1
|
Toxicology of DNA Adducts Formed Upon Human Exposure to Carcinogens. ADVANCES IN MOLECULAR TOXICOLOGY 2016. [DOI: 10.1016/b978-0-12-804700-2.00007-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
2
|
Sharma P, Manderville RA, Wetmore SD. Modeling the conformational preference of the carbon-bonded covalent adduct formed upon exposure of 2'-deoxyguanosine to ochratoxin A. Chem Res Toxicol 2013; 26:803-16. [PMID: 23560542 DOI: 10.1021/tx4000864] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The conformational flexibility of the C8-linked guanine adduct formed from attachment of ochratoxin A (OTA) was analyzed using a systematic computational approach and models ranging from the nucleobase to the adducted DNA helix. A focus was placed on the influence of the C8-modification of 2'-deoxyguanosine (dG) on the preferred relative arrangement of the nucleobase and the C8-substituent and, more importantly, the anti/syn conformational preference with respect to the glycosidic bond. Although OTA is twisted with respect to the base in the nucleobase model, addition of the deoxyribose sugar induces a further twist and restricts rotation about the C-C linkage due to close contacts between OTA and the sugar. The nucleoside model preferentially adpots a syn orientation (by 10-20 kJ mol(-1) depending on the OTA conformation) due to the presence of an O5'-H···N3 interaction. However, when this hydrogen bond is eliminated, which better mimics the DNA environment, a small (<5 kJ mol(-1)) anti/syn energy difference is predicted. Inclusion of the 5'-monophosphate group leads to an up to 20 kJ mol(-1) preference for the syn (nucleotide) conformation due to stabilizing base-phosphate interactions involving the amino group of guanine. Nevertheless, MD simulations and free energy analysis predict that both syn- and anti-conformations of OTB-dG are equally stable in helices when paired opposite cytosine. These results indicate that the adduct will likely adopt a syn conformation in an isolated nucleoside and nucleotide, while a mixture of syn and anti conformations will be observed in DNA duplexes. Since the syn conformation could stabilize base mismatches upon DNA replication or Z-DNA structures with varied biological outcomes, future computational and experimental work should elucidate the consequences of the conformational preference of this potentially harmful DNA lesion.
Collapse
Affiliation(s)
- Purshotam Sharma
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | | | | |
Collapse
|
3
|
C8-linked bulky guanosine DNA adducts: experimental and computational insights into adduct conformational preferences and resulting mutagenicity. Future Med Chem 2012; 4:1981-2007. [PMID: 23088278 DOI: 10.4155/fmc.12.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bulky DNA adducts are formed through the covalent attachment of aryl groups to the DNA nucleobases. Many of these adducts are known to possess conformational heterogeneity, which is responsible for the variety of mutagenic outcomes associated with these lesions. The present contribution reviews several conformational and mutagenic themes that are prevalent among the DNA adducts formed at the C8-site of the guanine nucleobase. The most important conclusions obtained (to date) from experiments are summarized including the anti/syn conformational preference of the adducts, their potential to inflict DNA mutations and mismatch stabilization, and their interactions with DNA polymerases and repair enzymes. Additionally, the unique role that computer calculations can play in understanding the structural properties of these adducts are highlighted.
