1
|
Acute administration of cyclosporine A does not impair attention or memory performance in healthy men. Behav Pharmacol 2017; 28:255-261. [DOI: 10.1097/fbp.0000000000000281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Cheng XY, He S, Liang XF, Song Y, Yuan XC, Li L, Wen ZY, Cai WJ, Tao YX. Molecular cloning, expression and single nucleotide polymorphisms of protein phosphatase 1 (PP1) in mandarin fish ( Siniperca chuatsi ). Comp Biochem Physiol B Biochem Mol Biol 2015; 189:69-79. [DOI: 10.1016/j.cbpb.2015.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 01/27/2023]
|
3
|
Malve HO, Raut SB, Marathe PA, Rege NN. Effect of combination of Phyllanthus emblica, Tinospora cordifolia, and Ocimum sanctum on spatial learning and memory in rats. J Ayurveda Integr Med 2015; 5:209-15. [PMID: 25624694 PMCID: PMC4296432 DOI: 10.4103/0975-9476.146564] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 11/18/2022] Open
Abstract
Background: There has been a steady rise in number of patients suffering from dementia including dementia associated with Alzheimer's disease. Effective treatment of Alzheimer's disease dementia is an unmet medical need. Objective: To evaluate effects of formulation containing combination of Phyllanthus emblica (Pe) and Tinospora cordifolia (Tc) with and without Ocimum sanctum (Os) on learning and memory performance of normal and memory impaired rats in complex maze and compare with effects of Tinospora cordifolia and Phyllanthus emblica alone. Materials and Methods: Wistar rats; either sex (100–150 g) were divided in seven groups Control, Piracetam, Rivastigmine, Tc, Pe, Formulation 1 (Tc + Pe), and Formulation 2 (Tc + Pe + Os). The study was divided in four parts: In part 1 memory enhancement was tested in normal rats. In part 2, 3, and 4 the effects of drugs were tested in Scopolamine-, Diazepam-, and Cyclosporine-induced amnesia. Hebb–Williams maze was used to test for learning and memory. Time required to trace food and number of errors in maze were noted. Results: In normal rats, all test drugs showed significant reduction in time required to trace the food and number of errors after 24 h compared with vehicle control. Formulations 1 and 2 reduced the time required to trace food and number of errors and the results were comparable with positive control groups and comparators Tc and Pe. Formulations 1 and 2 reversed amnesia produced by Scopolamine, Diazepam, and Cyclosporine when compared with vehicle control and showed comparable results with those of positive control groups and comparators Tc and Pe. Conclusion: Formulations 1 and 2 demonstrated nootropic activity and both the formulations showed comparable nootropic activity with that of Tc and Pe alone.
Collapse
Affiliation(s)
- Harshad O Malve
- Medical Advisor, Novo Nordisk India Limited, Seth GSMC and KEM Hospital, Mumbai, India
| | - Sanket B Raut
- Department of Pharmacology and Therapeutics, Seth GSMC and KEM Hospital, Mumbai, India
| | - Padmaja A Marathe
- Department of Pharmacology and Therapeutics, Seth GSMC and KEM Hospital, Mumbai, India
| | - Nirmala N Rege
- Department of Pharmacology and Therapeutics, Seth GSMC and KEM Hospital, Mumbai, India
| |
Collapse
|
4
|
Role of calcineurin in inhibiting disadvantageous associations. Neuroscience 2012; 203:144-52. [PMID: 22230044 DOI: 10.1016/j.neuroscience.2011.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 11/20/2022]
Abstract
Calcineurin is an important calcium-dependent phosphatase that is evolutionarily conserved in all studied species, and has been implicated in the consolidation and maintenance of new memories. However, recent evidence has extended the role of calcineurin. In contrast to learning tasks that require behavioral acquisition, extinction tasks that require behavioral inhibition have been shown to be reliant on calcineurin. In the present study, using a Morris water maze, we have demonstrated that pharmacological inhibition of calcineurin causes augmentation of spatial learning and perseveration of spatial reversal-learning in a dose-dependent manner. Direct infusions of a specific calcineurin inhibitor, cyclosporine A, into the dorsal hippocampi bilaterally, prior to spatial learning, led to increased learning, whereas similar injections of cyclosporine A following a spatial learning task and prior to a spatial reversal-learning task resulted in perseveration of reversal-learning. Our results indicate that injections of cyclosporin A resulted in decreased calcineurin activity in the dorsal hippocampus and increased difficulty in switching to new task demands, in a dose-dependent manner, despite evidence indicating no deficit in ability to learn new information. Therefore, calcineurin activity contributes to the inhibition of previously learned but unwanted behavioral responses during competitive spatial learning. Involvement of calcineurin in extinction of fear memory has recently been demonstrated. Our results also indicate that calcineurin activity plays a role in memory extinction in spatial memory tasks, and therefore, suggest that calcineurin might be an important molecule in mediating behavioral flexibility in general.
