1
|
Synytsya A, Bleha R, Skrynnikova A, Babayeva T, Čopíková J, Kvasnička F, Jablonsky I, Klouček P. Mid-Infrared Spectroscopic Study of Cultivating Medicinal Fungi Ganoderma: Composition, Development, and Strain Variability of Basidiocarps. J Fungi (Basel) 2023; 10:23. [PMID: 38248933 PMCID: PMC10817577 DOI: 10.3390/jof10010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy was proposed for rapid, versatile, and non-invasive screening of Ganoderma basidiocarps to assess their potential for specific applications. Fifteen species and strains of this fungus were selected for analysis, and fine sections at different parts of young and mature basidiocarps were obtained. The spectra of fungal samples showed significant differences interpreted in terms of biochemical composition using characteristic bands of proteins, polysaccharides, lipids, and triterpenoids. Obviously, for the transverse sections in trama, especially in the basal part, the most intense bands at 950-1200 cm-1 corresponded to polysaccharide vibrations, while for the superficial sections, the bands of carbonyl and aliphatic groups of triterpenoids at 1310-1470, 1550-1740, and 2850-2980 cm-1 predominated. The pilei, especially hymenium tubes, apparently contained more proteins than the bases and stipes, as evidenced by the intense bands of amide vibrations at 1648 and 1545-1550 cm-1. The specificity of the Ganoderma basidiocarp is a densely pigmented surface layer rich in triterpenoids, as proved by ATR-FTIR spectroscopy. The spectral differences corresponding to the specificity of the triterpenoid composition may indicate the prospects of individual strains and species of this genus for cultivation and further use in food, cosmetics, or medicine.
Collapse
Affiliation(s)
- Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - Roman Bleha
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - Anastasia Skrynnikova
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - Tamilla Babayeva
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - Jana Čopíková
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - František Kvasnička
- Department of Meat and Preservation, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic;
| | - Ivan Jablonsky
- Department of Gardening, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| | - Pavel Klouček
- Department of Food Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| |
Collapse
|
2
|
Correa CZ, de Tavares Machado Bolonhesi IB, Lopes DD, Prates KVMC, Panagio LA, Ratuchne A, Damianovic MHRZ. Removal of organic matter and nitrogen from dairy effluents in a structured bed reactor operated with intermittent aeration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91060-91073. [PMID: 37464210 DOI: 10.1007/s11356-023-28581-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 06/29/2023] [Indexed: 07/20/2023]
Abstract
The objective of this research was to evaluate the performance of a structured bed reactor (SBRIA), carried out with intermittent aeration (IA), in the removal of organic matter and nitrogen from dairy effluent, when run with different organic loading rates (OLR). The SBRIA was operated for 227 days, with 2:1 AI cycles (2 h with aeration on and 1 h off) and Hydraulic Retention Time (HRT) of 16 h. Three phases, with different OLR, were evaluated: phases A (1000 gCOD m-3 day-1 - 63 days), B (1400 gCOD m-3 day-1 - 94 days), and C (1800 gCOD m-3 day-1 - 70 days). The percentage of COD, NH4+-N removal, and nitrogen removal, respectively, were above 85 ± 7%, 73 ± 27%, and 83 ± 5, in all phases. There was no accumulation of the oxidized forms of nitrogen in the reactor. The kinetic test, performed to evaluate the nitrification and denitrification in the system, indicated that even in dissolved oxygen concentrations of 4.5 mg L-1, it was possible to obtain the denitrification process in the system. The results demonstrate that the reactor under study has positive characteristics to be used as an alternative for removing the removal of organic material and nitrogen in the biological treatment of dairy effluents.
Collapse
Affiliation(s)
- Camila Zoe Correa
- Department of Civil Construction, State University of Londrina, Rodovia Celso Garcia Cid, Km 380, Campus Universitario, CEP, Londrina, Parana, 86057-970, Brazil.
| | | | - Deize Dias Lopes
- Department of Civil Construction, State University of Londrina, Rodovia Celso Garcia Cid, Km 380, Campus Universitario, CEP, Londrina, Parana, 86057-970, Brazil
| | - Kátia Valéria Marques Cardoso Prates
- Department of Environmental Engineering, Federal Technological University of Paraná, Av. Dos Pioneiros 3131, Londrina, Parana, CEP 86036-370, Brazil
| | - Luciano Aparecido Panagio
- Department of Microbiology, State University of Londrina, Rodovia Celso Garcia Cid, Km 380, Campus Universitario, Londrina, Parana, CEP 86057-970, Brazil
| | - Aline Ratuchne
- Department of Microbiology, State University of Londrina, Rodovia Celso Garcia Cid, Km 380, Campus Universitario, Londrina, Parana, CEP 86057-970, Brazil
| | - Márcia Helena Rissato Zamariolli Damianovic
- Laboratory of Biological Processes, São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, Sao Carlos, São Paulo, 13563-120, Brazil
| |
Collapse
|
3
|
Aguiar MM, Wadt LC, Vilar DS, Hernández-Macedo ML, Kumar V, Monteiro RTR, Mulla SI, Bharagava RN, Iqbal HMN, Bilal M, Ferreira LFR. Vinasse bio-valorization for enhancement of Pleurotus biomass productivity: chemical characterization and carbohydrate analysis. BIOMASS CONVERSION AND BIOREFINERY 2023; 13:10031-10040. [DOI: 10.1007/s13399-021-02198-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 02/05/2023]
|
4
|
Bioflocculant produced by Bacillus velezensis and its potential application in brewery wastewater treatment. Sci Rep 2022; 12:10945. [PMID: 35768624 PMCID: PMC9243052 DOI: 10.1038/s41598-022-15193-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
This study was designed to evaluate the potential of bioflocculant producing strains isolated from wastewater sludge. According to the Plackett–Burman design, the response surface revealed glucose, magnesium sulfate, and ammonium sulfate as critical media components of the nutritional source, whereas the central composite design affirmed an optimum concentration of the critical nutritional source as 16.0 g/l (glucose), 3.5 g/l magnesium sulfate heptahydrate (MgSO4.7H2O), and 1.6 g/l ammonium sulfate ( (NH4)2SO4), yielding an optimal flocculation activity of 96.8%. Fourier Transformer Infrared Spectroscopy (FTIR) analysis confirmed the presence of hydroxyl, carboxyl and methoxyl in the structure of the bioflocculant. Additionally, chemical analysis affirmed the presence of mainly a polysaccharide in the main backbone of the purified bioflocculant with no detection of protein. Energy Dispersive X-ray analysis affirmed the presence of chlorine, phosphorous, oxygen and chlorine as representatives of elemental composition. Thermogravimetric (TGA) analysis revealed over 60% weight was retained at a temperature range of 700 °C. The purified bioflocculant remarkably removed chemical oxygen demand, biological oxygen demand and turbidity in brewery wastewater. This study suggested that the bioflocculant might be an alternate candidate for wastewater treatment.