Collapse
|
4
|
Dutta S, Li Y, Johnson D, Dzantiev L, Richardson CC, Romano LJ, Ellenberger T. Crystal structures of 2-acetylaminofluorene and 2-aminofluorene in complex with T7 DNA polymerase reveal mechanisms of mutagenesis. Proc Natl Acad Sci U S A 2004; 101:16186-91. [PMID: 15528277 PMCID: PMC528967 DOI: 10.1073/pnas.0406516101] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The carcinogen 2-acetylaminofluorene forms two major DNA adducts: N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF) and its deacetylated derivative, N-(2'-deoxyguanosin-8-yl)-2-aminofluorene (dG-AF). Although the dG-AAF and dG-AF adducts are distinguished only by the presence or absence of an acetyl group, they have profoundly different effects on DNA replication. dG-AAF poses a strong block to DNA synthesis and primarily induces frameshift mutations in bacteria, resulting in the loss of one or two nucleotides during replication past the lesion. dG-AF is less toxic and more easily bypassed by DNA polymerases, albeit with an increased frequency of misincorporation opposite the lesion, primarily resulting in G --> T transversions. We present three crystal structures of bacteriophage T7 DNA polymerase replication complexes, one with dG-AAF in the templating position and two others with dG-AF in the templating position. Our crystallographic data suggest why a dG-AAF adduct blocks replication more strongly than does a dG-AF adduct and provide a possible explanation for frameshift mutagenesis during replication bypass of a dG-AAF adduct. The dG-AAF nucleoside adopts a syn conformation that facilitates the intercalation of its fluorene ring into a hydrophobic pocket on the surface of the fingers subdomain and locks the fingers in an open, inactive conformation. In contrast, the dG-AF base at the templating position is not well defined by the electron density, consistent with weak binding to the polymerase and a possible interchange of this adduct between the syn and anti conformations.
Collapse
Affiliation(s)
- Shuchismita Dutta
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Structural characterization of N-acetyl-2-aminofluorene (AAF) adducts to guanine and deoxyguanosine via a molecular mechanics, semi-empirical, and density functional theory cascade. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.theochem.2004.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Abstract
Based upon phylogenetic relationships, the broad Y-family of DNA polymerases can be divided into various subfamilies consisting of UmuC (polV)-like; DinB (polIV/polkappa)-like; Rev1-like, Rad30A (poleta)-like and Rad30B (poliota)-like polymerases. The polIV/polkappa-like polymerases are most ubiquitous, having been identified in bacteria, archaea and eukaryotes. In contrast, the polV-like polymerases appear restricted to bacteria (both Gram positive and Gram negative). Rev1 and poleta-like polymerases are found exclusively in eukaryotes, and to date, poliota-like polymerases have only been identified in higher eukaryotes. In general, the in vitro properties of polymerases characterized within each sub-family are quite similar. An exception to this rule occurs with the poliota-like polymerases, where the enzymatic properties of Drosophila melanogaster poliota are more similar to that of Saccharomyces cerevisiae and human poleta than to the related human poliota. For example, like poleta, Drosophila poliota can bypass a cis-syn thymine-thymine dimer both accurately and efficiently, while human poliota bypasses the same lesion inefficiently and with low-fidelity. Even in cases where human poliota can efficiently insert a base opposite a lesion (such as a synthetic abasic site, the 3'T of a 6-4-thymine-thymine pyrimidine-pyrimidone photoproduct or opposite benzo[a]pyrene diol epoxide deoxyadenosine adducts), further extension is often limited. Thus, although poliota most likely arose from a genetic duplication of poleta millions of years ago as eukaryotes evolved, it would appear that poliota from humans (and possibly all mammals) has been further subjected to evolutionary pressures that have "tailored" its enzymatic properties away from lesion bypass and towards other function(s) specific for higher eukaryotes. The identification of such functions and the role that mammalian poliota plays in lesion bypass in vivo, should hopefully be forthcoming with the construction of human cell lines deleted for poliota and the identification of mice deficient in poliota.
Collapse
Affiliation(s)
- Alexandra Vaisman
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Building 6, Room 1A13, 9000 Rockville Pike, Bethesda, MD 20892-2725, USA
| | | | | | | | | |
Collapse
|
7
|
Burnouf DY, Fuchs RP. A single N-2-acetylaminofluorene adduct alters the footprint of T7 (exo-) DNA polymerase bound to a model primer-template junction. Mutat Res 1998; 407:35-45. [PMID: 9539979 DOI: 10.1016/s0921-8777(97)00058-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bovine pancreatic deoxyribonuclease I (DNaseI) has been used to footprint T7 (exo-) DNA polymerase bound to a model primer-template junction. The polymerase was blocked at a specific position either by the omission of dCTP from the reaction mix or by the presence of a N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dGuo-AAF) adduct. This lesion has been shown to be a severe block for several DNA polymerases, both in in vitro primer elongation experiments, and during the in vivo replication of AAF-monomodified single-stranded vectors. The footprints obtained with unmodified primer-template DNA define two protected domains separated by an inter-region that remains sensitive to DNaseI, and several hypersensitive sites located on both strands. Binding of the polymerase to AAF monomodified duplexes results in the same protection pattern as that obtained with the unmodified duplexes. However, the hypersensitive sites either disappear or are dramatically reduced. The results suggest that the AAF lesion alters the correct positioning of the duplex DNA within the polymerase cleft.