Collapse
|
5
|
Giridharan VV, Thandavarayan RA, Mani V, Ashok Dundapa T, Watanabe K, Konishi T. Ocimum sanctum Linn. Leaf Extracts Inhibit Acetylcholinesterase and Improve Cognition in Rats with Experimentally Induced Dementia. J Med Food 2011; 14:912-9. [DOI: 10.1089/jmf.2010.1516] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Rajarajan Amirthalingam Thandavarayan
- Department of Functional and Analytical Food Sciences, Niigata University of Pharmacy & Applied Life Sciences (NUPALS), Niigata, Japan
- Department of Clinical Pharmacology, Niigata University of Pharmacy & Applied Life Sciences (NUPALS), Niigata, Japan
| | - Vasudevan Mani
- Brain Research Laboratory, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Campus Puncak Alam, Malaysia
| | | | - Kenichi Watanabe
- Department of Clinical Pharmacology, Niigata University of Pharmacy & Applied Life Sciences (NUPALS), Niigata, Japan
| | - Tetsuya Konishi
- Department of Functional and Analytical Food Sciences, Niigata University of Pharmacy & Applied Life Sciences (NUPALS), Niigata, Japan
| |
Collapse
|
6
|
Abstract
It is well established that lead (Pb) exposure in humans leads to learning and memory impairment. However, the biological and molecular mechanisms are still not clearly understood. When over activated, serine/threonine protein phosphatases are known to function as a constraint on learning and memory. Activation of these phosphatases can also result in cytoskeletal changes that will adversely affect learning and memory. We investigated the effects of Pb exposure on these phosphatases in primary cultures of human neurons. Neurons were exposed to physiologically relevant concentrations of Pb (5, 10, 20 and 40 μg/dL) and total phosphatase and PP2A activities were determined in neuronal lysate using para-nitrophenyl phosphate (pNPP), and a PP2A-specific phosphopeptide as substrates. Expression of various serine/threonine phosphatases, tau and its phosphorylation state were determined by Western blot (WB) and immunocytochemistry (ICC). We found that the total phosphatase activity in the neuronal lysate was increased by 30–50% by all the concentrations of Pb tested. PP2A activity was increased by 5 μg/dL Pb only. PP1 expression was increased (ranging from 25–50%) by 10, 20 and 40 μg/dL of Pb. PP2B expression was increased substantially (up to 2.5-fold) by 10 μg/dL Pb, whereas, higher concentrations did not show any effect. On the other hand, Pb (at all concentrations used) decreased expression of PP2A and PP5. Pb exposure induced substantial hyperphosphorylation of tau at serine 199/202 by 5 and 10 μg/dL Pb, and Threonine 231 at higher doses. Expression of total tau was mostly unaffected by lead. Immunocytochemistry data confirmed the WB results of expression of PP1, PP2A, tau protein and the phosphorylation of tau. These results support our hypothesis that Pb exposure up regulates some of the serine/threonine phosphatases (PP1 and PP2B) that are known to impair memory formation, and suggest a novel mechanism of Pb neurotoxicity.
Collapse
|
7
|
Oberbeck DL, McCormack S, Houpt TA. Intra-amygdalar okadaic acid enhances conditioned taste aversion learning and CREB phosphorylation in rats. Brain Res 2010; 1348:84-94. [PMID: 20599840 DOI: 10.1016/j.brainres.2010.06.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 11/26/2022]
Abstract
Protein phosphatases (PPs) regulate many substrates implicated in learning and memory. Conditioned taste aversion (CTA) learning, in which animals associate a novel taste paired with a toxin and subsequently avoid the taste, is dependent on several serine/threonine phosphatase substrates and the PP1-binding protein spinophilin. In order to examine the effects of PP1/2A blockade on CTA acquisition and extinction, rats received bilateral infusions of okadaic acid (OA) (100nM, 1microl/hemisphere) or vehicle (0.15M NaCl) into the amygdala either 5min prior to, or 5min after, a single pairing of sodium saccharin (0.125%, 10-min access) and LiCl or NaCl (0.15M, 3ml/kg i.p.). Two-bottle, 24-h preference tests were conducted for 13days to measure CTA expression and extinction. Rats conditioned with saccharin and LiCl showed a decreased preference for saccharin, and OA administered before (but not after) the pairing of saccharin and LiCl resulted in a significantly stronger CTA that did not extinguish over 13days. The enhancement of the CTA was not due to aversive effects of OA, because rats given OA and a pairing of saccharin and NaCl did not acquire a CTA. Finally, OA administration increased levels of phosphorylated CREB immunoreactivity following a CTA trial. Together, these results suggest a critical role for PP1/2A during normal CTA learning. Because CTA learning was enhanced only when OA was given prior to conditioning, phosphatase activity may be a constraint on learning during the taste-toxin interval but not during acquisition and consolidation processes that occur after toxin administration.
Collapse
Affiliation(s)
- Denesa L Oberbeck
- Department of Biological Science, Program in Neuroscience, The Florida State University, Tallahassee, FL 32306, USA
| | | | | |
Collapse
|
8
|
Vianna MRM, Coitinho A, Izquierdo L, Izquierdo I. Effects of intrahippocampal administration of the phosphatase inhibitor okadaic acid: Dual effects on memory formation. Dement Neuropsychol 2010; 4:23-27. [PMID: 29213656 PMCID: PMC5619526 DOI: 10.1590/s1980-57642010dn40100004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Protein phosphorylation mediated by serine-threonine kinases in the hippocampus
is crucial to the synaptic modifications believed to underlie memory formation.