Collapse
|
5
|
Selenium-Containing Exopolysaccharides Isolated from the Culture Medium of Lentinula edodes: Structure and Biological Activity. Int J Mol Sci 2021; 22:ijms222313039. [PMID: 34884845 PMCID: PMC8657480 DOI: 10.3390/ijms222313039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022] Open
Abstract
In continuation of our research on the influence of selenium incorporation on the biosynthesis, structure, and immunomodulatory and antioxidant activities of polysaccharides of fungal origin, we have isolated from a post-culture medium of Lentinula edodes a selenium (Se)-containing exopolysaccharide fraction composed mainly of a highly branched 1-6-α-mannoprotein of molecular weight 4.5 × 106 Da, with 15% protein component. The structure of this fraction resembled mannoproteins isolated from yeast and other mushroom cultures, but it was characterized by a significantly higher molecular weight. X-ray absorption fine structure spectral analysis in the near edge region (XANES) suggested that selenium in the Se-exopolysaccharide structure was present mainly at the IV oxidation state. The simulation analysis in the EXAFS region suggested the presence of two oxygen atoms in the region surrounding the selenium. On the grounds of our previous studies, we hypothesized that selenium-enriched exopolysaccharides would possess higher biological activity than the non-Se-enriched reference fraction. To perform structure-activity studies, we conducted the same tests of biological activity as for previously obtained mycelial Se-polyglucans. The Se-enriched exopolysaccharide fraction significantly enhanced cell viability when incubated with normal (human umbilical vein endothelial cells (HUVEC)) cells (but this effect was absent for malignant human cervical HeLa cells) and this fraction also protected the cells from oxidative stress conditions. The results of tests on the proliferation of human peripheral blood mononuclear cells suggested a selective immunosuppressive activity, like previously tested Se-polyglucans isolated from L. edodes mycelium. The Se-exopolysaccharide fraction, in concentrations of 10-100 µg/mL, inhibited human T lymphocyte proliferation induced by mitogens, without significant effects on B lymphocytes. As with previously obtained Se-polyglucans, in the currently tested Se-polymannans, the selenium content increased the biological activity. However, the activity of selenium exopolysaccharides in all tests was significantly lower than that of previously tested mycelial isolates, most likely due to a different mode of selenium binding and its higher degree of oxidation.
Collapse
|
6
|
Saravanakumar K, Park S, Sathiyaseelan A, Mariadoss AVA, Park S, Kim SJ, Wang MH. Isolation of Polysaccharides from Trichoderma harzianum with Antioxidant, Anticancer, and Enzyme Inhibition Properties. Antioxidants (Basel) 2021; 10:1372. [PMID: 34573005 PMCID: PMC8471597 DOI: 10.3390/antiox10091372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/15/2023] Open
Abstract
In this work, a total of six polysaccharides were isolated from culture filtrate (EPS1, EPS2) and mycelia (IPS1-IPS4) of Trichoderma harzianum. The HPLC analysis results showed that EPS1, EPS2, IPS1, and IPS2 were composed of mannose, ribose, glucose, galactose, and arabinose. The FT-IR, 1H, and 13C NMR chemical shifts confirmed that the signals in EPS1 mainly consist of (1→4)-linked α-d-glucopyranose. EPS1 and IPS1 showed a smooth and clean surface, while EPS2, IPS2, and IPS3 exhibited a microporous structure. Among polysaccharides, EPS1 displayed higher ABTS+ (47.09 ± 2.25% and DPPH (26.44 ± 0.12%) scavenging activities, as well as higher α-amylase (69.30 ± 1.28%) and α-glucosidase (68.22 ± 0.64%) inhibition activity than the other polysaccharides. EPS1 exhibited high cytotoxicity to MDA-MB293 cells, with an IC50 of 0.437 mg/mL, and this was also confirmed by cell staining and FACS assays. These results report the physicochemical and bioactive properties of polysaccharides from T. harzianum.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea;
| | - Anbazhagan Sathiyaseelan
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - Arokia Vijaya Anand Mariadoss
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - Soyoung Park
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - Seong-Jung Kim
- Department of Physical Therapy, College of Health and Science, Kangwon National University, Samcheok-si 24949, Korea
| | - Myeong-Hyeon Wang
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| |
Collapse
|
7
|
Effect of thermal processing on the molecular, structural, and antioxidant characteristics of highland barley β-glucan. Carbohydr Polym 2021; 271:118416. [PMID: 34364557 DOI: 10.1016/j.carbpol.2021.118416] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/17/2023]
Abstract
This present work evaluated the effect of heat fluidization, microwave roasting and baking treatment of highland barley (HB) on the molecular, structural, thermal and antioxidant characteristics of β-glucan. Fluorescence microscopy results showed that heat fluidization exhibited the greatest disruption effect on endosperm cell walls, resulting in the highest extractability (3.35 ± 0.06 g/100 g flour) and purity (92.67 ± 0.73%) of β-glucan. After HB thermal processing, the molecular weight and polydispersity index of β-glucan were respectively reduced by 3.68%-90.35% and 26.45%-39.83%, and its microscopic molecular morphology transformed from large sphere aggregate to alveolate gel network structure. Meanwhile, the structural elucidation by X-ray diffraction and infrared spectroscopy revealed that thermal processing induced the scission of polymeric chain and formation of lattice-type microgels without changing the primary functional groups of β-glucan. Furthermore, thermogravimetry and antioxidant results indicated the thermal stability and antioxidant activity of β-glucan were enhanced by thermal processing.
