1
|
Poddar S, Levitus M. Buffer-Dependent Photophysics of 2-Aminopurine: Insights into Fluorescence Quenching and Excited-State Interactions. J Phys Chem B 2024; 128:2640-2651. [PMID: 38452253 DOI: 10.1021/acs.jpcb.3c07269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
2-Aminopurine (2AP) is the most widely used fluorescent nucleobase analogue in DNA and RNA research. Its unique photophysical properties and sensitivity to environmental changes make it a useful tool for understanding nucleic acid dynamics and DNA-protein interactions. We studied the effect of ions present in commonly used buffer solutions on the excited-state photophysical properties of 2AP. Fluorescence quenching was negligible for tris(hydroxymethyl)aminomethane (TRIS), but significant for phosphate, carbonate, 3-(N-morpholino) propanesulfonic acid (MOPS), and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffers. Results indicate that the two tautomers of 2AP (7H, 9H) are quenched by phosphate ions to different extents. Quenching by the H2PO4- ion is more pronounced for the 7H tautomer, while the opposite is true for the HPO42- ion. For phosphate ions, the results of the time-resolved fluorescence study cannot be explained using a simple collisional quenching mechanism. Instead, results are consistent with transient interactions between 2AP and the phosphate ions. We postulate that excited-state interactions between the 2AP tautomers and an H-bond acceptor (phosphate and carbonate) result in significant quenching of the singlet-excited state of 2AP. Such interactions manifest in biexponential fluorescence intensity decays with pre-exponential factors that vary with quencher concentration, and downward curvatures of the Stern-Volmer plots.
Collapse
Affiliation(s)
- Souvik Poddar
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, Arizona 85287, United States
- The Biodesign Institute Center for Single Molecule Biophysics, Arizona State University, Tempe, Arizona 85287, United States
| | - Marcia Levitus
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, Arizona 85287, United States
- The Biodesign Institute Center for Single Molecule Biophysics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
2
|
Gustavsson T, Markovitsi D. The Ubiquity of High-Energy Nanosecond Fluorescence in DNA Duplexes. J Phys Chem Lett 2023; 14:2141-2147. [PMID: 36802626 DOI: 10.1021/acs.jpclett.2c03884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
During the past few years, several studies reported that a significant part of the intrinsic fluorescence of DNA duplexes decays with surprisingly long lifetimes (1-3 ns) at wavelengths shorter than the ππ* emission of their monomeric constituents. This high-energy nanosecond emission (HENE), hardly discernible in the steady-state fluorescence spectra of most duplexes, was investigated by time-correlated single-photon counting. The ubiquity of HENE contrasts with the paradigm that the longest-lived excited states correspond to low-energy excimers/exciplexes. Interestingly, the latter were found to decay faster than the HENE. So far, the excited states responsible for HENE remain elusive. In order to foster future studies for their characterization, this Perspective presents a critical summary of the experimental observations and the first theoretical approaches. Moreover, some new directions for further work are outlined. Finally, the obvious need for computations of the fluorescence anisotropy considering the dynamic conformational landscape of duplexes is stressed.
Collapse
Affiliation(s)
- Thomas Gustavsson
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| | - Dimitra Markovitsi
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| |
Collapse
|
3
|
Wang Q, Lin S, Liu X, Xu W, Xiao Y, Liang C, Ding L, Peeters FM. Photoluminescence and electronic transition behaviors of single-stranded DNA. Phys Rev E 2021; 104:034412. [PMID: 34654201 DOI: 10.1103/physreve.104.034412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/31/2021] [Indexed: 11/07/2022]
Abstract
Due to the potential application of DNA for biophysics and optoelectronics, the electronic energy states and transitions of this genetic material have attracted a great deal of attention recently. However, the fluorescence and corresponding physical process of DNA under optical excitation with photon energies below ultraviolet are still not fully clear. In this work, we experimentally investigate the photoluminescence (PL) properties of single-stranded DNA (ssDNA) samples under near-ultraviolet (NUV) and visible excitations (270∼440 nm). Based on the dependence of the PL peak wavelength (λ_{em}) upon the excitation wavelength (λ_{ex}), the PL behaviors of ssDNA can be approximately classified into two categories. In the relatively short excitation wavelength regime, λ_{em} is nearly constant due to exciton-like transitions associated with delocalized excitonic states and excimer states. In the relatively long excitation wavelength range, a linear relation of λ_{em}=Aλ_{ex}+B with A>0 or A<0 can be observed, which comes from electronic transitions related to coupled vibrational-electronic levels. Moreover, the transition channels in different excitation wavelength regimes and the effects of strand length and base type can be analyzed on the basis of these results. These important findings not only can give a general description of the electronic energy states and transitional behaviors of ssDNA samples under NUV and visible excitations, but also can be the basis for the application of DNA in nanoelectronics and optoelectronics.