The role of phosphatases has been the focus of comparatively little study.
Collapse
Affiliation(s)
- Monica R M Vianna
- Faculty of Biosciences, National Institute of Translational Medicine
| | - Adriana Coitinho
- Faculty of Biosciences, National Institute of Translational Medicine
| | - Luciana Izquierdo
- Memory Center, Brain Institute and National Institute of Translational Neuroscience, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Ivan Izquierdo
- Memory Center, Brain Institute and National Institute of Translational Neuroscience, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre RS, Brazil
| |
Collapse
|
9
|
Luo J, Ma J, Yu DY, Bu F, Zhang W, Tu LH, Wei Q. Infusion of FK506, a specific inhibitor of calcineurin, induces potent tau hyperphosphorylation in mouse brain. Brain Res Bull 2008; 76:464-8. [PMID: 18534252 DOI: 10.1016/j.brainresbull.2007.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 11/29/2022]
Abstract
Calcineurin is a Ca2+/calmodulin-dependent protein phosphatase expressed at high levels in brain. Many electrophysiological and pharmacological findings have shown that calcineurin plays an important role in brain function. FK506 is always used as a specific calcineurin inhibitor in these researches. But these reports did not quantify the calcineurin activity in FK506-treated brain. Here we first investigated the inhibitory effect of FK506 injected into the mouse brain ventricle on CN activity. FK506 reduced calcineurin activity in a dose-dependent manner, without affecting its amount. Injection of 12.5 nmol FK506 also significantly enhanced the phosphorylation of tau at Ser-262 (12E8 site), Ser-198, Ser-199, and/or Ser-202 (Tau-1 site) and Ser-396 and/or Ser-404 (PHF-1 site), without affecting total tau. It is suggested that calcineurin plays an important role in tau phosphorylation, dependently of its activity. Compared with the effects of cyclosporin A, another specific inhibitor of CN in our previous study, we first evaluate that such infusion of FK506 is more effective than that of cyclosporin A on calcineurin inhibition and tau phosphorylation.
Collapse
Affiliation(s)
- Jing Luo
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Ng KT. Reinforcement, glucose metabolism and memory formation: A possible role for astrocytes. AUSTRALIAN JOURNAL OF PSYCHOLOGY 2007. [DOI: 10.1080/00049539708260460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Yu DY, Luo J, Bu F, Song GJ, Zhang LQ, Wei Q. Inhibition of calcineurin by infusion of CsA causes hyperphosphorylation of tau and is accompanied by abnormal behavior in mice. Biol Chem 2006; 387:977-83. [PMID: 16913847 DOI: 10.1515/bc.2006.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Calcineurin is a Ca2+/calmodulin-dependent phosphatase that dephosphorylates numerous substrates in different neuronal compartments. Genetic and pharmacological studies have provided insight into its involvement in the brain. Cyclosporin A (CsA) is used as a specific calcineurin inhibitor in many pharmacological experiments. However, the calcineurin activity of CsA-treated brain has not been reported. To examine the relationship between calcineurin activity and brain function, we injected CsA into the left lateral ventricle of the mouse brain and assayed calcineurin activity. CsA reduced calcineurin activity in a dose-dependent manner, without affecting the amount of calcineurin protein. Assays of the effect of protein phosphatase inhibitors on CsA-injected mouse brain extracts and kinetic analysis revealed that CsA inhibited calcineurin activity in a non-competitive manner in vivo, in agreement with in vitro results. Injection of CsA led to enhanced phosphorylation of tau at Ser-262 (12E8 site), Ser-198, Ser-199, and/or Ser-202 (Tau-1 site) and Ser-396 and/or Ser-404 (PHF-1 site), as well as to impaired spatial memory, which are two characteristic features of Alzheimer's disease. We propose that inhibition of calcineurin may play an important role in Alzheimer's disease.
Collapse
Affiliation(s)
- Da-yu Yu
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, China
| | | | | | | | | | | |
Collapse
|
12
|
Ishida A, Shigeri Y, Taniguchi T, Kameshita I. Protein phosphatases that regulate multifunctional Ca2+/calmodulin-dependent protein kinases: from biochemistry to pharmacology. Pharmacol Ther 2004; 100:291-305. [PMID: 14652114 DOI: 10.1016/j.pharmthera.2003.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs) play pivotal roles in Ca(2+) signaling pathways, such as the regulation of the neuronal functions of learning, memory, and neuronal cell death. The activities of the kinases are strictly regulated by protein phosphorylation/dephosphorylation. Although the activation mechanisms for multifunctional CaMKs through phosphorylation, which correspond to "switch on," have been extensively studied, the negative regulatory mechanisms through dephosphorylation, which correspond to "switch off," have not. In this review, we focused on the regulation of multifunctional CaMKs by the protein phosphatases responsible. We first summarized the current understanding of negative regulation of CaMKs by known protein phosphatases and their physiological significance. We then discussed newly developed methods for detection of protein phosphatases involved in the regulation of CaMKs. We also summarized the biochemical properties of a novel protein phosphatase, which we isolated with the new methods and designated as CaMK phosphatase (CaMKP), and its homologue. Pharmacological implications for neuronal functions including memory and neuronal cell death are discussed from the viewpoint that regulation of protein kinase activity can be elucidated by focusing on protein phosphatases involved in its "switch off" mechanism.