Collapse
|
8
|
Cultivating oyster mushrooms on red grape pomace waste enhances potential nutritional value of the spent substrate for ruminants. PLoS One 2021; 16:e0246992. [PMID: 33592025 PMCID: PMC7886220 DOI: 10.1371/journal.pone.0246992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/30/2021] [Indexed: 01/05/2023] Open
Abstract
The use of red grape pomace (GP; Vitis vinifera L. var. Shiraz) as a source of beneficial bioactive compounds in ruminant diets is limited by high levels of indigestible compounds in the grape skin matrix. This problem demands innovative, inexpensive, and easy-to-use strategies that improve the digestibility of GP. The bioconversion of GP using edible oyster mushrooms (Pleurotus ostreatus) is one such strategy that has not been previously explored. Therefore, this study evaluated the effect of cultivating oyster mushrooms on GP on chemical composition and in vitro ruminal fermentation parameters of the spent mushroom substrate. The GP was inoculated with oyster mushroom spawns at 0, 200, 300, 400, or 500 g/kg, and incubated for 4 weeks. Organic matter, acid detergent lignin, sodium, manganese, cobalt, and copper linearly declined (P < 0.05) as spawn rates increased. A quadratic trend was observed for crude protein, neutral detergent fibre, acid detergent fibre, magnesium, phosphorus, and calcium content in response to increasing spawn rates. Higher spawning rates (20–50%) had a positive effect (P < 0.05) on gas production from the immediately fermentable fraction (a), rate of gas production from the slowly fermentable fraction (c) and effective gas production. However, gas production from the slowly fermentable fraction (b) and potential gas production linearly declined in response to increasing spawning rates. There was a linear increase (P < 0.05) in the immediately degradable fraction (a), while quadratic effects were observed for partition factors, effective degradability, and in vitro organic matter degradability at 48 h in response to spawning rates. It can be concluded that inoculating GP with oyster mushroom spawn reduced fibre content while increasing crude protein content and in vitro ruminal fermentation efficiency of red grape pomace. Based on the quadratic responses of partition factors at 48 hours post-inoculation, the optimum spawning rate for maximum ruminal fermentation efficiency of GP was determined to be 300 g/kg.
Collapse
|
9
|
Selvasekaran P, Mahalakshmi, Roshini F, Angalene LA, Chandini, Sunil T, Chidambaram R. Fungal Exopolysaccharides: Production and Biotechnological Industrial Applications in Food and Allied Sectors. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Evaluation of the Cultivated Mushroom Pleurotus ostreatus Basidiocarps Using Vibration Spectroscopy and Chemometrics. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fruiting bodies (basidiocarps) of the cultivated mushroom Pleurotus ostreatus (16 strains) were characterized by vibration spectroscopy and chemometrics. According to organic elemental analysis and Megazyme assay, the basidiocarps contained ~6.2–17.5% protein and ~18.8–58.2% total glucans. The neutral sugar analysis confirmed that glucose predominated in all the samples (~71.3–94.4 mol%). Fourier-transformed (FT) mid- and near-infrared (FT MIR, FT NIR) and FT Raman spectra of the basidiocarps were recorded, and the characteristic bands of proteins, glucans and chitin were assigned. The samples were discriminated based on principal component analysis (PCA) of the spectroscopic data in terms of biopolymeric composition. The partial least squares regression (PLSR) models based on first derivatives of the vibration spectra were obtained for the prediction of the macromolecular components, and the regression coefficients R2 and root mean square errors (RMSE) were calculated for the calibration (cal) of proteins (R2cal 0.981–0.994, RMSEcal ~0.3–0.5) and total glucans (R2cal 0.908–0.996, RMSEcal ~0.6–3.0). According to cross-validation (CV) diagnosis, the protein models were more precise and accurate (R2cv 0.901–0.970, RMSEcv ~0.6–1.1) than the corresponding total glucan models (R2cv 0.370–0.804, RMSEcv ~4.7–8.5) because of the wide structural diversity of these polysaccharides. Otherwise, the Raman band of phenylalanine ring breathing vibration at 1004 cm−1 was used for direct quantification of proteins in P. ostreatus basidiocarps (R ~0.953). This study showed that the combination of vibration spectroscopy with chemometrics is a powerful tool for the evaluation of culinary and medicinal mushrooms, and this approach can be proposed as an alternative to common analytical methods.
Collapse
|
11
|
Feng Y, Zhang J, Wen C, Sedem Dzah C, Chidimma Juliet I, Duan Y, Zhang H. Recent advances in Agaricus bisporus polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Nham Tran TL, Miranda AF, Gupta A, Puri M, Ball AS, Adhikari B, Mouradov A. The Nutritional and Pharmacological Potential of New Australian Thraustochytrids Isolated from Mangrove Sediments. Mar Drugs 2020; 18:E151. [PMID: 32155832 PMCID: PMC7142457 DOI: 10.3390/md18030151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 01/07/2023] Open
Abstract
Mangrove sediments represent unique microbial ecosystems that act as a buffer zone, biogeochemically recycling marine waste into nutrient-rich depositions for marine and terrestrial species. Marine unicellular protists, thraustochytrids, colonizing mangrove sediments have received attention due to their ability to produce large amounts of long-chain ω3-polyunsaturated fatty acids. This paper represents a comprehensive study of two new thraustochytrids for their production of valuable biomolecules in biomass, de-oiled cakes, supernatants, extracellular polysaccharide matrixes, and recovered oil bodies. Extracted lipids (up to 40% of DW) rich in polyunsaturated fatty acids (up to 80% of total fatty acids) were mainly represented by docosahexaenoic acid (75% of polyunsaturated fatty acids). Cells also showed accumulation of squalene (up to 13 mg/g DW) and carotenoids (up to 72 µg/g DW represented by astaxanthin, canthaxanthin, echinenone, and β-carotene). Both strains showed a high concentration of protein in biomass (29% DW) and supernatants (2.7 g/L) as part of extracellular polysaccharide matrixes. Alkalinization of collected biomass represents a new and easy way to recover lipid-rich oil bodies in the form of an aqueous emulsion. The ability to produce added-value molecules makes thraustochytrids an important alternative to microalgae and plants dominating in the food, pharmacological, nutraceutical, and cosmetics industries.