Collapse
Affiliation(s)
- D Y Burnouf
- UPR 9003, Cancérogénèse et Mutagénèse Molèculaire et Structurale, CNRS, Laboratoire d'Epidémiologie Moléculaire du Cancer, Strasbourg, France.
| | | |
Collapse
|
8
|
Mao B, Hingerty BE, Broyde S, Patel DJ. Solution structure of the aminofluorene [AF]-intercalated conformer of the syn-[AF]-C8-dG adduct opposite dC in a DNA duplex. Biochemistry 1998; 37:81-94. [PMID: 9425028 DOI: 10.1021/bi972257o] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report below on a conformational equilibrium between AF-intercalated and AF-external states in slow exchange for the [AF]dG lesion positioned opposite dC in the d(C-[AF]G-C).d(G-C-G) sequence context. The slow exchange between states is attributed to interconversion between syn glycosidic torsion angle in the AF-intercalated and anti torsion angle in AF-external conformers of the [AF]dG opposite dC containing duplex. The present paper describes an NMR-molecular mechanics study that defines the solution structure of the AF-intercalated conformer for the case of [AF]dG adduct positioned opposite dC in the d(C-[AF]G-C).d(G-C-G) sequence context. The structure is of the base displacement-intercalation type where the aminofluorene ring is intercalated into the helix between intact Watson-Crick dG.dC base pairs, which results in a displacement of the modified guanine ring into the major groove where it stacks with the major groove edge of its 5'-flanking cytosine in the adduct duplex. The conformational equilibrium between AF-intercalated conformer (approximately 70%) with a syn alignment and AF-external conformer (approximately 30%) with an anti alignment for the [AF]dG adduct positioned opposite dC in the d(C-[AF]G-C).d(G-C-G) sequence context can be contrasted with our earlier demonstration that the population is 100% for the AP-intercalated conformer with a synalignment at the N-(deoxyguanosin-8-yl)-2-aminopyrene ([AP]dG) adduct site positioned opposite dC in the same sequence context [Mao, B., Vyas, R. R., Hingerty, B. E., Broyde, S., Basu, A. K., and Patel, D. J. (1996) Biochemistry, 35, 12659-12670]. This shift in population may reflect the much larger size of the pyrenyl ring of the [AP]dG adduct compared to the fluorenyl ring of the [AF]dG adduct which in turn might provide for a greater overlap of the aromatic amine with the flanking base pairs in the intercalated conformer of the former adduct in DNA.
Collapse
Affiliation(s)
- B Mao
- Cellular Biochemistry and Biophysics Program, Memorial Sloan Kettering Cancer Center, New York 10021, USA
| | | | | | | |
Collapse
|
9
|
Mao B, Hingerty BE, Broyde S, Patel DJ. Solution structure of the aminofluorene [AF]-external conformer of the anti-[AF]-C8-dG adduct opposite dC in a DNA duplex. Biochemistry 1998; 37:95-106. [PMID: 9425029 DOI: 10.1021/bi972258g] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Escherichia coli genome contains a C-G1-G2-C-G3-C-C NarI hot spot sequence for -2 deletion mutations at G3 by aromatic amine carcinogens 2-acetylaminofluorene (AAF) and 2-aminofluorene (AF) that form covalent adducts at the C8-position of the guanine ring. Each of the three guanines are positioned in different sequence contexts (C-G1-G, G-G2-C, and C-G3-C) which provides an opportunity to investigate the potential sequence dependent interconversion between AF-intercalated and AF-external conformers of the [AF]dG adduct positioned opposite dC within the NarI sequence at the duplex level. We have prepared and purified DNA duplexes containing the [AF]dG adduct positioned in C-[AF]G-G, G-[AF]G-C, and C-[AF]G-C NarI sequence contexts and observe the ratio of AF-intercalated to AF-external conformers to be 30:70, 10:90, and 50:50, respectively. We have applied a combined NMR-molecular mechanics approach to define the structure of the AF-external conformer in the G-[AF]G-C NarI sequence context where it is the predominant conformation (90%) in solution. The modified guanine of the [AF]dG adduct aligns through Watson-Crick pairing with its partner cytosine and is stacked into the helix between flanking Watson-Crick dG.dC