1
|
Pleszczyńska M, Wiater A, Bachanek T, Szczodrak J. Enzymes in therapy of biofilm-related oral diseases. Biotechnol Appl Biochem 2016; 64:337-346. [PMID: 26969579 DOI: 10.1002/bab.1490] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/03/2016] [Indexed: 12/24/2022]
Abstract
Biofilm-related infections of the oral cavity, including dental caries and periodontitis, represent the most prevalent health problems. For years, the treatment thereof was largely based on antibacterial chemical agents. Recently, however, there has been growing interest in the application of more preventive and minimally invasive biotechnological methods. This review focuses on the potential applications of enzymes in the treatment and prevention of oral diseases. Dental plaque is a microbial community that develops on the tooth surface, embedded in a matrix of extracellular polymeric substances of bacterial and host origin. Both cariogenic microorganisms and the key components of oral biofilm matrix may be the targets of the enzymes. Oxidative salivary enzymes inhibit or limit the growth of oral pathogens, thereby supporting the natural host defense system; polysaccharide hydrolases (mutanases and dextranases) degrade important carbohydrate components of the biofilm matrix, whereas proteases disrupt bacterial adhesion to oral surfaces or affect cell-cell interactions. The efficiency of the enzymes in in vitro and in vivo studies, advantages and limitations, as well as future perspectives for improving the enzymatic strategy are discussed.
Collapse
Affiliation(s)
| | - Adrian Wiater
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Teresa Bachanek
- Department of Conservative Dentistry and Endodontics, Medical University of Lublin, Lublin, Poland
| | - Janusz Szczodrak
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
2
|
Pleszczyńska M, Wiater A, Janczarek M, Szczodrak J. (1→3)-α-D-Glucan hydrolases in dental biofilm prevention and control: A review. Int J Biol Macromol 2015; 79:761-78. [PMID: 26047901 DOI: 10.1016/j.ijbiomac.2015.05.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 11/27/2022]
Abstract
Dental plaque is a highly diverse biofilm, which has an important function in maintenance of oral and systemic health but in some conditions becomes a cause of oral diseases. In addition to mechanical plaque removal, current methods of dental plaque control involve the use of chemical agents against biofilm pathogens, which however, given the complexity of the oral microbiome, is not sufficiently effective. Hence, there is a need for development of new anti-biofilm approaches. Polysaccharides, especially (1→3),(1→6)-α-D-glucans, which are key structural and functional constituents of the biofilm matrix, seem to be a good target for future therapeutic strategies. In this review, we have focused on (1→3)-α-glucanases, which can limit the cariogenic properties of the dental plaque extracellular polysaccharides. These enzymes are not widely known and have not been exhaustively described in literature.
Collapse
Affiliation(s)
- Małgorzata Pleszczyńska
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Adrian Wiater
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Monika Janczarek
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Janusz Szczodrak
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| |
Collapse
|
3
|
Wescombe PA, Hale JDF, Heng NCK, Tagg JR. Developing oral probiotics from Streptococcus salivarius. Future Microbiol 2013; 7:1355-71. [PMID: 23231486 DOI: 10.2217/fmb.12.113] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Considerable human illness can be linked to the development of oral microbiota disequilibria. The predominant oral cavity commensal, Streptococcus salivarius has emerged as an important source of safe and efficacious probiotics, capable of fostering more balanced, health-associated oral microbiota. Strain K12, the prototype S. salivarius probiotic, originally introduced to counter Streptococcus pyogenes infections, now has an expanded repertoire of health-promoting applications. K12 and several more recently proposed S. salivarius probiotics are now being applied to control diverse bacterial consortia infections including otitis media, halitosis and dental caries. Other potential applications include upregulation of immunological defenses against respiratory viral infections and treatment of oral candidosis. An overview of the key steps required for probiotic development is also presented.
Collapse
Affiliation(s)
- Philip A Wescombe
- BLIS Technologies Ltd. Centre for Innovation, PO Box 56, Dunedin, 9054, New Zealand
| | | | | | | |
Collapse
|
4
|
Wiater A, Pleszczyńska M, Próchniak K, Szczodrak J. Structural diversity of streptococcal mutans synthesized under different culture and environmental conditions and its effect on mutanase synthesis. Molecules 2012; 17:11800-15. [PMID: 23047481 PMCID: PMC6268018 DOI: 10.3390/molecules171011800] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 11/16/2022] Open
Abstract
Streptococcal mutans synthesized under different conditions by growing cultures or by their glucosyltransferases were shown to exhibit a great structural and property diversity. Culturing and environmental factors causing structural differences in mutans were specified. All of the obtained biopolymers (76 samples) were water-insoluble and most of them (72) had a structure with a predominance of α-(1→3)-linked glucose (i.e., the content of α-(1→3)-linkages in the glucan was always higher than 50%, but did not exceed 76%). An exception were four glucans containing more than 50% of α-(1→6)-sequences. In these structurally unique mutans, the ratio of α-(1→3)- to α-(1→6)-bonds ranged from 0.75 to 0.97. Aside from one polymer, all others had a heavily branched structures and differed in the number of α-(1→3), α-(1→6), and α-(1→3,6) linkages and their mutual proportion. The induction of mutanase production in shaken flask cultures of Trichoderma harzianum by the structurally diverse mutans resulted in enzyme activities ranging from 0.144 to 1.051 U/mL. No statistical correlation was found between the total percentage content of α-(1→3)-linkages in the α-glucan and mutanase activity. Thus, despite biosynthetic differences causing structural variation in the mutans, it did not matter which mutan structures were used to induce mutanase production.