Collapse
Affiliation(s)
- Thi Linh Nham Tran
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Ana F. Miranda
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Adarsha Gupta
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, 5042 Adelaide, Australia; (A.G.); (M.P.)
| | - Munish Puri
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, 5042 Adelaide, Australia; (A.G.); (M.P.)
| | - Andrew S. Ball
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Benu Adhikari
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Aidyn Mouradov
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| |
Collapse
|
13
|
Costa CRDM, Menolli RA, Osaku EF, Tramontina R, de Melo RH, do Amaral AE, Duarte PA, de Carvalho MM, Smiderle FR, Silva JLDC, Mello RG. Exopolysaccharides from Aspergillus terreus: Production, chemical elucidation and immunoactivity. Int J Biol Macromol 2019; 139:654-664. [DOI: 10.1016/j.ijbiomac.2019.08.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/15/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
|
14
|
Pettongkhao S, Churngchow N. Novel Cell Death-Inducing Elicitors from Phytophthora palmivora Promote Infection on Hevea brasiliensis. PHYTOPATHOLOGY 2019; 109:1769-1778. [PMID: 31246138 DOI: 10.1094/phyto-01-19-0002-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Elicitors play an important role in plant and pathogen interactions. The discovery of new elicitors and their effects on plant defense responses is significant and challenging. In this study, we investigated novel elicitors from Phytophthora palmivora and their effects on plant defenses. A crude elicitor isolated by ethanol precipitation from culture filtrates of P. palmivora induced cell death in tobacco leaves. When tobacco leaves were infiltrated with this cell death-inducing elicitor, the accumulations of H2O2, salicylic acid (SA), scopoletin (Scp), and abscisic acid (ABA) were detected. Accumulations of SA, Scp, and ABA were also induced in rubber tree leaves. P. palmivora infection significantly increased in rubber tree leaves pretreated with the elicitor and cotreated with the elicitor and zoospores of P. palmivora. This elicitor can be described as compound elicitor because Fourier-transform infrared spectroscopy revealed that it consisted of both polysaccharide and protein. We also found that the cell death effect caused by this compound elicitor was completely neutralized by Proteinase K. The compound elicitor was composed of four fractions which were beta-glucan, high-molecular-weight glycoprotein, broad-molecular-weight glycoprotein and 42-kDa protein. Interestingly, the broad-molecular-weight glycoprotein caused the highest level of cell death in tobacco leaves, while the beta-glucan had no effect. The high-molecular-weight glycoprotein, broad-molecular-weight glycoprotein and 42-kDa protein fractions not only caused cell death in tobacco leaves but also induced high levels of SA accumulation. Furthermore, these three fractions clearly promoted P. palmivora infection of rubber tree leaves.
Collapse
Affiliation(s)
- Sittiporn Pettongkhao
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Nunta Churngchow
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| |
Collapse
|
15
|
Baeva E, Bleha R, Lavrova E, Sushytskyi L, Čopíková J, Jablonsky I, Klouček P, Synytsya A. Polysaccharides from Basidiocarps of Cultivating Mushroom Pleurotus ostreatus: Isolation and Structural Characterization. Molecules 2019; 24:E2740. [PMID: 31357717 PMCID: PMC6696160 DOI: 10.3390/molecules24152740] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 12/23/2022] Open
Abstract
Oyster mushrooms are an interesting source of biologically active glucans and other polysaccharides. This work is devoted to the isolation and structural characterization of polysaccharides from basidiocarps of the cultivated oyster mushroom, Pleurotus ostreatus. Five polysaccharidic fractions were obtained by subsequent extraction with cold water, hot water and two subsequent extractions with 1 m sodium hydroxide. Branched partially methoxylated mannogalactan and slightly branched (1→6)-β-d-glucan predominated in cold- and hot-water-soluble fractions, respectively. Alternatively, these polysaccharides were obtained by only hot water extraction and subsequent two-stage chromatographic separation. The alkali-soluble parts originating from the first alkali extraction were then fractionated by dissolution in dimethyl sulfoxide (DMSO). The polysaccharide insoluble in DMSO was identified as linear (1→3)-α-d-glucan, while branched (1→3)(1→6)-β-d-glucans were found to be soluble in DMSO. The second alkaline extract contained the mentioned branched β-d-glucan together with some proteins. Finally, the alkali insoluble part was a cell wall complex of chitin and β-d-glucans.
Collapse
Affiliation(s)
- Ekaterina Baeva
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28 Praha 6 Dejvice, Czech Republic
| | - Roman Bleha
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28 Praha 6 Dejvice, Czech Republic
| | - Ekaterina Lavrova
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28 Praha 6 Dejvice, Czech Republic
| | - Leonid Sushytskyi
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28 Praha 6 Dejvice, Czech Republic
| | - Jana Čopíková
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28 Praha 6 Dejvice, Czech Republic
| | - Ivan Jablonsky
- Department of Gardening, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6 Suchdol, Czech Republic
| | - Pavel Klouček
- Department of Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6 Suchdol, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28 Praha 6 Dejvice, Czech Republic.
| |
Collapse
|
16
|
Simple and effective purification approach to dissociate mixed water-insoluble α- and β-D-glucans and its application on the medicinal mushroom Fomitopsis betulina. Carbohydr Polym 2018; 200:353-360. [DOI: 10.1016/j.carbpol.2018.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/09/2018] [Accepted: 08/02/2018] [Indexed: 11/21/2022]
|
17
|
Malinowska E, Klimaszewska M, Strączek T, Schneider K, Kapusta C, Podsadni P, Łapienis G, Dawidowski M, Kleps J, Górska S, Pisklak DM, Turło J. Selenized polysaccharides – Biosynthesis and structural analysis. Carbohydr Polym 2018; 198:407-417. [DOI: 10.1016/j.carbpol.2018.06.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 11/30/2022]
|
18
|
Jaros D, Köbsch J, Rohm H. Exopolysaccharides from Basidiomycota: Formation, isolation and techno-functional properties. Eng Life Sci 2018; 18:743-752. [PMID: 32624868 PMCID: PMC6999363 DOI: 10.1002/elsc.201800117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/27/2018] [Accepted: 09/06/2018] [Indexed: 01/17/2023] Open
Abstract
This Mini Review gives an overview of and respective references for the production and properties of exopolysaccharides from Basidiomycota in submerged cultivation. Media and conditions that are usually applied in laboratory culture are summarized, and the lack of studies related to up-scaling is addressed. Procedures for isolation and purification of the exopolysaccharides from the fermentation media are reviewed, and challenges related to exopolysaccharide quantification are discussed. Finally, the techno-functional properties of the respective exopolysaccharides, and potential applications in foods are addressed.
