3
|
Lin H, Zeng J, Xie R, Schulz MJ, Tedesco R, Qu J, Erhard KF, Mack JF, Raha K, Rendina AR, Szewczuk LM, Kratz PM, Jurewicz AJ, Cecconie T, Martens S, McDevitt PJ, Martin JD, Chen SB, Jiang Y, Nickels L, Schwartz BJ, Smallwood A, Zhao B, Campobasso N, Qian Y, Briand J, Rominger CM, Oleykowski C, Hardwicke MA, Luengo JI. Discovery of a Novel 2,6-Disubstituted Glucosamine Series of Potent and Selective Hexokinase 2 Inhibitors. ACS Med Chem Lett 2016; 7:217-22. [PMID: 26985301 DOI: 10.1021/acsmedchemlett.5b00214] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 12/27/2015] [Indexed: 12/13/2022] Open
Abstract
A novel series of potent and selective hexokinase 2 (HK2) inhibitors, 2,6-disubstituted glucosamines, has been identified based on HTS hits, exemplified by compound 1. Inhibitor-bound crystal structures revealed that the HK2 enzyme could adopt an "induced-fit" conformation. The SAR study led to the identification of potent HK2 inhibitors, such as compound 34 with greater than 100-fold selectivity over HK1. Compound 25 inhibits in situ glycolysis in a UM-UC-3 bladder tumor cell line via (13)CNMR measurement of [3-(13)C]lactate produced from [1,6-(13)C2]glucose added to the cell culture.
Collapse
Affiliation(s)
- Hong Lin
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Jin Zeng
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Ren Xie
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Mark J. Schulz
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Rosanna Tedesco
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Junya Qu
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Karl F. Erhard
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - James F. Mack
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Kaushik Raha
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Alan R. Rendina
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Lawrence M. Szewczuk
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Patricia M. Kratz
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Anthony J. Jurewicz
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Ted Cecconie
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Stan Martens
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Patrick J. McDevitt
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - John D. Martin
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Stephenie B. Chen
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Yong Jiang
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Leng Nickels
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Benjamin J. Schwartz
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Angela Smallwood
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Baoguang Zhao
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Nino Campobasso
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Yanqiu Qian
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Jacques Briand
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Cynthia M. Rominger
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Catherine Oleykowski
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Mary Ann Hardwicke
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Juan I. Luengo
- Cancer Metabolism Chemistry; ‡Cancer Metabolism Biology; and §Platform Technology & Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| |
Collapse
|
8
|
Praly JP, Ardakani AS, Bruyère I, Marie-Luce C, Bing Qin B. Towards alpha- or beta-D-C-glycosyl compounds by tin-catalyzed addition of glycosyl radicals to acrylonitrile and vinylphosphonate, and flexible reduction of tetra-O-acetyl-alpha-D-glucopyranosyl bromide with cyanoborohydride. Carbohydr Res 2002; 337:1623-32. [PMID: 12423963 DOI: 10.1016/s0008-6215(02)00052-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Photo-induced radical addition of acetylated alpha-D-glucopyranosyl bromide (1). to acrylonitrile or diethyl vinylphosphonate, in the presence of catalytic amounts of tri-n-butyltin chloride and sodium (or tetra-n-butylammonium) cyanoborohydride in excess, allowed efficient preparations of alpha-configurated nonononitrile and 2-(alpha-D-glucopyranosyl)-ethylphosphonate (79, 70% yields, respectively). These conditions led to 2-(alpha-D-manno-, and galactopyranosyl)-ethylphosphonates in 68 and 76% yields. Similarly, radical addition of acetylated 1-bromo-beta-D-glucopyranosyl chloride (2). to acrylonitrile or diethyl vinylphosphonate afforded mainly intermediate chlorides which, upon radical reduction with excess tri-n-butyltin hydride, afforded the corresponding beta anomers (40 and 38%, respectively) by sequential C-C and C-H bond formation. Stereocontrol relies on the alpha-stereoselective quenching of D-glycopyranos-1-yl radicals. We found also that UV light irradiation of 1 with excess NaBH(3)CN in tert-butanol afforded either 1,3,4,6-tetra-O-acetyl-2-deoxy-alpha-D-arabino-hexopyranose (65% after crystallization) or, when 10% mol thiophenol was added, 2,3,4,6-tetra-O-acetyl-1,5-anhydro-D-glucitol (79%). These are simple, tin-free, and easily controlled conditions, which compare well with known preparations of these reduced sugars.