Collapse
Affiliation(s)
- Adrian Wiater
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | | | | | | |
Collapse
|
5
|
Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, Decaris B, Bolotin A, Delorme C, Dusko Ehrlich S, Guédon E, Monnet V, Renault P, Kleerebezem M. New insights in the molecular biology and physiology ofStreptococcus thermophilusrevealed by comparative genomics. FEMS Microbiol Rev 2005. [DOI: 10.1016/j.fmrre.2005.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
6
|
Khalikova E, Susi P, Korpela T. Microbial dextran-hydrolyzing enzymes: fundamentals and applications. Microbiol Mol Biol Rev 2005; 69:306-25. [PMID: 15944458 PMCID: PMC1197420 DOI: 10.1128/mmbr.69.2.306-325.2005] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dextran is a chemically and physically complex polymer, breakdown of which is carried out by a variety of endo- and exodextranases. Enzymes in many groups can be classified as dextranases according to function: such enzymes include dextranhydrolases, glucodextranases, exoisomaltohydrolases, exoisomaltotriohydrases, and branched-dextran exo-1,2-alpha-glucosidases. Cycloisomalto-oligosaccharide glucanotransferase does not formally belong to the dextranases even though its side reaction produces hydrolyzed dextrans. A new classification system for glycosylhydrolases and glycosyltransferases, which is based on amino acid sequence similarities, divides the dextranases into five families. However, this classification is still incomplete since sequence information is missing for many of the enzymes that have been biochemically characterized as dextranases. Dextran-degrading enzymes have been isolated from a wide range of microorganisms. The major characteristics of these enzymes, the methods for analyzing their activities and biological roles, analysis of primary sequence data, and three-dimensional structures of dextranases have been dealt with in this review. Dextranases are promising for future use in various scientific and biotechnological applications.
Collapse
Affiliation(s)
- Elvira Khalikova
- Joint Biotechnology Laboratory, Department of Chemistry, University of Turku, Finland
| | | | | |
Collapse
|
7
|
Simpson CL, Cheetham NWH, Jacques NA. Four glucosyltransferases, GtfJ, GtfK, GtfL and GtfM, from Streptococcus salivarius ATCC 25975. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 6):1451-1460. [PMID: 7545511 DOI: 10.1099/13500872-141-6-1451] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The four recombinant glucosyltransferases (GTFs), GtfJ, GtfK, GtfL and GtfM, that had previously been cloned from Streptococcus salivarius ATCC 25975, were individually expressed in Escherichia coli and their glucan products and kinetic properties were analysed. GtfJ was a primer-dependent GTF which synthesized an insoluble glucan composed mainly of alpha-(1-->3)-linked glucosyl residues in the presence of dextran T-10. GtfK was primer-stimulated, and produced a linear soluble dextran without any detectable branch points both in the absence and in the presence of dextran T-10. GtfL was primer-independent and produced a mixed-linkage insoluble glucan composed of approximately equal proportions of alpha-(1-->3)- and alpha-(1-->6)-linked glucosyl residues. GtfL was inhibited by dextran T-10. GtfM was primer-independent and produced a soluble dextran with approximately 5% alpha-(1-->3)-linked glucosyl residues. GtfM was essentially unaffected by the presence of dextran T-10. The results confirmed that each enzyme represented one of the four possible combinations of primer-dependency and product solubility and that each possessed unique biosynthetic properties. The soluble dextrans formed by GtfK and GtfM, as well as the mixed-linkage insoluble glucan formed by GtfL, were also capable of acting as primers for the primer-dependent GtfJ and the primer-stimulated GtfK. Unexpectedly, the linear dextran produced by GtfK was by far the least effective either at priming itself or at activating and priming the primer-dependent GtfJ.
Collapse
Affiliation(s)
- Christine L Simpson
- 1Institute of Dental Research, 2 Chalmers Street, Surry Hills, NSW 2010, Australia
| | - Norman W H Cheetham
- 1Institute of Dental Research, 2 Chalmers Street, Surry Hills, NSW 2010, Australia
| | - Nicholas A Jacques
- 1Institute of Dental Research, 2 Chalmers Street, Surry Hills, NSW 2010, Australia
| |
Collapse
|
8
|
Abstract
This review covers some of the more recent developments in the understanding of the different glucosyltransferases (GTFs) secreted by oral streptococci, particularly those produced by Streptococcus salivarius--a species that has been intensively studied at the Institute of Dental Research in Sydney.
Collapse
|