Collapse
Affiliation(s)
- Doris Jaros
- Chair of Food EngineeringTechnische Universität DresdenDresdenGermany
| | - Johannes Köbsch
- Chair of Food EngineeringTechnische Universität DresdenDresdenGermany
| | - Harald Rohm
- Chair of Food EngineeringTechnische Universität DresdenDresdenGermany
| |
Collapse
|
19
|
Bancerz R, Osińska-Jaroszuk M, Jaszek M, Sulej J, Wiater A, Matuszewska A, Rogalski J. Fungal polysaccharides as a water-adsorbing material in esters production with the use of lipase from Rhizomucor variabilis. Int J Biol Macromol 2018; 118:957-964. [DOI: 10.1016/j.ijbiomac.2018.06.162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/25/2018] [Accepted: 06/27/2018] [Indexed: 11/28/2022]
|
20
|
Watanabe T, Yoshioka K, Kido A, Lee J, Akiyoshi H, Watanabe T. Preparation of intracellular proteins from a white-rot fungus surrounded by polysaccharide sheath and optimization of their two-dimensional electrophoresis for proteomic studies. J Microbiol Methods 2017; 142:63-70. [PMID: 28916445 DOI: 10.1016/j.mimet.2017.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 11/26/2022]
Abstract
The functions and properties of fungal sheath, an extracellular polysaccharide produced by many white-rot fungi, have been studied. However, the strong adherence of the sheath to fungal hyphae had been a major impediment in preparing intracellular proteins from the fungi and analyzing their cellular responses. To overcome this issue, we developed a rapid and easy method to remove the polysaccharide sheath using a selective lignin degrader, Ceriporiopsis subvermispora, which produces large sheath amounts in the presence of a lignin-derived aromatic compound. Using this approach, we achieved thorough removal of sheath and cell disruption using beads and a solution with a high protein-solubilizing power, which enabled the efficient extraction of intracellular proteins from C. subvermispora surrounded by sheath. In addition, for proteomic analysis, we investigated whether these extracted proteins were compatible with two-dimensional electrophoresis. By efficiently concentrating on protein solubilization in the first dimension and using a stacking gel in the second dimension, we successfully obtained a high-resolution proteome map of C. subvermispora. We also used the same proteins for fluorescence two-dimensional difference gel electrophoresis to obtain the quantitative protein expression profiles. These steps demonstrated that two-dimensional electrophoresis-based proteomics can be used to clarify the composition of intracellular proteins from sheath-producing white-rot fungi.
Collapse
Affiliation(s)
- Takahito Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan.
| | - Koichi Yoshioka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Ayako Kido
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Junseok Lee
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Hikari Akiyoshi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| |
Collapse
|
21
|
Czemierska M, Szcześ A, Hołysz L, Wiater A, Jarosz-Wilkołazka A. Characterisation of exopolymer R-202 isolated from Rhodococcus rhodochrous and its flocculating properties. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Suzuki D, Nishimura H, Yoshioka K, Kaida R, Hayashi T, Takabe K, Watanabe T. Structural characterization of highly branched glucan sheath from Ceriporiopsis subvermispora. Int J Biol Macromol 2017; 95:1210-1215. [DOI: 10.1016/j.ijbiomac.2016.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 11/29/2022]
|
23
|
Ahmad M, Gani A, Shah A, Gani A, Masoodi F. Germination and microwave processing of barley ( Hordeum vulgare L ) changes the structural and physicochemical properties of β- d -glucan & enhances its antioxidant potential. Carbohydr Polym 2016; 153:696-702. [DOI: 10.1016/j.carbpol.2016.07.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/25/2023]
|
24
|
Charaterization and immunomodulatory activities of polysaccharide isolated from Pleurotus eryngii. Int J Biol Macromol 2016; 92:30-36. [DOI: 10.1016/j.ijbiomac.2016.07.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 11/18/2022]
|
25
|
Czemierska M, Szcześ A, Pawlik A, Wiater A, Jarosz-Wilkołazka A. Production and characterisation of exopolymer from Rhodococcus opacus. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Liquefaction and characterization of residue of oleaginous yeast in polyhydric alcohols. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0122-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Radzki W, Ziaja-Sołtys M, Nowak J, Rzymowska J, Topolska J, Sławińska A, Michalak-Majewska M, Zalewska-Korona M, Kuczumow A. Effect of processing on the content and biological activity of polysaccharides from Pleurotus ostreatus mushroom. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.10.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Borchani C, Fonteyn F, Jamin G, Paquot M, Thonart P, Blecker C. Physical, functional and structural characterization of the cell wall fractions from baker’s yeast Saccharomyces cerevisiae. Food Chem 2016; 194:1149-55. [DOI: 10.1016/j.foodchem.2015.08.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/28/2015] [Accepted: 08/26/2015] [Indexed: 02/03/2023]
|
29
|
Cybulska J, Halaj M, Cepák V, Lukavský J, Capek P. Nanostructure features of microalgae biopolymer. STARCH-STARKE 2015. [DOI: 10.1002/star.201500159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Justyna Cybulska
- Institute of Agrophysics; Polish Academy of Sciences; Lublin Poland
| | - Michal Halaj
- Institute of Chemistry; Center for Glycomics; Slovak Academy of Sciences; Bratislava Slovak Republic
| | - Vladimír Cepák
- Institute of Botany; Academy of Sciences of the Czech Republic, Centre for Bioindication and Revitalization; Trebon Czech Republic
| | - Jaroslav Lukavský
- Institute of Botany; Academy of Sciences of the Czech Republic, Centre for Bioindication and Revitalization; Trebon Czech Republic
| | - Peter Capek
- Institute of Chemistry; Center for Glycomics; Slovak Academy of Sciences; Bratislava Slovak Republic
| |
Collapse
|
30
|
Huang D, Wang C, Yuan J, Cao J, Lan H. Differentiation of the seed coat and composition of the mucilage of Lepidium perfoliatum L.: a desert annual with typical myxospermy. Acta Biochim Biophys Sin (Shanghai) 2015; 47:775-87. [PMID: 26341978 DOI: 10.1093/abbs/gmv078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/21/2015] [Indexed: 11/12/2022] Open
Abstract
Myxospermy is an important feature in seeds of many plant species grown in desert region. Fertilization can initiate differentiation of the seed coat epidermis into a specialized cell type with mucilage production. In the present study, comprehensive analyses were performed on the seed coat differentiation, mucilage production and composition, and seed germination in Lepidium perfoliatum (Brassicaceae), a desert annual with typical myxospermy in China. First, results indicated that mucilage was secreted uniformly at the outer tangential wall, resulting in compression of the cytoplasm to the bottom of the epidermal cells. Secondly, the inner tangential wall and two radial walls of the subepidermal cells were apparently thickened by production of a secondary cell wall material, which resulted in a 'typical' palisade appearance. Thirdly, immunohistochemical staining combined with the enzymatic digestion and infrared spectrum analysis of the mucilage indicated that, while one important component of the seed coat mucilage in L. perfoliatum was pectin, it also contained β-1,3-d-glucan and xyloglucan. Finally, seed germination showed that seeds with mucilage displayed significantly higher germination percentage than that of demucilaged seeds in abundant or excess water conditions. These results suggest that the possible ecological role of mucilage in L. perfoliatum is in the adaptation to habitats with well-watered and water-logged conditions, rather than water stress.