Collapse
Affiliation(s)
- Qiujin Wang
- School of Physics and Astronomy and Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China
| | - Shuo Lin
- School of Physics and Astronomy and Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China
| | - Xuan Liu
- School of Physics and Astronomy and Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China
| | - Wen Xu
- School of Physics and Astronomy and Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China.,Micro Optical Instruments Inc., 518118 Shenzhen, China.,Key Laboratory of Material Physics, Institute of Solid State Physics, Chinese Academy of Science, Hefei 230031, China
| | - Yiming Xiao
- School of Physics and Astronomy and Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China
| | - Changneng Liang
- School of Physics and Astronomy and Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China
| | - Lan Ding
- School of Physics and Astronomy and Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China
| | - F M Peeters
- School of Physics and Astronomy and Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China.,Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| |
Collapse
|
4
|
Mirzaei-Kalar Z, Yavari A, Jouyban A. Increasing DNA binding affinity of doxorubicin by loading on Fe 3O 4 nanoparticles: A multi-spectroscopic study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117985. [PMID: 31901801 DOI: 10.1016/j.saa.2019.117985] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/14/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Magnetic Fe3O4 nanoparticles were synthesized successfully by co-precipitation method and characterized using XRD, SEM and EDS analyses. Then doxorubicin (DOX, a known anticancer drug) was loaded onto nanoparticles. In vitro DNA interaction of free DOX and loaded DOX onto Fe3O4 nanoparticles (DOX-Fe3O4) was investigated by DNA-viscosity measurements, UV-visible and fluorescence spectroscopies. The obtained values for binding constant of DOX and DOX-Fe3O4 compounds from UV-visible spectroscopies were 0.04 × 105 and 0.68 × 105 L mol-1, respectively, which confirms DOX-Fe3O4 compound have a stronger interaction with CT-DNA compared to DOX. Considerable changes on viscosity of the compounds recommended that their binding mode with CT-DNA is intercalative binding. Fluorescence intensity of DOX and DOX-Fe3O4 was quenched via static process by regular addition of CT-DNA. Thermodynamic parameters suggest that Van der Waals forces and hydrogen bonding for DOX and electrostatic forces for DOX-Fe3O4 are predominantly responsible for interaction with CT-DNA. Competition fluorescence studies were done by Hoechst 33258 as a well-known groove binder and ethidium bromide (EtBr) as a known intercalator probe. Percentage of displacement for EtBr-DNA complex with DOX and DOX-Fe3O4 was 39% and 61%, and for Hoechst-DNA complex was 9% and 5%, respectively. These results confirmed that both compounds are intercalator binders, although DOX-Fe3O4 with a further 22% displacement is a stronger intercalator binder than DOX. The stronger interaction of DOX-Fe3O4 compared to DOX suggests that the current system can be used as a new and effective way to targeted therapy of anticancer drugs.