Collapse
Affiliation(s)
- Atsuhiko Ishida
- Department of Biochemistry, Asahikawa Medical College, Asahikawa, 078-8510, Japan.
| | | | | | | |
Collapse
|
13
|
Hale MW, Crowe SF. Facilitation and disruption of memory for the passive avoidance task in the day-old chick using dopamine D1 receptor compounds. Behav Pharmacol 2003; 14:525-32. [PMID: 14557720 DOI: 10.1097/00008877-200311000-00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This series of studies provides a behavioural account of dopamine D1-receptor-dependent facilitation and disruption of memory for the single-trial passive avoidance task in the day-old chick. The D1 antagonist, SCH23390, induced memory disruption in a dose-dependent manner from 60 min after training with a strong (100% methyl anthranilate) aversant experience. The D1 agonist, SKF38393, was found to facilitate memory in chicks given a weak (20% vol/vol methyl anthranilate) training experience. The D2 antagonist, sulpiride, and the D2 agonist, quinpirole, showed no memory effects. The research indicates an important role for dopamine D1-dependent mechanisms in memory formation in the chick.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Age Factors
- Animals
- Appetitive Behavior/drug effects
- Association Learning/drug effects
- Avoidance Learning/drug effects
- Benzazepines/pharmacology
- Brain/drug effects
- Chickens
- Discrimination Learning/drug effects
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Dose-Response Relationship, Drug
- Injections, Subcutaneous
- Memory, Short-Term/drug effects
- Mental Recall/drug effects
- Quinpirole/pharmacology
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D2/drug effects
- Retention, Psychology/drug effects
- Sulpiride/pharmacology
- Taste/drug effects
Collapse
Affiliation(s)
- M W Hale
- School of Psychological Science, La Trobe University, Bundoora, Australia 3086
| | | |
Collapse
|
14
|
Bennett PC, Moutsoulas P, Lawen A, Perini E, Ng KT. Novel effects on memory observed following unilateral intracranial administration of okadaic acid, cyclosporin A, FK506 and [MeVal4]CyA. Brain Res 2003; 988:56-68. [PMID: 14519526 DOI: 10.1016/s0006-8993(03)03344-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The involvement of protein phosphatases and peptidyl-prolyl cis/trans isomerases (PPIases) in memory formation in the chick has previously been investigated using a single-trial learning task. In these studies, inhibitory agents were administered bilaterally directly to a critical area of the chick brain. These studies are now extended to investigate whether similar effects are obtained if the drugs are administered unilaterally. All of the effects reported previously following bilateral administration of okadaic acid (OA), cyclosporin A (CyA), FK506 and [MeVal(4)]CyA can be attributed to their action in just one hemisphere. OA, at a concentration known to selectively inhibit PP2A in vitro (0.5 nM) results in permanent memory loss from 30-40 min post-training when injected in the left hemisphere, but has no effect when injected in the right hemisphere. A higher concentration of OA (100 nM), which inhibits both PP2A and PP1 in vitro, has a similar effect in the left hemisphere but causes a transient period of memory loss from 10-20 min post-training when injected in the right hemisphere. CyA (5 nM and 20 nM), which inhibits both PP2B and PPIase activity, causes permanent memory loss from 60 min post-training when injected into the left hemisphere, an effect also observed following administration of FK506 (20 nM), which also inhibits PP2B and PPIase activity, and [MeVal(4)]CyA (5 nM), which inhibits PPIase activity but not PP2B activity. Administration of CyA (20 nM) and FK506, but not [MeVal(4)]CyA, in the right hemisphere leads to a transient period of memory loss from 10-20 min post-training. These results confirm significant roles for phosphatases and PPIases in memory processing but challenge previous conclusions drawn on the basis of bilateral drug administration protocols.
Collapse
Affiliation(s)
- Pauleen C Bennett
- Department of Psychology, School of Psychology, Psychiatry and Psychological Medicine, Building F, Monash University, P.O. Box 197, Caulfield East 3145, Victoria, Australia.
| | | | | | | | | |
Collapse
|
15
|
Luo J, Yin JH, Wei Q. The effect of calcineurin activator, extracted from Chinese herbal medicine, on memory and immunity in mice. Pharmacol Biochem Behav 2003; 75:749-54. [PMID: 12957215 DOI: 10.1016/s0091-3057(03)00148-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Calcineurin (CN) is a highly abundant phosphatase in the brain and it is the only Ca(2+)- and calmodulin-dependent protein serine/threonine phosphatase. There is considerable evidence to suggest that CN plays an essential role in activity-dependent modulation of synaptic efficacy. It has been shown recently that inhibitors of CN, such as CsA or FK506, impair memory formation in day-old chicks. In our present study, extract of Fructus cannabis (EFC) with activation of CN, extracted from Chinese traditional medicine, was used to determine the effects on memory and immunity. In the step-down-type passive avoidance test, the plant extract (0.2 g/kg) significantly improved amnesia induced by chemical drugs in mice, and greatly enhanced the ability of cell-mediated type hypersensitivity and nonspecific immune responses in normal mice. The present study provided pharmacological evidence for Chinese herbal medicine screening from molecular model.