base pairs. The AF-external conformer with its anti-[AF]dG residue causes minimal perturbations in the DNA duplex at and adjacent to the lesion site with the covalently linked fluorenyl ring readily accommodated in the major groove and tilted toward the 5'-end of the modified strand of the helix. This paper on the structure of the AF-external conformer with an anti-[AF]dG adduct together with the preceding paper in this issue on the structure of the AF-intercalated conformer with a syn-[AF]dG adduct defines for the first time the capacity of the mutagenic [AF]dG lesion to adopt interconverting syn and antialignments with the equilibrium shifting between the conformers depending on nearest neighbor and next-nearest neighbor sequences. Perhaps, recognition of the [AF]dG lesion by the repair machinery would be able to discriminate between the AF-intercalated conformer with its base displacement-fluorenyl ring insertion perturbation of the helix and the AF-external conformer where the DNA helix is essentially unperturbed at the lesion site and the fluorenyl ring is positioned with directionality in the major groove.
Collapse
Affiliation(s)
- B Mao
- Cellular Biochemistry and Biophysics Program, Memorial Sloan Kettering Cancer Center, New York 10021, USA
| | | | | | | |
Collapse
|
10
|
Mao B, Gorin A, Gu Z, Hingerty BE, Broyde S, Patel DJ. Solution structure of the aminofluorene-intercalated conformer of the syn [AF]-C8-dG adduct opposite a--2 deletion site in the NarI hot spot sequence context. Biochemistry 1997; 36:14479-90. [PMID: 9398167 DOI: 10.1021/bi972205z] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This paper addresses structural issues related to the capacity of aminofluorene [AF] for frameshift mutations of the -2 type on C8 covalent adduct formation at the G3 site in the d(C-G1-G2-C-G3-C-C) NarI hot spot sequence. This problem has been approached from a combined NMR and relaxation matrix analysis computational structural study of the [AF]dG adduct in the d(C-G-G-C-[AF]G-C-C).d(G-G-C-C-G) sequence context at the 12/10-mer adduct level (designated [AF]dG.del(-2) 12/10-mer). The proton spectra of this system are of exceptional quality and are consistent with the formation of an AF-intercalated conformer with the modified guanine in a syn alignment displaced along with the 5'-flanking cytosine residue into the major groove. The solution structure has been determined by initially incorporating intramolecular and intermolecular proton-proton distances defined by lower and upper bound deduced from NOESY spectra as restraints in molecular mechanics computations in torsion angle space and subsequently refined through restrainted molecular dynamics calculations based on a NOE distance and intensity refinement protocol. Strikingly, the [AF]dG.del(-2) 12/10-mer duplex adopts only one of two potential AF-intercalation alignments for the [AF]dG adduct opposite the -2 deletion site in the NarI sequence context with the extrusion of the dC-[AF]dG step favored completely over extrusion of the [AF]dG-dC step at the lesion site. This polarity establishes that the structural perturbation extends 5' rather than 3' to the [AF]dG lesion site in the adduct duplex. This structure of the [AF]dG adduct opposite a -2 deletion site shows distinct differences with conclusions reported on the alignment of the related acetylaminofluorene [AAF]dG adduct opposite a -2 deletion site in the identical NarI sequence context [Milhe, C., Fuchs, R. P. P., and Lefevre, J. F. (1996) Eur. J. Biochem. 235, 120-127]. In that study, qualitative NMR data without computational analysis were employed to conclude that the extrusion at the lesion site occurs at the [AAF]dG-dC step for the AAF-intercalated conformer of the adduct duplex. The structure of the [AF]dG adduct opposite a -2 deletion site determined in our group provides molecular insights into the architecture of extended slipped mutagenic intermediates involving aromatic amine intercalation and base-displaced syn modified guanines in AF and, by analogy, AAF-induced mutagenesis in the NarI hot spot sequence context.