Collapse
Affiliation(s)
- Zeinab Mirzaei-Kalar
- Department of Materials Engineering and Nanotechnology, Sabalan University of Advanced Technologies (SUAT), Namin, Iran; Department of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Ardabil, Iran.
| | - Azin Yavari
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-14766, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Dong B, Almassalha LM, Soetikno BT, Chandler JE, Nguyen TQ, Urban BE, Sun C, Zhang HF, Backman V. Stochastic fluorescence switching of nucleic acids under visible light illumination. OPTICS EXPRESS 2017; 25:7929-7944. [PMID: 28380910 PMCID: PMC5810907 DOI: 10.1364/oe.25.007929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 05/20/2023]
Abstract
We report detailed characterizations of stochastic fluorescence switching of unmodified nucleic acids under visible light illumination. Although the fluorescent emission from nucleic acids under the visible light illumination has long been overlooked due to their apparent low absorption cross section, our quantitative characterizations reveal the high quantum yield and high photon count in individual fluorescence emission events of nucleic acids at physiological concentrations. Owing to these characteristics, the stochastic fluorescence switching of nucleic acids could be comparable to that of some of the most potent exogenous fluorescence probes for localization-based super-resolution imaging. Therefore, utilizing the principle of single-molecule photon-localization microscopy, native nucleic acids could be ideal candidates for optical label-free super-resolution imaging.
Collapse
Affiliation(s)
- Biqin Dong
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
- Mechanical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
| | - Luay M. Almassalha
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
| | - Brian T. Soetikno
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
| | - John E. Chandler
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
| | - The-Quyen Nguyen
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
| | - Ben E. Urban
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
| | - Cheng Sun
- Mechanical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
| | - Hao F. Zhang
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
| | - Vadim Backman
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208,
USA
| |
Collapse
|
6
|
Superresolution intrinsic fluorescence imaging of chromatin utilizing native, unmodified nucleic acids for contrast. Proc Natl Acad Sci U S A 2016; 113:9716-21. [PMID: 27535934 DOI: 10.1073/pnas.1602202113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Visualizing the nanoscale intracellular structures formed by nucleic acids, such as chromatin, in nonperturbed, structurally and dynamically complex cellular systems, will help expand our understanding of biological processes and open the next frontier for biological discovery. Traditional superresolution techniques to visualize subdiffractional macromolecular structures formed by nucleic acids require exogenous labels that may perturb cell function and change the very molecular processes they intend to study, especially at the extremely high label densities required for superresolution. However, despite tremendous interest and demonstrated need, label-free optical superresolution imaging of nucleotide topology under native nonperturbing conditions has never been possible. Here we investigate a photoswitching process of native nucleotides and present the demonstration of subdiffraction-resolution imaging of cellular structures using intrinsic contrast from unmodified DNA based on the principle of single-molecule photon localization microscopy (PLM). Using DNA-PLM, we achieved nanoscopic imaging of interphase nuclei and mitotic chromosomes, allowing a quantitative analysis of the DNA occupancy level and a subdiffractional analysis of the chromosomal organization. This study may pave a new way for label-free superresolution nanoscopic imaging of macromolecular structures with nucleotide topologies and could contribute to the development of new DNA-based contrast agents for superresolution imaging.
Collapse
|
7
|
Markovitsi D. UV-induced DNA Damage: The Role of Electronic Excited States. Photochem Photobiol 2015; 92:45-51. [PMID: 26436855 DOI: 10.1111/php.12533] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/27/2015] [Indexed: 01/23/2023]
Abstract
The knowledge of the fundamental processes induced by the direct absorption of UV radiation by DNA allows extrapolating conclusions drawn from in vitro studies to the in-vivo DNA photoreactivity. In this respect, the characterization of the DNA electronic excited states plays a key role. For a long time, the mechanisms of DNA lesion formation were discussed in terms of generic "singlet" and "triplet" excited state reactivity. However, since the beginning of the 21(st) century, both experimental and theoretical studies revealed the existence of "collective" excited states, i.e. excited states delocalized over at least two bases. Two limiting cases are distinguished: Frenkel excitons (delocalized ππ* states) and charge-transfer states in which positive and negative charges are located on different bases. The importance of collective excited states in photon absorption (in particular in the UVA spectral domain), the redistribution of the excitation energy within DNA, and the formation of dimeric pyrimidine photoproducts is discussed. The dependence of the behavior of the collective excited states on conformational motions of the nucleic acids is highlighted.