Collapse
MESH Headings
- Amnesia, Transient Global/chemically induced
- Amnesia, Transient Global/drug therapy
- Animals
- Calcineurin/metabolism
- Cannabis
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Hypersensitivity, Delayed/chemically induced
- Hypersensitivity, Delayed/drug therapy
- Hypersensitivity, Delayed/immunology
- Immunity, Cellular/drug effects
- Immunity, Cellular/immunology
- Male
- Medicine, Chinese Traditional/methods
- Memory/drug effects
- Memory/physiology
- Mice
- Seeds
Collapse
Affiliation(s)
- Jing Luo
- Department of Biochemistry and Molecular Biology, Beijing Normal University, China
| | | | | |
Collapse
|
16
|
Homayoun H, Khavandgar S, Mehr SE, Namiranian K, Dehpour AR. The effects of FK506 on the development and expression of morphine tolerance and dependence in mice. Behav Pharmacol 2003; 14:121-7. [PMID: 12658072 DOI: 10.1097/00008877-200303000-00003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
FK506 is an immunophilin-binding ligand that inhibits calcineurin and decreases nitric oxide (NO) production in the nervous tissues. We examined the effects in mice of systemic treatment with FK506 on the induction and expression of morphine (s.c.) tolerance and dependence and compared them with the effects of the non-specific NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), and specific inducible NO synthase inhibitor, aminoguanidine. FK506 (0.5-10 mg/kg, s.c.) exerted inhibitory effects on both development and expression of tolerance to morphine-induced antinociception. FK506 also significantly decreased the expression of morphine dependence, as assessed by naloxone-precipitated (2 mg/kg, i.p.) withdrawal syndrome, but a similar effect was not found for the development of morphine dependence. A similar pattern of effects was observed with L-NAME (3-20 mg/kg, i.p.), while aminoguanidine (50-100 mg/kg, i.p.) did not alter tolerance or dependence. Examining the possible interaction between their inhibitory effects on tolerance and dependence, we combined the subeffective doses of FK506 (0.5 or 1 mg/kg) with L-NAME (3 mg/kg) or aminoguanidine (100 mg/kg). The combination of FK506 with L-NAME, but not with aminoguanidine, significantly decreased the development and expression of tolerance and expression of dependence. These data show the effectiveness of FK506 on morphine tolerance and dependence and suggest an additive effect between FK506 and the inhibition of constitutive NO synthesis in this regard.
Collapse
Affiliation(s)
- H Homayoun
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
17
|
Alessandri B, Rice AC, Levasseur J, DeFord M, Hamm RJ, Bullock MR. Cyclosporin A improves brain tissue oxygen consumption and learning/memory performance after lateral fluid percussion injury in rats. J Neurotrauma 2002; 19:829-41. [PMID: 12184853 DOI: 10.1089/08977150260190429] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) triggers a complex pathophysiological cascade, leading to cell death. A major factor in the pathogenesis of TBI is neuronal overloading with calcium, causing the opening of mitochondrial permeability transition pores (MPTP), which consequently inhibit normal mitochondrial function. The immunosuppressant Cyclosporin A (CsA) has been shown to block MPTPs, and to be neuroprotective in ischemia and TBI. However, the translation of these effects on mitochondrial function, into behavioral endpoints has not been investigated thoroughly. Therefore, we tested the effect of a low, clinically evaluated, CsA dose of 0.125 mg/kg (infused for 3 h) and a higher "known" neuroprotective dose of 18.75 mg/kg on brain tissue O(2) consumption, and on motor and cognitive performance following lateral fluid percussion injury (FPI) in rats. CsA at both concentrations abolished the 25% decrease in O(2) consumption (VO(2)), seen in saline-treated animals at 5 h post-FPI. Furthermore, the lower dose of CsA also ameliorated acute motor deficits (days 1-5 post-FPI) and learning and memory impairments in a Morris water maze test on days 11-15 post-FPI. Although, the higher dose of CsA improved cognitive performance, it worsened acute motor functional recovery. These results suggest, that the CsA-induced preservation of mitochondrial function, as assessed by tissue O(2) consumption, directly translated into improvements in motor and cognitive behavior.
Collapse
Affiliation(s)
- Beat Alessandri
- Department of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | |
Collapse
|
18
|
Weeber EJ, Levy M, Sampson MJ, Anflous K, Armstrong DL, Brown SE, Sweatt JD, Craigen WJ. The role of mitochondrial porins and the permeability transition pore in learning and synaptic plasticity. J Biol Chem 2002; 277:18891-7. [PMID: 11907043 DOI: 10.1074/jbc.m201649200] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial outer membrane permeability is conferred by a family of porin proteins. Mitochondrial porins conduct small molecules and constitute one component of the permeability transition pore that opens in response to apoptotic signals. Because mitochondrial porins have significant roles in diverse cellular processes including regulation of mitochondrial ATP and calcium flux, we sought to determine their importance in learning and synaptic plasticity in mice. We show that fear conditioning and spatial learning are disrupted in porin-deficient mice. Electrophysiological recordings of porin-deficient hippocampal slices reveal deficits in long and short term synaptic plasticity. Inhibition of the mitochondrial permeability transition pore by cyclosporin A in wild-type hippocampal slices reproduces the electrophysiological phenotype of porin-deficient mice. These results demonstrate a dynamic functional role for mitochondrial porins and the permeability transition pore in learning and synaptic plasticity.