Collapse
Affiliation(s)
- B Mao
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
11
|
Hoffmann GR, Fuchs RP. Mechanisms of frameshift mutations: insight from aromatic amines. Chem Res Toxicol 1997; 10:347-59. [PMID: 9114969 DOI: 10.1021/tx960128n] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- G R Hoffmann
- UPR 9003, Centre National de la Recherche Scientifique, Illkirch, France
| | | |
Collapse
|
12
|
Marques MM, Mourato LL, Santos MA, Beland FA. Synthesis, characterization, and conformational analysis of DNA adducts from methylated anilines present in tobacco smoke. Chem Res Toxicol 1996; 9:99-108. [PMID: 8924623 DOI: 10.1021/tx950044z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The ability of a series of aromatic amines present in tobacco smoke (2-, 3-, and 4-methylaniline, 2,3- and 2,4-dimethylaniline) to bind to DNA has been investigated by reacting N-(acyloxy)arylamines with dG, dG nucleotides, and DNA. The predominant products from reactions with dG and the nucleotides were characterized as N-(deoxyguanosin-8-yl)arylamines by spectroscopic and HPLC methods. HPLC and spectroscopic analyses of the modified DNA indicated the same adducts. Analyses of the 1H and 13C NMR spectra suggested that the adducts containing a methyl substituent ortho to the arylamine nitrogen had a higher percentage of syn conformers. This observation was supported by theoretical simulation studies that indicated substantial percentages of low energy syn conformers, increasing with the substitution pattern in the order para < meta < ortho < ortho,para < ortho,meta. The results demonstrate that, although single-ring arylamines are considered weak carcinogens, their electrophilic N-acetoxy derivatives, which are plausible metabolic intermediates, react with DNA to yield covalent adducts structurally identical to those derived from carcinogenic polyarylamines, such as 2-aminofluorene and 4-aminobiphenyl. Furthermore, the conformational perturbation induced in DNA by the formation of the monoarylamine-DNA adducts, especially those with an ortho substituent, may contribute to the biological activities of these compounds.
Collapse
Affiliation(s)
- M M Marques
- Centro de Química Estrutural, Instituto Superior Técnico, Lisboa, Portugal
| | | | | | | |
Collapse
|
13
|
Heflich RH, Neft RE. Genetic toxicity of 2-acetylaminofluorene, 2-aminofluorene and some of their metabolites and model metabolites. Mutat Res 1994; 318:73-114. [PMID: 7521935 DOI: 10.1016/0165-1110(94)90025-6] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
2-Acetylaminofluorene and 2-aminofluorene are among the most intensively studied of all chemical mutagens and carcinogens. Fundamental research findings concerning the metabolism of 2-acetylaminofluorene to electrophilic derivatives, the interaction of these derivatives with DNA, and the carcinogenic and mutagenic responses that are associated with the resulting DNA damage have formed the foundation upon which much of genetic toxicity testing is based. The parent compounds and their proximate and ultimate mutagenic and carcinogenic derivatives have been evaluated in a variety of prokaryotic and eukaryotic assays for mutagenesis and DNA damage. The reactive derivatives are active in virtually all systems, while 2-acetylaminofluorene and 2-aminofluorene are active in most systems that provide adequate metabolic activation. Knowledge of the structures of the DNA adducts formed by 2-acetylaminofluorene and 2-aminofluorene, the effects of the adducts on DNA conformation and synthesis, adduct distribution in tissues, cells and DNA, and adduct repair have been used to develop hypotheses to understand the genotoxic and carcinogenic effects of these compounds. Molecular analysis of mutations produced in cell-free, bacterial, in vitro mammalian, and intact animal systems have recently been used to extend these hypotheses.