Collapse
Affiliation(s)
- Dimitra Markovitsi
- CNRS, IRAMIS, LIDYL, Laboratoire Francis Perrin, URA 2453, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
8
|
Majumder N, Chowdhury C, Ray R, Jana TK. Quantitative study of As (V) and As (III) interaction with mangrove DNA by molecular fluorescence spectroscopy. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 93:177-181. [PMID: 24711051 DOI: 10.1007/s00128-014-1265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
This study describes the in vitro study of (1:1) one step nucleophilic displacement ([Formula: see text]) of phosphate by heavier anion arsenate and arsenite in the DNA of arsenic ridden Sundarban mangroves. Mangrove DNA was found to give rise to a broad fluorescence and its integrated fluorescence intensity was enhanced on addition of As (V) and As (III), respectively. Analyses of the fluorescence parameter showed adequacy of 1:1 model to describe substitution of phosphate of mangrove DNA chain exiplex by arsenate and arsenite with equilibrium constant (log Kc) ranging between 4.19 and 4.32 for As (V), and between 3.77 and 3.89 for As (III) at pH 7 and 25°C. In the cases, the melting temperature (Tm) and reassociation rate constant of mangrove DNA was increased on treatment with As (V) and As (III). It is suggested that heavier ion arsenate and arsenite may substitute phosphate in natural DNA.
Collapse
Affiliation(s)
- N Majumder
- Department of Marine Science, Calcutta University, 35, B. C. Road, Kolkata, 700019, India
| | | | | | | |
Collapse
|
9
|
Vayá I, Brazard J, Gustavsson T, Markovitsi D. Electronically excited states of DNA oligonucleotides with disordered base sequences studied by fluorescence spectroscopy. Photochem Photobiol Sci 2013; 11:1767-73. [PMID: 23034563 DOI: 10.1039/c2pp25180a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA double-stranded oligomers are studied by steady-state and time-resolved fluorescence spectroscopy from the femtosecond to the nanosecond time-scale, following excitation at 267 nm. It is shown that emission arises from three types of excited states. (i) Bright ππ* states emitting around 330 nm and decaying on the sub-picosecond time-scale with an average lifetime of ca. 0.4 ps and a quantum yield lower than 4 × 10(-6). (ii) Excimers/exciplexes emitting around 430 nm and decaying on the sub-nanosecond time-scale. (iii) Excited states emitting mainly at short wavelengths (λ < 330 nm) and decaying on the nanosecond time-scale, possibly correlated to GC pairs. The properties of the examined duplexes, exhibiting significant disorder with respect to the nearest neighbour base sequence, are radically different than those of the much longer and disordered calf thymus DNA. Such behaviour suggests that long range and/or sequence effects play a key role in the fate of excitation energy.
Collapse
Affiliation(s)
- Ignacio Vayá
- CNRS, IRAMIS, SPAM, Laboratoire Francis Perrin, URA 2453, F-91191 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
10
|
Label-free 3D visualization of cellular and tissue structures in intact muscle with second and third harmonic generation microscopy. PLoS One 2011; 6:e28237. [PMID: 22140560 PMCID: PMC3225396 DOI: 10.1371/journal.pone.0028237] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/04/2011] [Indexed: 11/19/2022] Open
Abstract
Second and Third Harmonic Generation (SHG and THG) microscopy is based on optical effects which are induced by specific inherent physical properties of a specimen. As a multi-photon laser scanning approach which is not based on fluorescence it combines the advantages of a label-free technique with restriction of signal generation to the focal plane, thus allowing high resolution 3D reconstruction of image volumes without out-of-focus background several hundred micrometers deep into the tissue. While in mammalian soft tissues SHG is mostly restricted to collagen fibers and striated muscle myosin, THG is induced at a large variety of structures, since it is generated at interfaces such as refraction index changes within the focal volume of the excitation laser. Besides, colorants such as hemoglobin can cause resonance enhancement, leading to intense THG signals. We applied SHG and THG microscopy to murine (Mus musculus) muscles, an established model system for physiological research, to investigate their potential for label-free tissue imaging. In addition to collagen fibers and muscle fiber substructure, THG allowed us to visualize blood vessel walls and erythrocytes as well as white blood cells adhering to vessel walls, residing in or moving through the extravascular tissue. Moreover peripheral nerve fibers could be clearly identified. Structure down to the nuclear chromatin distribution was visualized in 3D and with more detail than obtainable by bright field microscopy. To our knowledge, most of these objects have not been visualized previously by THG or any label-free 3D approach. THG allows label-free microscopy with inherent optical sectioning and therefore may offer similar improvements compared to bright field microscopy as does confocal laser scanning microscopy compared to conventional fluorescence microscopy.