Collapse
Affiliation(s)
- Daihong Huang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China College of Life Science, Nankai University, Tianjin 300071, China
| | - Cui Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Junwen Yuan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jing Cao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
31
|
β-(1→3),(1→6)-Glucans: medicinal activities, characterization, biosynthesis and new horizons. Appl Microbiol Biotechnol 2015; 99:7893-906. [DOI: 10.1007/s00253-015-6849-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/12/2015] [Accepted: 07/14/2015] [Indexed: 02/07/2023]
|
32
|
Tian H, Yin X, Zeng Q, Zhu L, Chen J. Isolation, structure, and surfactant properties of polysaccharides from Ulva lactuca L. from South China Sea. Int J Biol Macromol 2015; 79:577-82. [DOI: 10.1016/j.ijbiomac.2015.05.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 12/11/2022]
|
33
|
Nogueira V, Lopes I, Freitas AC, Rocha-Santos TAP, Gonçalves F, Duarte AC, Pereira R. Biological treatment with fungi of olive mill wastewater pre-treated by photocatalytic oxidation with nanomaterials. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 115:234-242. [PMID: 25723133 DOI: 10.1016/j.ecoenv.2015.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 06/04/2023]
Abstract
Olive mill wastewater (OMW) still is a major environmental problem due to its high chemical oxygen demand (COD) and total phenolic content (TPC), contributing for the high toxicity and recalcitrant nature. Several attempts have been made for developing more efficient treatment processes, but no chemical or biological approaches were found to be totally effective, especially in terms of toxicity reduction. In this context, the main purpose of this study was to investigate the treatability of OMW by the combination of photocatalytic oxidation, using two nanomaterials as catalysts (TiO2 and Fe2O3), with biological degradation by fungi (Pleurotus sajor caju and Phanerochaete chrysosporium). Photocatalytic oxidation was carried out using different systems, nano-TiO2/UV, nano-Fe2O3/UV, nano-TiO2/H2O2/UV and nano-Fe2O3/H2O2/UV. The effectiveness of the treatment was assessed through color (465nm), aromatics (270nm), COD and TPC reductions, as well as by the decrease in toxicity using the bacterium Vibrio fischeri. The chemical treatment with the system nano-TiO2/H2O2/UV promoted 43%, 14%, 38% and 31% reductions in color, aromatics content, COD and TPC, respectively. However no toxicity reduction was observed. The combination with a biological treatment increased the reduction of COD and TPC as well as a reduction in toxicity. The treatment with P. chrysosporium promoted the highest reduction in toxicity, but P. sajor caju was responsible for the best reduction in COD and TPC. However, the biological treatment was more effective when no hydrogen peroxide was used in the pre-treatment.
Collapse
Affiliation(s)
- V Nogueira
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal; CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - I Lopes
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal; CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - A C Freitas
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; ISEIT/Viseu, Instituto Piaget, Estrada do Alto do Gaio, Galifonge, Lordosa, 3515-776 Viseu, Portugal; Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| | - T A P Rocha-Santos
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| | - F Gonçalves
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal; CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - A C Duarte
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| | - R Pereira
- Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre 4169-007 Porto, Portugal; Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P-4050-123 Porto, Portugal
| |
Collapse
|
34
|
Osińska-Jaroszuk M, Wlizło K, Szałapata K, Jarosz-Wilkołazka A. Correlation between the production of exopolysaccharides and oxalic acid secretion by Ganoderma applanatum and Tyromyces palustris. World J Microbiol Biotechnol 2014; 30:3065-74. [PMID: 25178492 PMCID: PMC4210633 DOI: 10.1007/s11274-014-1733-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 08/26/2014] [Indexed: 02/01/2023]
Abstract
The secretion of exopolysaccharides and oxalic acid in cultures of a white rot Ganoderma applanatum strain and a brown rot Tyromyces palustris strain were tested in terms of culture time, pH range, and temperature. The high yield of exopolysaccharides (EPS) required a moderate temperature of 28 °C for G. applanatum and 20 °C for T. palustris. G. applanatum and T. palustris accumulated more EPS when the concentration of the carbon source (maltose for G. applanatum and fructose for T. palustris) was 30 g/L. The results indicate that the production of oxalic acid by G. applanatum is correlated with the initial pH value of the culture medium and the concentration of oxalic acid increased to 1.66 ± 0.2 mM at the initial pH of 6.5 during the fungal growth. During the growth of T. palustris, the reduction of the initial pH value of the growing medium lowered the oxalic acid concentration from 7.7 ± 0.6 mM at pH 6.0 to 1.99 ± 0.2 mM at pH 3.5. T. palustris accumulated considerably more oxalic acid than G. applanatum and its presence did not affect significantly the production of exopolysaccharides. We also observed that the maximum amounts of exopolysaccharides secreted during cultivation of G. applanatum and T. palustris were 45.8 ± 1.2 and 19.1 ± 1.2 g/L, respectively.
