1999; 73:1431-8. [PMID: 10501186 DOI: 10.1046/j.1471-4159.1999.0731431.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Basic properties of noradrenaline release were studied in primary cultures of thoracolumbar postganglionic sympathetic neurons taken from 1-3-day-old NMRI mice. After 7 days in vitro, the cultures were preincubated with [3H]noradrenaline and then superfused and stimulated electrically. Conventional trains of pulses (for example, 36 pulses at 3 Hz) as well as single pulses and brief high-frequency trains (for example, four pulses at 100 Hz) elicited a well-measurable overflow of tritium, which was abolished by 0.3 microM tetrodotoxin or omission of Ca2+, but not changed by 1 microM rauwolscine. In trains of one, two, four, six, eight, or 10 pulses at 3 Hz, the evoked overflow of tritium remained constant from pulse to pulse at 1.3 mM Ca2+, but declined slightly at 2.5 mM Ca2+. Tetraethylammonium at 10 mM selectively increased the overflow elicited by small pulse numbers and especially by a single pulse. In trains of 10 pulses delivered at 0.3, 1, 3, 10, 30, or 100 Hz, the evoked overflow of tritium increased from 0.3 to 30 Hz and then declined at 100 Hz. This relationship was particularly pronounced at low Ca2+ concentrations (for example, 0.3 mM). Tetraethylammonium at 10 mM selectively increased the overflow elicited by low frequencies of stimulation. It is concluded that primary cultures of mouse postganglionic sympathetic neurons can be used to investigate release of [3H]noradrenaline. The release is well measurable, even upon a single electrical pulse. It agrees with release in intact sympathetically innervated tissues in a number of fundamental properties, including the pulse number and frequency dependence. The preparation may be of special interest in conjunction with genetic manipulations in the donor animals.
Collapse
Affiliation(s)
- A U Trendelenburg
- Pharmakologisches Institut, Universität Freiburg, Freiburg im Breisgau, Germany
| | | | | | | | | |
Collapse
|
8
|
Dolezal V, Tucek S. Calcium channels involved in the inhibition of acetylcholine release by presynaptic muscarinic receptors in rat striatum. Br J Pharmacol 1999; 127:1627-32. [PMID: 10455319 PMCID: PMC1566163 DOI: 10.1038/sj.bjp.0702721] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The mechanism of the inhibitory action of presynaptic muscarinic receptors on the release of acetylcholine from striatal cholinergic neurons is not known. We investigated how the electrically stimulated release of [3H]-acetylcholine from superfused rat striatal slices and its inhibition by carbachol are affected by specific inhibitors of voltage-operated calcium channels of the L-type (nifedipine), N-type (omega-conotoxin GVIA) and P/Q-type (omega-agatoxin IVA). 2. The evoked release of [3H]-acetylcholine was not diminished by nifedipine but was lowered by omega-conotoxin GVIA and by omega-agatoxin IVA, indicating that both the N- and the P/Q-type (but not the L-type) channels are involved in the release. The N-type channels were responsible for approximately two thirds of the release. The release was >97% blocked when both omega-toxins acted together. 3. The inhibition of [3H]-acetylcholine release by carbachol was not substantially affected by the blockade of the L- or P/Q-type channels. It was diminished but not eliminated by the blockade of the N-type channels. 4. In experiments on slices in which cholinesterases had been inhibited by paraoxon, inhibition of [3H]-acetylcholine release by endogenous acetylcholine accumulating in the tissue could be demonstrated by the enhancement of the release after the addition of atropine. The inhibition was higher in slices with functional N-type than with functional P/Q-type channels. 5. We conclude that both the N- and the P/Q-type calcium channels contribute to the stimulation-evoked release of acetylcholine in rat striatum, that the quantitative contribution of the N-type channels is higher, and that the inhibitory muscarinic receptors are more closely coupled with the N-type than with the P/Q-type calcium channels.