Collapse
|
11
|
Vayá I, Gustavsson T, Miannay FA, Douki T, Markovitsi D. Fluorescence of Natural DNA: From the Femtosecond to the Nanosecond Time Scales. J Am Chem Soc 2010; 132:11834-5. [DOI: 10.1021/ja102800r] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ignacio Vayá
- Laboratoire Francis Perrin, CEA/DSM/IRAMIS/SPAM - CNRS URA 2453, CEA/Saclay, 91191 Gif-sur-Yvette, France and CEA, INAC, SCIB, UJF & CNRS, LCIB (UMR_E 3 CEA-UJF and FRE 3200), Laboratoire “Lésions des Acides Nucléiques”, 17 Rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - Thomas Gustavsson
- Laboratoire Francis Perrin, CEA/DSM/IRAMIS/SPAM - CNRS URA 2453, CEA/Saclay, 91191 Gif-sur-Yvette, France and CEA, INAC, SCIB, UJF & CNRS, LCIB (UMR_E 3 CEA-UJF and FRE 3200), Laboratoire “Lésions des Acides Nucléiques”, 17 Rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - François-Alexandre Miannay
- Laboratoire Francis Perrin, CEA/DSM/IRAMIS/SPAM - CNRS URA 2453, CEA/Saclay, 91191 Gif-sur-Yvette, France and CEA, INAC, SCIB, UJF & CNRS, LCIB (UMR_E 3 CEA-UJF and FRE 3200), Laboratoire “Lésions des Acides Nucléiques”, 17 Rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - Thierry Douki
- Laboratoire Francis Perrin, CEA/DSM/IRAMIS/SPAM - CNRS URA 2453, CEA/Saclay, 91191 Gif-sur-Yvette, France and CEA, INAC, SCIB, UJF & CNRS, LCIB (UMR_E 3 CEA-UJF and FRE 3200), Laboratoire “Lésions des Acides Nucléiques”, 17 Rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - Dimitra Markovitsi
- Laboratoire Francis Perrin, CEA/DSM/IRAMIS/SPAM - CNRS URA 2453, CEA/Saclay, 91191 Gif-sur-Yvette, France and CEA, INAC, SCIB, UJF & CNRS, LCIB (UMR_E 3 CEA-UJF and FRE 3200), Laboratoire “Lésions des Acides Nucléiques”, 17 Rue des Martyrs, F-38054 Grenoble Cedex 9, France
| |
Collapse
|
12
|
Daniels M, Hart LP, Ho PS, Ballini JP, Vigny P, Brochon JC. Intrinsic fluorescence of B and Z forms of poly d(G-m5C)·poly d(G-m5C), a synthetic double-stranded DNA: spectra and lifetimes by the maximum entropy method. Photochem Photobiol Sci 2007; 6:883-93. [PMID: 17668119 DOI: 10.1039/b615670c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A study has been made of the fluorescence of poly d(G-m5C).poly d(G-m5C), a synthetic double-stranded DNA, in buffered neutral aqueous solution at room temperature, excited by synchrotron radiation at 280 nm and 250 nm and by a frequency-doubled pulse dye laser at 290 nm. Exciting at 280 nm, the B form shows a uni-modal UV spectrum with lambdaf(max) approximately 340 nm. The Z form has in addition a visible emission lambdaf(max) at 450 nm. The spectral positions remain unchanged on exciting at 250 nm but the relative intensities change considerably. Decay profiles have been obtained at 360 nm and 450 nm for both the B and Z forms and have been analyzed by fitting to a pseudo-continuous distribution of 100 (and occasionally 200) exponentials, ranging from 10 ps to 20 ns, by optimizing the 'entropy' of the signal (the method of maximum entropy). We find the mean lifetimes for both wavelengths of emission and for both structural forms fall into three well-separated regions in the ranges indicated tau1 approximately 0.04-0.21 ns, tau2 approximately 0.9-1.26 ns, and tau3 approximately 5.1-6.5 ns. The UV emission, from its spectral position and half-width, correlates with monomeric emission from m5C (and from C for poly d(G-C)). However the lifetime tau1 is approximately 2 orders of magnitude longer than the monomers and points to an involvement of protonated guanosine (GH+, tauf approximately 200 ps) in the overall absorption/emission sequence. In the UV the tau3 emission is predominant, with fractional time-integrated emission approximately 86% for B DNA and approximately 64% for Z. We suggest it results from exciton (stacked) absorption followed by dissociative emission. For Z DNA the visible (450 nm) emission is dominated by a tau3 species (approximately 91%) with a lifetime of 6.5 ns and we suggest it represents a hetero-excimer emission consequent upon absorption by the strongly overlapped base-stacking, which differs from that in B DNA. The weak emission corresponding to tau2 is made more apparent by scanned gated detection of the emission from laser excitation (290 nm) of single-crystal d(m5C-G)3. A central role is attributed to the tight stacking of the bases in the Z form which correlates with enhanced hypochromism at 250 nm vs. 280 nm and with the reversal of the fluorescence intensity ratios UV-visible between these wavelengths.