Collapse
Affiliation(s)
- Jean-Pierre Praly
- Université Claude-Bernard Lyon I, UMR CNRS-Université 5622, ESCPE-Lyon, Bâtiment 308, 43, Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France.
| | | | | | | | | |
Collapse
|
10
|
Andersen SM, Lundt I, Marcussen J, Yu S. 1,5-Anhydro-D-fructose; a versatile chiral building block: biochemistry and chemistry. Carbohydr Res 2002; 337:873-90. [PMID: 12007470 DOI: 10.1016/s0008-6215(02)00062-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is a steadily increasing need to expand sustainable resources, and carbohydrates are anticipated to play an important role in this respect, both for bulk and fine chemical preparation. The enzyme alpha-(1-->4)-glucan lyase degrades starch to 1,5-anhydro-D-fructose. This compound, which has three different functional properties, a prochiral center together with a permanent pyran ring, renders it a potential chiral building block for the synthesis of valuable and potentially biologically active compounds. 1,5-Anhydro-D-fructose is found in natural materials as a degradation product of alpha-(1-->4)-glucans. The occurrence of lyases and the metabolism of 1,5-anhydro-D-fructose are reviewed in the biological part of this article. In the chemical part, the elucidated structure of 1,5-anhydro-D-fructose will be presented together with simple stereoselective conversions into hydroxy/amino 1,5-anhydro hexitols and a nojirimycin analogue. Synthesis of 6-O-acylated derivatives of 1,5-anhydro-D-fructose substituted with long fatty acid residues is carried out using commercially available enzymes. Those reactions lead to compounds with potential emulsifying properties. The use of protected derivatives of 1,5-anhydro-D-fructose for the synthesis of natural products is likewise reviewed. The potential utilization of this chemical building block is far from being exhausted. Since 1,5-anhydro-D-fructose now is accessible in larger amounts through a simple-enzyme catalyzed degradation of starch by alpha-(1-->4)-glucan lyase, the application of 1,5-anhydro-D-fructose may be considered a valuable contribution to the utilization of carbohydrates as the most abundant resource of sustainable raw materials.
Collapse
Affiliation(s)
- Søren M Andersen
- Department of Chemistry, Technical University of Denmark, Building 201, DK-2800 Kgs., Lyngby, Denmark
| | | | | | | |
Collapse
|
28
|
Witczak ZJ, Whistler RL. Synthesis of some derivatives of 6-amino-1,5-anhydro-6-deoxy-D-glucitol and 2-amino-1,5-anhydro-2-deoxy-D-glucitol. Carbohydr Res 1986; 150:121-31. [PMID: 3756954 DOI: 10.1016/0008-6215(86)80010-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
6-Amino-1,5-anhydro-6-deoxy-D-glucitol (11) was prepared from 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl bromide (1) in six steps. Reduction of 1 with tributyltin hydride, followed by deacetylation, monomolar tosylation, and reacetylation, afforded 2,3,4-tri-O-acetyl-1,5-anhydro-6-O-toluene-p-sulfonyl-D-glucitol (9). Alternatively, tritylation of 1,5-anhydro-D-glucitol, followed by acetylation, detritylation, and tosylation, gave 9. Mesylation gave 8. Treatment of 8 or 9 with azide anion afforded the azide 10, reduction of which with tributyltin hydride gave 11, which was mesylated or tosylated, and then deacetylated to give the 6-methane-sulfonamido or 6-toluene-p-sulfonamido derivative. Similarly, mesylation or tosylation of 3,4,6-tri-O-acetyl-2-amino-1,5-anhydro-2-deoxy-D-glucitol (20) gave the 2-methanesulfonamido or 2-toluene-p-sulfonamido derivatives. Treatment of 11 and 20 with sulfur trioxide-pyridine afforded the sulfoamino derivatives, deacetylation of which gave sugar analogs of cyclamate-like compounds.
Collapse
|