Collapse
Affiliation(s)
- V Dolezal
- Institute of Physiology, Academy of Sciences, Vídenská 1083, 14220 Prague, Czechia
| | | |
Collapse
|
9
|
Maddison P, Newsom-Davis J, Mills KR. Effect of 3,4-diaminopyridine on the time course of decay of compound muscle action potential augmentation in the Lambert-Eaton myasthenic syndrome. Muscle Nerve 1998; 21:1196-8. [PMID: 9703446 DOI: 10.1002/(sici)1097-4598(199809)21:9<1196::aid-mus11>3.0.co;2-q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
3,4-Diaminopyridine (3,4-DAP) is known to be beneficial in the symptomatic treatment of the Lambert-Eaton myasthenic syndrome (LEMS). The effects of 3,4-DAP on the decay of postexercise augmentation were observed in 6 patients with LEMS. After 10 s maximal voluntary contraction, the amplitude of the compound muscle action potential (CMAP) recorded from abductor digiti minimi decayed exponentially after an initial rise. The rate of decay in CMAP amplitude was increased after treatment with 3,4-DAP, suggesting that this drug has an effect on the efflux of calcium ions from the presynaptic nerve terminal.
Collapse
Affiliation(s)
- P Maddison
- University Department of Clinical Neurology, Radcliffe Infirmary, Oxford, United Kingdom
| | | | | |
Collapse
|
10
|
Dolezal V, Lisá V, Tucek S. Effect of tacrine on intracellular calcium in cholinergic SN56 neuronal cells. Brain Res 1997; 769:219-24. [PMID: 9374189 DOI: 10.1016/s0006-8993(97)00711-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have found earlier that the depolarization-induced release of acetylcholine from the brain could be inhibited by tacrine (tetrahydroaminoacridine) but the mechanism of this action of tacrine was not clarified (S. Tucek, V. Dolezal, J. Neurochem. 56 (1991) 1216). We have now investigated whether tacrine has an effect on the changes in the intracellular concentration of calcium ions ([Ca2+]i) induced by depolarization. Experiments were performed on the cholinergic SN56 neuronal cell line with Fura-2 fluorescence technique of calcium imaging. The depolarization by 71 mmol/l K+ evoked minimum increases of [Ca2+]i up to day 5 in culture. Then the response gradually increased and reached a plateau after 7 days in culture. A similar time course was observed for acetylcholinesterase activity. The effect of K+ ions was concentration-dependent and the concentration of 71 mmol/l K+ evoked maximum [Ca2+]i responses. The increases of [Ca2+]i did not occur in the absence of extracellular calcium. They were mediated by high voltage-activated calcium channels of the L-type and the N-type. Nifedipine (2 micromol/l; L-type calcium channel blocker) and omega-conotoxin GVIA (100 nmol/l; N-type calcium channel blocker) diminished the response to 71 mmol/l K+ by 53% and 39%, respectively, and their effects were additive (decrease to 8% of controls). Non-selective inorganic blocker of voltage-activated calcium channels LaCl3 (0.1 mmol/l) decreased the response by 83%. Tacrine attenuated the [Ca2+]i response in a concentration-dependent manner. At a concentration of 10 micromol/l it inhibited the [Ca2+]i response by 55% and its inhibitory effect was additive with that of omega-conotoxin GVIA but not with that of nifedipine. An equimolar concentration of paraoxon, an irreversible inhibitor of cholinesterases, had no influence on [Ca2+]i response. Tacrine exhibited the same inhibitory effect when paraoxon was present. In conclusion, our data indicate that high-voltage-activated calcium channels of the L-type and the N-type are both present in the SN56 cells but that they are fully expressed only after 6-7 days in culture. Tacrine attenuates the influx of calcium by inhibiting the L-type calcium channels. This inhibitory effect is not a consequence of the anticholinesterase activity of tacrine. The finding that low micromolar concentrations of tacrine may interfere with calcium-dependent events is likely to be of importance for the evaluation of the therapeutic potential of the drug.