Collapse
Affiliation(s)
- Malcolm Daniels
- Chemistry Department & Radiation Center, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | |
Collapse
|
13
|
Yashchuk V, Kudrya V, Losytskyy M, Suga H, Ohul'chanskyy T. The nature of the electronic excitations capturing centres in the DNA. J Mol Liq 2006. [DOI: 10.1016/j.molliq.2006.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Birch DJ. Multiphoton excited fluorescence spectroscopy of biomolecular systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2001; 57:2313-2336. [PMID: 11603846 DOI: 10.1016/s1386-1425(01)00487-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent work on the emerging application of multiphoton excitation to fluorescence studies of biomolecular dynamics and structure is reviewed. The fundamental principles and experimental techniques of multiphoton excitation are outlined, fluorescence lifetimes, anisotropy and spectra in membranes, proteins, hydrocarbons, skin, tissue and metabolites are featured, and future opportunities are highlighted.
Collapse
Affiliation(s)
- D J Birch
- Department of Physics and Applied Physics, Strathclyde University, Glasgow, Scotland, UK.
| |
Collapse
|
15
|
Yang Y, Celmer EJ, Koutcher JA, Alfano RR. UV reflectance spectroscopy probes DNA and protein changes in human breast tissues. JOURNAL OF CLINICAL LASER MEDICINE & SURGERY 2001; 19:35-9. [PMID: 11547817 DOI: 10.1089/104454701750066929] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The absorption spectrum obtained using diffuse reflectance measurements of malignant, fibroadenoma, and normal human breast tissues were studied. The spectral features in the spectrum were assigned to molecular components in the tissues. BACKGROUND DATA Over the past decade, the methods of fluorescence, excitation, and Raman spectroscopy have been studied as potential noninvasive diagnostic tools. Useful spectroscopic information may be obtained from absorption spectra of tissues as well. However, direct measurement of absorption spectra of tissues by conventional transmission means is complicated by multiple photon scattering in tissues. Diffuse reflectance spectrum offers an indirect way to obtain absorption spectrum. METHODS Excised malignant, fibroadenoma, and normal breast tissue samples without any treatment were obtained from pathology. Samples were placed in a quartz cuvette. The diffuse reflectance measurements between 250 nm to 650 nm were performed using an automated dual lamp spectrophotometer. The absorption spectra of breast tissues were obtained from the diffuse reflectance measurement. RESULTS Twenty-one invasive carcinoma, 20 mixed in situ and invasive carcinoma, 14 fibroadenoma, and 39 normal breast tissue samples were studied. The absorption spectra of breast tissues were obtained from diffuse reflectance spectra. Spectral features were assigned to DNA and proteins in human breast tissue. Amplitude of changes averaged over 275 nm to 285 nm and 255 nm to 265 nm and were found to be different for malignant, fibroadenoma, and normal breast tissues. These changes arise from differences in content of protein and DNA. CONCLUSION The peaks of absorption spectrum derived from diffuse reflectance measurements in the UV region revealed fingerprints from proteins and DNA components. The absorbance in the wavelength ranges of 275-285 nm and 255-265 nm were found to be different for malignant, fibroadenoma, and normal breast tissues. These differences provide a criterion to distinguish malignant from fibroadenoma and normal breast tissues.