Collapse
Affiliation(s)
- Edwin J Weeber
- Division of Neuroscience, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bennett PC, Schmidt L, Lawen A, Moutsoulas P, Ng KT. Cyclosporin A, FK506 and rapamycin produce multiple, temporally distinct, effects on memory following single-trial, passive avoidance training in the chick. Brain Res 2002; 927:180-94. [PMID: 11821011 DOI: 10.1016/s0006-8993(01)03353-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Few studies have used a pharmaco-behavioural methodology to directly investigate roles for the calcium-dependent protein phosphatase calcineurin (CaN) in memory formation, due partly to the absence of specific inhibitory agents. A number of drugs with different inhibitory profiles were used to examine this issue in groups of chicks trained on a single-trial, passive-avoidance task. Bilateral intracranial administration of the immunosuppressants FK506 and cyclosporin A (CyA) led to two temporally distinct effects, distinguished by the concentration of drug required and the effective time of administration relative to training. In addition to inhibiting CaN, CyA and FK506 inhibit distinct classes of peptidyl prolyl-cis/trans-isomerases (PPIases). Other agents known to inhibit these enzymes, including the Map kinase inhibitor Rapamycin, also induced memory deficits in a complex, dose- and time-of-administration-dependent, manner. The data fail to conclusively implicate CaN in memory formation, but are consistent with proposals that a phosphatase cascade may participate in an early stage of information storage. PPIases may be required at a later stage to catalyse the folding of new or translocated proteins, the synthesis of which is required for formation of long-term memory, although other possible explanations for the data remain to be investigated.
Collapse
Affiliation(s)
- Pauleen C Bennett
- Department of Psychology, Clayton Campus, Monash University, Victoria 3800, Australia.
| | | | | | | | | |
Collapse
|
20
|
Vogel KW, Briesewitz R, Wandless TJ, Crabtree GR. Calcineurin inhibitors and the generalization of the presenting protein strategy. ADVANCES IN PROTEIN CHEMISTRY 2001; 56:253-91. [PMID: 11329856 DOI: 10.1016/s0065-3233(01)56008-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- K W Vogel
- Department of Pathology, Stanford University Medical School, USA
| | | | | | | |
Collapse
|
21
|
Bennett PC, Zhao W, Ng KT. Concentration-dependent effects of protein phosphatase (PP) inhibitors implicate PP1 and PP2A in different stages of memory formation. Neurobiol Learn Mem 2001; 75:91-110. [PMID: 11124049 DOI: 10.1006/nlme.1999.3959] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous studies have demonstrated roles for protein phosphorylation and for specific kinases in memory formation; however, a role for specific protein phosphatases has not been established. Previous studies using pharmacobehavioral methods to implicate protein phosphatase activity in memory formation have been unable to discriminate between protein phosphatases 1 (PP1) and 2A (PP2A), as available cell-permeable agents generally inhibit both enzyme classes. To address this difficulty the present study exploited differences in the potency of the selective phosphatase inhibitor, okadaic acid, toward PP1 and PP2A. Within the context of a temporally precise animal model of memory, developed using the day-old chick (Gallus domesticus), acute administration of various concentrations of okadaic acid was found to disrupt two temporally distinct stages of memory formation. When administered bilaterally into an area of the chick brain implicated in memory formation, concentrations of okadaic acid known to selectively inhibit PP2A in vitro disrupted memory from 50 min posttraining. Higher concentrations, reported to inhibit both PP2A and PP1 in vitro, produced significant retention deficits from 20 min posttraining. Identical temporally specific effects were also obtained by varying the concentration and time of administration of calyculin A, a phosphatase inhibitor with equal potency toward both enzyme classes. Hence, different phosphatase enzymes may contribute to different stages of the enzymatic cascade believed to underlie memory formation.
Collapse
Affiliation(s)
- P C Bennett
- Department of Psychology, Monash University, Clayton, Victoria, 3168, Australia
| | | | | |
Collapse
|
22
|
|
23
|
|
24
|
Laming PR, Kimelberg H, Robinson S, Salm A, Hawrylak N, Müller C, Roots B, Ng K. Neuronal-glial interactions and behaviour. Neurosci Biobehav Rev 2000; 24:295-340. [PMID: 10781693 DOI: 10.1016/s0149-7634(99)00080-9] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Both neurons and glia interact dynamically to enable information processing and behaviour. They have had increasingly intimate, numerous and differentiated associations during brain evolution. Radial glia form a scaffold for neuronal developmental migration and astrocytes enable later synapse elimination. Functionally syncytial glial cells are depolarised by elevated potassium to generate slow potential shifts that are quantitatively related to arousal, levels of motivation and accompany learning. Potassium stimulates astrocytic glycogenolysis and neuronal oxidative metabolism, the former of which is necessary for passive avoidance learning in chicks. Neurons oxidatively metabolise lactate/pyruvate derived from astrocytic glycolysis as their major energy source, stimulated by elevated glutamate. In astrocytes, noradrenaline activates both glycogenolysis and oxidative metabolism. Neuronal glutamate depends crucially on the supply of astrocytically derived glutamine. Released glutamate depolarises astrocytes and their handling of potassium and induces waves of elevated intracellular calcium. Serotonin causes astrocytic hyperpolarisation. Astrocytes alter their physical relationships with neurons to regulate neuronal communication in the hypothalamus during lactation, parturition and dehydration and in response to steroid hormones. There is also structural plasticity of astrocytes during learning in cortex and cerebellum.