Collapse
Affiliation(s)
- R H Heflich
- Division of Genetic Toxicology, National Center for Toxicological Research, Jefferson, AR 72079
| | | |
Collapse
|
14
|
Eckel LM, Krugh TR. 2-Aminofluorene modified DNA duplex exists in two interchangeable conformations. NATURE STRUCTURAL BIOLOGY 1994; 1:89-94. [PMID: 7656023 DOI: 10.1038/nsb0294-89] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
One- and two-dimensional NMR shows that the carcinogen 2-aminofluorene exists in two unique, interchangeable conformations when covalently bound to a model human c-H-ras1 proto-oncogene codon 61 oligomer duplex. In one conformation the 2-aminofluorene moiety protrudes out of the major groove leaving the Watson-Crick base pairing of the cytosine and 2-aminofluorene-guanine bases intact, consistent with the ability of replicating enzymes to bypass the lesion and correctly incorporate cytosine. The second form of the modified oligomer duplex may be representative of a pre-mutagenic conformation in that the 2-aminofluorene moiety is stacked within the DNA helix, disrupting base pairing between the 2-aminofluorene-modified guanine and its complementary cytosine.
Collapse
Affiliation(s)
- L M Eckel
- Department of Chemistry, University of Rochester, New York 14627, USA
| | | |
Collapse
|
15
|
van Houte LP, Westra JG, Retèl J, van Grondelle R. A circular dichroism study on the conformation of d(CGT) modified with N-acetyl-2-aminofluorene or 2-aminofluorene. J Biomol Struct Dyn 1991; 9:45-59. [PMID: 1781947 DOI: 10.1080/07391102.1991.10507892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The trinucleotide d(CGT) was modified by covalent binding of the carcinogen N-acetyl-2-aminofluorene (AAF) or 2-aminofluorene (AF) at the C8 position of the guanine base. The conformations of d(CGT)-AAF and -AF were studied by comparing the absorption and circular dichroism properties with those of dCMP + dGMP-AAF or -AF + dTMP in a molar ratio of 1:1:1 and AAF- and AF-containing dGMP. For both AAF- and AF-d(CGT) complexes the results show significant stacking interactions between the fluorene residue and the base(s) and are discussed in terms of the conformation of d(CGT)-AAF and -AF. In d(CGT)-AF we observe a clear interaction between AF and thymine, whereas the C-G stack is still intact. In the case of d(CGT)-AAF the C-G stack is weakened and the glycosidic rotation angle of dGuo-C8-AAF is most probably syn. The specific fluorene-base interactions persist at elevated temperatures. The carcinogen-base interactions are stronger in the AAF-carrying d(CGT) than in the case of the deacetylated complex. This is consistent with the higher mobility of the AF-adduct and its conformationally heterogeneous appearance in DNA.
Collapse
Affiliation(s)
- L P van Houte
- Free University, Department of Biophysics, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
16
|
Evans FE, Levine RA. Conformational analysis of the 2'-deoxyribofuranose ring from proton-proton coupling constants: analysis of a nucleoside-carcinogen adduct formed from 2-acetylaminofluorene utilizing a three-state model. Biopolymers 1987; 26:1035-46. [PMID: 3620573 DOI: 10.1002/bip.360260704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Evans FE, Levine RA. Conformation and configuration at the central amine nitrogen of a nucleotide adduct of the carcinogen 2-(acetylamino)fluorene as studied by 13C and 15N NMR spectroscopy. J Biomol Struct Dyn 1986; 3:923-34. [PMID: 3271418 DOI: 10.1080/07391102.1986.10508474] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The conformation and configuration at the central nitrogen of the adduct 8-(N-fluoren-2-ylamino)-2'-deoxyguanosine 5'-monophosphate has been investigated by high-field 13C and 15N NMR spectroscopy. One-bond nitrogen-hydrogen coupling constants and 13C chemical shifts for the adduct as well as for the model compounds diphenylamine, 4-nitrodiphenylamine and 2-aminofluorene have been measured in nonaqueous solutions. The data indicate a near planar configuration at the amine nitrogen that links the guanine and fluorene rings of the adduct. The orientations about the guanyl-nitrogen and fluorenyl-nitrogen bonds place the two ring systems in either perpendicular (Type A) or helical (Type B) conformations. It is suggested, based on structural similarities to diarylamines, that the G-N-C bond angle of the adduct is greater than 120 degrees in order to reduce unfavorable steric interactions between the two ring systems. Space-filling molecular models of the adduct in duplex DNA show that the aminofluorene moiety can be oriented into both Type A and Type B conformations within the major groove. The configuration at nitrogen of diphenylamine, 4-nitrodiphenylamine and 2-aminofluorene has also been examined.