Collapse
Affiliation(s)
- Y Yang
- Institute for Ultrafast Spectroscopy and Lasers, New York State Center for Advanced Technology for Ultrafast Photonic Materials and Applications, The City College and Graduate School of the City University of New York, New York 10031, USA
| | | | | | | |
Collapse
|
16
|
Gray PC, Shokair IR, Rosenthal SE, Tisone GC, Wagner JS, Rigdon LD, Siragusa GR, Heinen RJ. Distinguishability of biological material by use of ultraviolet multispectral fluorescence. APPLIED OPTICS 1998; 37:6037-6041. [PMID: 18286101 DOI: 10.1364/ao.37.006037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recent interest in the detection and analysis of biological samples by spectroscopic methods has led to questions concerning the degree of distinguishability and biological variability of the UV fluorescent spectra from such complex samples. We show that the degree of distinguishability of such spectra is readily determined numerically. As a practical example of this technique, we show its application to the analysis of UV fluorescence spectra taken of E. coli, S. aureus, and S. typhimurium. The use of this analysis to determine the degree of biological variability and also to verify that measurements are being made in a linear regime in which analytic methods such as multivariate analysis are valid is discussed.
Collapse
|
17
|
Huang CR, Georghiou S. Room-temperature steady-state fluorescence properties of poly(dG-dC).poly(dG-dC). Photochem Photobiol 1992; 56:95-9. [PMID: 1508986 DOI: 10.1111/j.1751-1097.1992.tb09608.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report the steady-state fluorescence properties of the alternating polynucleotide poly(dG-dC).poly(dG-dC) in low-salt solution at room temperature for excitation at the Hg lines 265, 280 and 297 nm. Its fluorescence spectrum peaks at about 325 nm and, within the experimental error, its shape does not change significantly with the excitation wavelength. The fluorescence anisotropy is found to decrease strongly for short-wavelength excitation, a behavior which is very similar to that exhibited by free guanine. In view of the fact that the anisotropy for free cytosine is virtually constant at the aforementioned three excitation wavelengths, the results suggest that in this polynucleotide the emission stems from guanine. The values of the fluorescence quantum yield for the three excitation wavelengths are found to be very low, 0.8 x 10(-5), 0.8 x 10(-5), and 2.8 x 10(-5), respectively; these are compatible with transfer of energy from the lower-energy electronic state of guanine, before vibronic relaxation is established, to cytosine. Upon denaturation, the fluorescence spectrum becomes very broad and the fluorescence quantum yield increases; these observations support the authenticity of the emission from the nondenatured polynucleotide.