Collapse
Affiliation(s)
- Monika Osińska-Jaroszuk
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka Street 19, 20-033, Lublin, Poland,
| | | | | | | |
Collapse
|
35
|
Sanyal B, Ahn JJ, Maeng JH, Kyung HK, Lim HK, Sharma A, Kwon JH. An improved approach to identify irradiated spices using electronic nose, FTIR, and EPR spectroscopy. J Food Sci 2014; 79:C1656-64. [PMID: 25155212 DOI: 10.1111/1750-3841.12571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/07/2014] [Indexed: 11/30/2022]
Abstract
Changes in cumin and chili powder from India resulting from electron-beam irradiation were investigated using 3 analytical methods: electronic nose (E-nose), Fourier transform infrared (FTIR) spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The spices had been exposed to 6 to 14 kGy doses recommended for microbial decontamination. E-nose measured a clear difference in flavor patterns of the irradiated spices in comparison with the nonirradiated samples. Principal component analysis further showed a dose-dependent variation. FTIR spectra of the samples showed strong absorption bands at 3425, 3007 to 2854, and 1746 cm(-1). However, both nonirradiated and irradiated spice samples had comparable patterns without any noteworthy changes in functional groups. EPR spectroscopy of the irradiated samples showed a radiation-specific triplet signal at g = 2.006 with a hyper-fine coupling constant of 3 mT confirming the results obtained with the E-nose technique. Thus, E-nose was found to be a potential tool to identify irradiated spices.
Collapse
Affiliation(s)
- Bhaskar Sanyal
- School of Food Science & Biotechnology, Kyungpook Natl. Univ, Daegu, 702-701, Korea; Food Technology Div, Bhabha Atomic Research Center, Trombay, Mumbai, 400 085, India
| | | | | | | | | | | | | |
Collapse
|
36
|
Fraga I, Coutinho J, Bezerra RM, Dias AA, Marques G, Nunes FM. Influence of culture medium growth variables on Ganoderma lucidum exopolysaccharides structural features. Carbohydr Polym 2014; 111:936-46. [PMID: 25037434 DOI: 10.1016/j.carbpol.2014.05.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/09/2014] [Accepted: 05/10/2014] [Indexed: 11/17/2022]
Abstract
In this work the effect of carbon and nitrogen levels and initial pH of the wheat extract culture medium of submerged culture of Ganoderma lucidum on the amount, purity and structural features of exopolysaccharides (EPS) were studied. A low peptone level (1.65 g L(-1)) favored mycelium biomass, EPS purity, but a higher supply of peptone (4.80 g L(-1)) is needed for maximum EPS production. The carbohydrate composition of the EPS and structural features also changed significantly according to the different growing conditions, being observed significant differences in the (1 → 3)/(1 → 4)-Glcp ratio and also on the branching degree of EPS. As the biological activities of EPS are highly dependent on the polysaccharide structural features, this variability can have implications on the EPS biological activities, but can also be used advantageously to produce tailor made polysaccharides with specific applications.
Collapse
Affiliation(s)
- Irene Fraga
- CITAB - Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - João Coutinho
- CQ-Vila Real, Chemistry Research Centre, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Rui M Bezerra
- CITAB - Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Albino A Dias
- CITAB - Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Guilhermina Marques
- CITAB - Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Fernando M Nunes
- CQ-Vila Real, Chemistry Research Centre, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal.
| |
Collapse
|
37
|
Ecological dynamics and biotechnological implications of thraustochytrids from marine habitats. Appl Microbiol Biotechnol 2014; 98:5789-805. [DOI: 10.1007/s00253-014-5780-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
|
38
|
Sudha PN, Aisverya S, Nithya R, Vijayalakshmi K. Industrial applications of marine carbohydrates. ADVANCES IN FOOD AND NUTRITION RESEARCH 2014; 73:145-181. [PMID: 25300546 DOI: 10.1016/b978-0-12-800268-1.00008-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biomaterials have been used increasingly in various fields, such as drug delivery, imaging, and tissue engineering. The main reason justifying the widespread use of biomaterials relies on its valuable and low-cost source of new drugs. Current research goals are focused on identifying more potent and specific compounds with antitumor, immunomodulatory, antihyperlipidemic, anticoagulant, and antiviral activities. The increasing knowledge of structural analysis and chemical modifications enables the use of these marine carbohydrates in a newer way for the human welfare. This chapter focuses on the recent developments related to industrial and biomedical applications using chitin, chitosan, alginate, agar, and carrageenan derivatives and reports the main advances published over the last 10-15 years.
Collapse
Affiliation(s)
- Prasad N Sudha
- Department of Chemistry, D.K.M. College for Women, Thiruvalluvar University, Vellore, Tamil Nadu, India.
| | - S Aisverya
- Department of Chemistry, D.K.M. College for Women, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - R Nithya
- Department of Chemistry, D.K.M. College for Women, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - K Vijayalakshmi
- Department of Chemistry, D.K.M. College for Women, Thiruvalluvar University, Vellore, Tamil Nadu, India
| |
Collapse
|
39
|
da Silva Nascimento Santos M, Leite EL. Polysaccharides from the Fungus Scleroderma/Fungi. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_19-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
40
|
Liu Y, Singh P, Sun Y, Luan S, Wang G. Culturable diversity and biochemical features of thraustochytrids from coastal waters of Southern China. Appl Microbiol Biotechnol 2013; 98:3241-55. [DOI: 10.1007/s00253-013-5391-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
|
41
|
Pesciaroli L, Petruccioli M, Federici F, D'Annibale A. Pleurotus ostreatus biofilms exhibit higher tolerance to toxicants than free-floating counterparts. BIOFOULING 2013; 29:1043-1055. [PMID: 23998200 DOI: 10.1080/08927014.2013.825901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The MBEC(TM)-High Throughput Assay based on the Calgary Biofilm Device was used to produce and to characterize Pleurotus ostreatus biofilms. Hydroxyapatite coating of pegs was required to enable biofilm attachment; biofilm amounts and homogeneity of distribution were markedly improved upon removal of non-sessile biomass after 48 h from inoculation. Scanning electron microscopy showed surface-associated and multi-layered growth stabilized by the presence of an extracellular matrix (ECM). Biofilms had higher contents of total sugars and ECM than their free-floating counterparts. Tolerance to Cr(VI) in the former was about twice that of the latter as inferred by the respective inhibitory concentrations (48.4 vs 24.1 mM and 114.5 vs 61.0 mM in 4- and 7-d-old cultures, respectively). Biofilms also displayed superior olive-mill wastewater (OMW) treatment efficiency along 5 consecutive batches leading to chemical oxygen demand and total phenol removals higher than 50 and 90%, respectively. Laccase activity peaks in biofilm cultures grown on OMW were significantly higher than those in free-floating cultures.