Collapse
Affiliation(s)
- V Dolezal
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská, Prague.
| | | | | |
Collapse
|
11
|
Abstract
Primary cultures of postganglionic sympathetic neurons were established more than 30 years ago. More recently, these cultures have been used to characterize various neurotransmitter receptors that govern sympathetic transmitter release. These receptors may be categorized into at least three groups: (1) receptors which evoke transmitter release: (2) receptors which facilitate; (3) receptors which inhibit, depolarization-evoked release. Group (1) comprises nicotinic and muscarinic acetylcholine receptors, P2X purinoceptors and pyrimidinoceptors. Group (2) currently harbours beta-adrenoceptors, P2 purinoceptors, receptors for PACAP and VIP, as well as prostanoid EP1 receptors. In group (3), muscarinic cholinoceptors, alpha 2- and beta-adrenoceptors, P2 purinoceptors, and receptors for the neuropeptides NPY, somatostatin (SRIF1) and LHRH, as well as opioid (delta and kappa) receptors can be found. Receptors which regulate transmitter release from neurons in cell culture may be located either at the somatodendritic region or at the sites of exocytosis, i.e. the presynaptic specializations of axons. Most of the receptors that evoke release are located at the soma. There ionotropic receptors cause depolarizations to generate action potentials which then trigger Ca(2+)-dependent exocytosis at axon terminals. The signalling mechanisms of metabotropic receptors which evoke release still remain to be identified. Receptors which facilitate depolarization-evoked release appear to be located preferentially at presynaptic sites and presumably act via an increase in cyclic AMP. Receptors which inhibit stimulation evoked release are also presynaptic origin and most commonly rely on a G protein-mediated blockade of voltage-gated Ca2+ channels. Results obtained with primary cell cultures of postganglionic sympathetic neurons have now supplemented previous data about neurotransmitter receptors involved in the regulation of ganglionic as well as sympatho-effector transmission. In the future, this technique may prove useful to identify yet unrecognized receptors which control the output of the sympathetic nervous system and to elucidate underlying signalling mechanisms.
Collapse
Affiliation(s)
- S Boehm
- Department of Neuropharmacology, University of Vienna, Austria.
| | | |
Collapse
|
12
|
Dolezal V, Lee K, Schobert A, Hertting G. The influx of Ca2+ and the release of noradrenaline evoked by the stimulation of presynaptic nicotinic receptors of chick sympathetic neurons in culture are not mediated via L-, N-, or P-type calcium channels. Brain Res 1996; 740:75-80. [PMID: 8973800 DOI: 10.1016/s0006-8993(96)00876-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have shown earlier that nicotinic agonists induce the release of noradrenaline from chick sympathetic neurons in culture in two ways: (a) by activating the postsynaptic nicotinic receptors on nerve cell bodies, giving rise to spreading electrical activity and opening of voltage operated calcium channels in neuronal processes; (b) by activating the presynaptic nicotinic receptors on neuronal processes. In the present work, we investigated the contribution of various pathways to the observed Ca2+ influx and subsequent noradrenaline release. Sympathetic neurons in culture were stimulated either by the nicotinic agonist dimethylphenylpiperazinium or electrically, in the presence or absence of tetrodotoxin and of specific blockers of calcium or nicotinic channels, and the effects on [Ca2+]i in the area of neuronal processes and on noradrenaline release were measured. Under control conditions, the N-type channel blocker omega-conotoxin (0.1 mumol/l) diminished the release of noradrenaline and the increase of intraterminal Ca2+ by 48% and 55%, respectively, whereas the L-type channel blocker (+)Bay k 8644 (1 mumol/l) diminished the release of noradrenaline by 25% and the increase of [Ca2+]i by 39%. The P-type channel blocker omega-agatoxin (0.3 mumol/l) had no effect. The effects of the L-type channel ligands were complex and could only be explained on the assumption that, at high concentrations, these drugs also act as nicotinic antagonists. Tetrodotoxin blocked the Ca2+ response evoked by electrical stimulation whereas DMPP applied in the presence of tetrodotoxin still evoked an increase of [Ca2+]i and the release of noradrenaline (27% and 30% of control without tetrodotoxin, respectively). These residual responses were not blocked by any of the calcium channel blockers used or by their combination. Apparently, a substantial part of the influx of Ca2+ induced by the activation of presynaptic nicotinic receptors is not carried by the N-, L- or P-type channels and probably occurs directly via the open channels of nicotinic receptors.
Collapse
Affiliation(s)
- V Dolezal
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | |
Collapse
|