Collapse
Affiliation(s)
- P R Laming
- School of Biology and Biochemistry, Medical Biology Centre, 97 Lisburn Road, Belfast, UK.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bennett PC, Singaretnam LG, Zhao WQ, Lawen A, Ng KT. Peptidyl-prolyl-cis/trans-isomerase activity may be necessary for memory formation. FEBS Lett 1998; 431:386-90. [PMID: 9714548 DOI: 10.1016/s0014-5793(98)00795-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
At present, evidence for a plethora of physiological roles for the different classes of peptidyl-prolyl-cis/trans-isomerases (PPIases, EC 5.2.1.8) is emerging. Cyclosporin A (CyA) has been previously reported to disrupt memory formation in a temporally specific manner, when administered intracranially to day-old chicks trained on a single-trial, passive-avoidance task [Bennett, P.C., Zhao, W., Lawen, A. and Ng, K.T. (1996) Brain Res. 730, 107-1171. CyA is known to inhibit both the PPIase activity of cyclophilin and, indirectly, the protein phosphatase activity of calcineurin. Therefore to begin to distinguish between these two functions we studied the effects on memory formation of three non-immunosuppressive CyA analogues, in order to study the involvement of cyclophilins. These drugs retain the capacity to bind to and inhibit the PPIase activity of cyclophilin, but do not bind in the complex with cyclophilin to calcineurin and, therefore, do not inhibit its phosphatase activity. All three drugs exert effects on memory formation comparable to those induced by CyA, significantly inhibiting memory formation when injected intracranially (50 fmol per hemisphere) immediately following training. Brain extracts from chicks treated with [MeVal4]CyA show a strong inhibition of cyclophilin activity. These data show a requirement for the PPIase activity of a cyclophilin for successful memory formation and constitute the first set of data establishing a physiological role for a cyclophilin.
Collapse
Affiliation(s)
- P C Bennett
- Department of Psychology, Monash University, Clayton, Vic., Australia
| | | | | | | | | |
Collapse
|
26
|
de la Pompa JL, Timmerman LA, Takimoto H, Yoshida H, Elia AJ, Samper E, Potter J, Wakeham A, Marengere L, Langille BL, Crabtree GR, Mak TW. Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 1998; 392:182-6. [PMID: 9515963 DOI: 10.1038/32419] [Citation(s) in RCA: 486] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In lymphocytes, the expression of early immune response genes is regulated by NF-AT transcription factors which translocate to the nucleus after dephosphorylation by the Ca2+-dependent phosphatase, calcineurin. We report here that mice bearing a disruption in the NF-ATc gene fail to develop normal cardiac valves and septa and die of circulatory failure before day 14.5 of development. NF-ATc is first expressed in the heart at day 7.5, and is restricted to the endocardium, a specialized endothelium that gives rise to the valves and septum. Within the endocardium, specific inductive events appear to activate NF-ATc: it is localized to the nucleus only in endocardial cells that are adjacent to the interface with the cardiac jelly and myocardium, which are thought to give the inductive stimulus to the valve primordia. Treatment of wild-type embryos with FK506, a specific calcineurin inhibitor, prevents nuclear localization of NF-ATc. These data indicate that the Ca2+/calcineurin/NF-ATc signalling pathway is essential for normal cardiac valve and septum morphogenesis; hence, NF-ATc and its regulatory pathways are candidates for genetic defects underlying congenital human heart disease.
Collapse
Affiliation(s)
- J L de la Pompa
- The Amgen Institute, Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mansuy IM, Mayford M, Jacob B, Kandel ER, Bach ME. Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 1998; 92:39-49. [PMID: 9489698 DOI: 10.1016/s0092-8674(00)80897-1] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To investigate the roles phosphatases play in hippocampal-dependent memory, we studied transgenic mice overexpressing a truncated form of calcineurin. These mice have normal short-term memory but defective long-term memory evident on both a spatial task and on a visual recognition task, providing genetic evidence for the role of the rodent hippocampus in spatial and nonspatial memory. The defect in long-term memory could be fully rescued by increasing the number of training trials, suggesting that the mice have the capacity for long-term memory. We next analyzed mice overexpressing calcineurin in a regulated manner and found the memory defect is reversible and not due to a developmental abnormality. Our behavioral results suggest that calcineurin has a role in the transition from short- to long-term memory, which correlates with a novel intermediate phase of LTP.