Collapse
Affiliation(s)
- Lorena Pesciaroli
- a Department for Innovation in Biological, Agro-Food and Forest Systems , University of Tuscia , Viterbo , Italy
| | | | | | | |
Collapse
|
42
|
Characterization of Pleurotus ostreatus biofilms by using the calgary biofilm device. Appl Environ Microbiol 2013; 79:6083-92. [PMID: 23892744 DOI: 10.1128/aem.02099-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adequacy of the Calgary biofilm device, often referred to as the MBEC system, as a high-throughput approach to the production and subsequent characterization of Pleurotus ostreatus biofilms was assessed. The hydroxyapatite-coating of pegs was necessary to enable biofilm attachment, and the standardization of vegetative inocula ensured a uniform distribution of P. ostreatus biofilms, which is necessary for high-throughput evaluations of several antimicrobials and exposure conditions. Scanning electron microscopy showed surface-associated growth, the occurrence of a complex aggregated growth organized in multilayers or hyphal bundles, and the encasement of hyphae within an extracellular matrix (ECM), the extent of which increased with time. Chemical analyses showed that biofilms differed from free-floating cultures for their higher contents of total sugars (TS) and ECM, with the latter being mainly composed of TS and, to a lesser extent, protein. Confocal laser scanning microscopy analysis of 4-day-old biofilms showed the presence of interspersed interstitial voids and water channels in the mycelial network, the density and compactness of which increased after a 7-day incubation, with the novel occurrence of ECM aggregates with an α-glucan moiety. In 4- and 7-day-old biofilms, tolerance to cadmium was increased by factors of 3.2 and 11.1, respectively, compared to coeval free-floating counterparts.
Collapse
|
43
|
Wu GH, Hu T, Huang ZL, Jiang JG. Characterization of water and alkali-soluble polysaccharides from Pleurotus tuber-regium sclerotia. Carbohydr Polym 2013; 96:284-90. [DOI: 10.1016/j.carbpol.2013.03.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/25/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
|
44
|
Water-soluble (1→3),(1→4)-α-d-glucan from mango as a novel inducer of cariogenic biofilm-degrading enzyme. Int J Biol Macromol 2013; 58:199-205. [DOI: 10.1016/j.ijbiomac.2013.03.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/19/2013] [Accepted: 03/26/2013] [Indexed: 11/24/2022]
|
45
|
Pesciaroli L, Petruccioli M, Federici F, D'Annibale A. Pleurotus ostreatus
biofilm-forming ability and ultrastructure are significantly influenced by growth medium and support type. J Appl Microbiol 2013; 114:1750-62. [DOI: 10.1111/jam.12170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/21/2013] [Accepted: 02/10/2013] [Indexed: 11/29/2022]
Affiliation(s)
- L Pesciaroli
- Department for Innovation in Biological, Agro-Food, and Forestry systems, University of Tuscia, Viterbo, Italy
| | | | | | | |
Collapse
|
46
|
Structural elucidation of a novel heteropolysaccharide from the fruiting bodies of Pleurotus eryngii. Carbohydr Polym 2013; 92:2239-44. [DOI: 10.1016/j.carbpol.2012.11.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/23/2012] [Accepted: 11/24/2012] [Indexed: 11/23/2022]
|
47
|
Goo BG, Baek G, Choi DJ, Park YI, Synytsya A, Bleha R, Seong DH, Lee CG, Park JK. Characterization of a renewable extracellular polysaccharide from defatted microalgae Dunaliella tertiolecta. BIORESOURCE TECHNOLOGY 2013; 129:343-50. [PMID: 23262010 DOI: 10.1016/j.biortech.2012.11.077] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 11/12/2012] [Accepted: 11/19/2012] [Indexed: 05/10/2023]
Abstract
Extracellular polysaccharide (EPS) was isolated from defatted micro-algae Dunaliela tertiolecta and defined as linear (1→4)-α-D-glucan based on monosaccharide composition, enzymatic and spectroscopic analyses. Optimization and characterization of acidic and enzymatic hydrolyses of EPS have been performed for its potential use as a renewable biorefinery material. The hydrolytic methods were improved to assess the effect of substrate specificity, reaction time, pH, ionic strength and temperature on efficiency of glucose production. EPS was effectively converted into glucose within one-step enzymatic or acidic hydrolysis under optimized conditions. Over 90% recovery of glucose was achieved for both hydrolytic approaches. High potential production of EPS and high yield conversion of this substrate to glucose may allow further exploration of microalga D. tertiolecta as a potential biomass producer for biotechnological and industrial exploitation of bioethanol.
Collapse
Affiliation(s)
- Bon Geun Goo
- Department of Biotechnology, The Catholic University of Korea, Bucheon 420-743, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Fungal exopolysaccharides (EPSs) have been recognized as high value biomacromolecules for the last two decades. These products, including pullulan, scleroglucan, and botryosphaeran, have several applications in industries, pharmaceuticals, medicine, foods etc. Although fungal EPSs are highly relevant, to date information concerning fungal biosynthesis is scarce and an extensive search for new fugal species that can produce novel EPSs is still needed. In most cases, the molecular weight variations and sugar compositions of fungal EPSs are dependent to culture medium composition and different physical conditions provided during fermentation. An inclusive and illustrative review on fungal EPS is presented here. The general outline of the present work includes fungal EPS production, their compositions and applications. An emphasis is also given to listing out different fungal strains that can produce EPSs.
Collapse
Affiliation(s)
- Subhadip Mahapatra
- Microbiology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal, India
| | - Debdulal Banerjee
- Microbiology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|
49
|
Maity K, Samanta S, Bhanja SK, Maity S, Sen IK, Maiti S, Behera B, Maiti TK, Sikdar SR, Islam SS. An immunostimulating water insoluble β-glucan of an edible hybrid mushroom: Isolation and characterization. Fitoterapia 2013; 84:15-21. [DOI: 10.1016/j.fitote.2012.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/17/2012] [Accepted: 10/21/2012] [Indexed: 10/27/2022]
|
50
|
Zhang Y, Dai L, Kong X, Chen L. Characterization and in vitro antioxidant activities of polysaccharides from Pleurotus ostreatus. Int J Biol Macromol 2012; 51:259-65. [DOI: 10.1016/j.ijbiomac.2012.05.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/18/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
|