Collapse
Affiliation(s)
- F E Evans
- Division of Chemistry, Food and Drug Administration, Jefferson, AR 72079
| | | |
Collapse
|
18
|
Abstract
The chemistry and molecular biology of DNA adducts is only one part of the carcinogenic process. Many other factors will determine whether a particular chemical will exert a carcinogenic effect. For example, the size of particles upon which a carcinogenic may be adsorbed will influence whether or not, and if so where, deposition within the lung will occur. The simultaneous exposure to several different agents may enhance or inhibit the metabolism of a chemical to its ultimate carcinogenic form (Rice et al., 1984; Smolarek and Baird, 1984). The ultimate carcinogenic metabolites may be influenced in their ability to react with DNA by a number of factors such as internal levels of detoxifying enzymes, the presence of other metabolic intermediates such as glutathione with which they could react either enzymatically or non-enzymatically, and the state of DNA which is probably most heavily influenced by whether or not the cell is undergoing replication or particular sequences being expressed. Replicating forks have been shown to be more extensively modified than other areas of DNA. Another critical factor which can influence the final outcome of the DNA damage is whether or not the modifications can be repaired. If this occurs with high fidelity and the cell has not previously undergone replication then the effect of the damage by the carcinogen is likely to be minimal. The major area in which progress is needed is an understanding of what this damage really does to the cell such that after an additional period of time, which may be as long as twenty or more years, these prior events are expressed and cell proliferation occurs. Clearly additional stimulatory factors, for example tumor promoting agents such as the phorbol esters or phenobarbital, are often needed. After such prolonged periods it seems likely that the DNA adducts would no longer be present. However, the way in which their earlier presence is remembered is not clear. Simple mutations do not explain all the characteristics of tumor progression and, when it occurs, regression. Even if a specific site mutation does occur then its expression must be under other types of control. Any explanation of the action of DNA modification at the molecular level also requires that account be taken of the diverse nature of the DNA adducts from simple modifications such as methylation to bulkier adducts such as benzo[a]pyrene, aflatoxin or aromatic amines.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
19
|
Melchior WB, Beland FA. Preferential reaction of the carcinogen N-acetoxy-2-acetylaminofluorene with satellite DNA. Chem Biol Interact 1984; 49:177-87. [PMID: 6722934 DOI: 10.1016/0009-2797(84)90060-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The carcinogens N-acetoxy-2-acetylaminofluorene (N-acetoxy-AAF) and N-hydroxy-2-aminofluorene (N-hydroxy-AF) were incubated with calf thymus DNA to determine if reaction occurred preferentially with discrete regions within the DNA. Derivative melting profiles indicated that both compounds decreased satellite transitions and that N-acetoxy-AAF depressed the melting of higher temperature regions. These data suggest that N-acetoxy-AAF reacted to a greater extent with G + C-rich regions and, because the resulting adduct disrupted the helix, the cooperativity of melting decreased. Reaction of N-acetoxy-AAF with purified satellite III DNA confirmed the preferential interaction of this carcinogen with G + C-rich regions as compared to main component DNA. The derivative melting profile of lambda DNA in the presence of actinomycin D further demonstrated that this type of analysis can detect preferential interactions with specific DNA sequences.
Collapse
|
20
|
|
21
|
Evans FE, Miller DW. Conformation and dynamics associated with the site of attachment of a carcinogen to a nucleotide. Biochem Biophys Res Commun 1982; 108:933-9. [PMID: 7181894 DOI: 10.1016/0006-291x(82)92088-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Broyde S, Hingerty BE. DNA backbone conformation in AAF modified dCpdG: variable conformational modes of achieving base displacement. Chem Biol Interact 1982; 40:113-9. [PMID: 7074712 DOI: 10.1016/0009-2797(82)90032-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|