Collapse
Affiliation(s)
- I M Mansuy
- Center for Neurobiology and Behavior, College of Physicians and Surgeons of Columbia University, New York State Psychiatric Institute, New York 10032, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
FK506 is a new FDA-approved immunosuppressant used for prevention of allograft rejection in, for example, liver and kidney transplantations. FK506 is inactive by itself and requires binding to an FK506 binding protein-12 (FKBP-12), or immunophilin, for activation. In this regard, FK506 is analogous to cyclosporin A, which must bind to its immunophilin (cyclophilin A) to display activity. This FK506-FKBP complex inhibits the activity of the serine/threonine protein phosphatase 2B (calcineurin), the basis for the immunosuppressant action of FK506. The discovery that immunophilins are also present in the nervous system introduces a new level of complexity in the regulation of neuronal function. Two important calcineurin targets in brain are the growth-associated protein GAP-43 and nitric oxide (NO) synthase (NOS). This review focuses on studies showing that systemic administration of FK506 dose-dependently speeds nerve regeneration and functional recovery in rats following a sciatic-nerve crush injury. The effect appears to result from an increased rate of axonal regeneration. The nerve regenerative property of this class of agents is separate from their immunosuppressant action because FK506-related compounds that bind to FKBP-12 but do not inhibit calcineurin are also able to increase nerve regeneration. Thus, FK506's ability to increase nerve regeneration arises via a calcineurin-independent mechanism (i.e., one not involving an increase in GAP-43 phosphorylation). Possible mechanisms of action are discussed in relation to known actions of FKBPs: the interaction of FKBP-12 with two Ca2+ release-channels (the ryanodine and inositol 1,4,5-triphosphate receptors) which is disrupted by FK506, thereby increasing Ca2+ flux; the type 1 receptor for the transforming growth factor-beta (TGF-beta 1), which stimulates nerve growth factor (NGF) synthesis by glial cells, and is a natural ligand for FKBP-12; and the immunophilin FKBP-52/FKBP-59, which has also been identified as a heat-shock protein (HSP-56) and is a component of the nontransformed glucocorticoid receptor. Taken together, studies of FK506 indicate broad functional roles for the immunophilins in the nervous system. Both calcineurin-dependent (e.g., neuroprotection via reduced NO formation) and calcineurin-independent mechanisms (i.e., nerve regeneration) need to be invoked to explain the many different neuronal effects of FK506. This suggests that multiple immunophilins mediate FK506's neuronal effects. Novel, nonimmunosuppressant ligands for FKBPs may represent important new drugs for the treatment of a variety of neurological disorders.
Collapse
Affiliation(s)
- B G Gold
- Center for Research on Occupational and Environmental Toxicology, Oregon Health Sciences University, Portland 97201, USA
| |
Collapse
|
29
|
O'Dowd BS, Zhao WQ, Ng KT, Robinson SR. Chicks injected with antisera to either S-100 alpha or S-100 beta protein develop amnesia for a passive avoidance task. Neurobiol Learn Mem 1997; 67:197-206. [PMID: 9159758 DOI: 10.1006/nlme.1997.3766] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cellular expression of S-100 beta protein is upregulated in Alzheimer's disease and in Down's syndrome, and this protein has been implicated in memory-related processes in laboratory animals. However, the possibility that the alpha subunit of S-100 is also involved in memory has not yet been examined. In the present study, day-old black Australorp white Leghorn cockerel chicks (Gallus domesticus) received injections of monoclonal antisera to S-100 alpha (1:50) or S-100 beta (1:500) into each hemisphere immediately after training on a one-trial passive avoidance task. The chicks displayed significantly lower retention levels than control birds that had been injected with antisera to carbonic anhydrase, or with saline (p < .01). S-100 alpha antisera had an amnestic effect when injected between 0 and 20 min after training, with memory deficits occurring from 30 min post-learning, at the point of transition between the A and the B phases of the Gibbs-Ng intermediate memory stage. By contrast, the S-100 beta antisera needed to be injected either 5 min before or immediately after training and produced amnesia 10 min earlier, at the start of the A phase of the intermediate memory stage. We conclude that the two subunits of the S-100 protein are required at different points in the sequence of events leading to the consolidation of passive avoidance memory.
Collapse
Affiliation(s)
- B S O'Dowd
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia.
| | | | | | | |
Collapse
|
30
|
Bito H, Deisseroth K, Tsien RW. CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 1996; 87:1203-14. [PMID: 8980227 DOI: 10.1016/s0092-8674(00)81816-4] [Citation(s) in RCA: 878] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
While changes in gene expression are critical for many brain functions, including long-term memory, little is known about the cellular processes that mediate stimulus-transcription coupling at central synapses. In studying the signaling pathways by which synaptic inputs control the phosphorylation state of cyclic AMP-responsive element binding protein (CREB) and determine expression of CRE-regulated genes, we found two important Ca2+/calmodulin (CaM)-regulated mechanisms in hippocampal neurons: a CaM kinase cascade involving nuclear CaMKIV and a calcineurin-dependent regulation of nuclear protein phosphatase 1 activity. Prolongation of the synaptic input on the time scale of minutes, in part by an activity-induced inactivation of calcineurin, greatly extends the period over which phospho-CREB levels are elevated, thus affecting induction of downstream genes.
Collapse
Affiliation(s)
- H Bito
- Department of Molecular and Cellular Physiology, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, California 94305-5426, USA
| | | | | |
Collapse
|