Collapse
Affiliation(s)
- C R Huang
- Department of Physics, University of Tennessee, Knoxville 37996-1200
| | | |
Collapse
|
18
|
Georghiou S, Zhu S, Weidner R, Huang CR, Ge G. Singlet-singlet energy transfer along the helix of a double-stranded nucleic acid at room temperature. J Biomol Struct Dyn 1990; 8:657-74. [PMID: 2100524 DOI: 10.1080/07391102.1990.10507834] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An irreversible electronic energy trap has been formed in calf thymus DNA by methylating about 75% of its G bases at position N-7. This has allowed us to measure for the first time the efficiency of transfer of energy along the helix of a double-stranded nucleic acid at room temperature. It is found that about one out of every three photons absorbed by the other bases is trapped. We have also simulated the data with a stochastic model that uses the dipole-dipole interaction to calculate the efficiency of transfer. In order to approximate the experimental results, the model requires that: (i) the fluorescence quantum yield of T, C, and G in DNA be about 2 x 10(-3), which is about two orders of magnitude larger than the value of the fluorescence quantum yield reported for DNA; and (ii) the fluorescence quantum yield of A in DNA be negligibly small. Requirement (i) is consistent with energy transfer taking place before a very efficient fluorescence quenching process sets in, which could be formation of excited-state complexes (excimers) that do not fluoresce appreciably. Requirement (ii) implies a very short fluorescence lifetime for A, which is consistent with the reported absence of a significant number of photoproducts formed by A in DNA. The simulations find that, on the average, the excitation energy takes about 1.2 steps to reach the trap; that is to say, bases that are nearest and next nearest neighbors of the trap are, in effect, the only energy donors. Both intra- as well as interstrand energy transfer (the latter only for the C-trap base pair) make significant contributions. The value of the efficiency for pairwise base-base intrastrand transfer is about 60%, whereas those for base-trap intra- and interstand transfer are 90% and 80%, respectively. The corresponding values for the rate constant of transfer are 2 x 10(11), 1 x 10(12), and 4 x 10(11) s-1. Transfer is inefficient when A is the donor or the acceptor. In addition to the dipole-dipole term, the only other significant term in the expansion of the interaction potential is the dipole-quadrupole term which, however, makes only a small contribution to the overall transfer efficiency. The electron exchange interaction appears to be much less efficient than the coulombic interaction.
Collapse
Affiliation(s)
- S Georghiou
- Department of Physics, University of Tennessee, Knoxville 37996-1200
| | | | | | | | | |
Collapse
|
19
|
Nikogosyan DN. Two-quantum UV photochemistry of nucleic acids: comparison with conventional low-intensity UV photochemistry and radiation chemistry. Int J Radiat Biol 1990; 57:233-99. [PMID: 1968495 DOI: 10.1080/09553009014552411] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The action of high-intensity laser u.v. radiation on nucleic acid molecules and their constituents in vitro and in vivo is compared with the results of low-intensity u.v. photolysis and gamma-radiolysis.
Collapse
Affiliation(s)
- D N Nikogosyan
- Institute of Spectroscopy, USSR Academy of Sciences, Moscow Region
| |
Collapse
|
20
|
Georghiou S, Saim AM. Excited-state properties of DNA methylated at the N-7 position of guanine and its free fluorophore at room temperature. Photochem Photobiol 1986; 44:733-40. [PMID: 3562571 DOI: 10.1111/j.1751-1097.1986.tb05531.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Burns VW. Heavy-atom effects on energy transfer from polynucleotides to terbium (III). Biopolymers 1985; 24:1293-300. [PMID: 2992622 DOI: 10.1002/bip.360240715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Georghiou S, Nordlund TM, Saim AM. PICOSECOND FLUORESCENCE DECAY TIME MEASUREMENTS OF NUCLEIC ACIDS AT ROOM TEMPERATURE IN AQUEOUS SOLUTION. Photochem Photobiol 1985. [DOI: 10.1111/j.1751-1097.1985.tb03473.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Ballini JP, Vigny P, Daniels M. Synchrotron excitation of DNA fluorescence. Biophys Chem 1983; 18:61-5. [PMID: 17005122 DOI: 10.1016/0301-4622(83)80027-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/1983] [Accepted: 04/01/1983] [Indexed: 11/29/2022]
Abstract
The first lifetime measurements of DNA fluorescence are reported. Natural and synthetic DNA have been excited by 1.76 ns pulses of synchrotron ultraviolet radiation (270 nm) and the time profile of the fluorescence has been measured by synchronous single-photon counting. A post-pulse exponentially decaying emission has been observed with a lifetime of 2.9 +/- 0.4 ns for calf thymus DNA and 3.0 +/- 0.3 ns for poly(dA-T); this is most likely an excimer fluorescence.
Collapse
Affiliation(s)
- J P Ballini
- Institut Curie and Université Paris VI, Paris, France
| | | | | |
Collapse
|
24
|
|
25
|
|