1
|
Pezzotti G, Kobara M, Nakaya T, Imamura H, Asai T, Miyamoto N, Adachi T, Yamamoto T, Kanamura N, Ohgitani E, Marin E, Zhu W, Nishimura I, Mazda O, Nakata T, Makimura K. Raman Study of Pathogenic Candida auris: Imaging Metabolic Machineries in Reaction to Antifungal Drugs. Front Microbiol 2022; 13:896359. [PMID: 35694304 PMCID: PMC9175029 DOI: 10.3389/fmicb.2022.896359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
The multidrug-resistant Candida auris often defies treatments and presently represents a worldwide public health threat. Currently, the ergosterol-targeting Amphotericin B (AmB) and the DNA/RNA-synthesis inhibitor 5-flucytosine (5-FC) are the two main drugs available for first-line defense against life-threatening Candida auris infections. However, important aspects of their mechanisms of action require further clarification, especially regarding metabolic reactions of yeast cells. Here, we applied Raman spectroscopy empowered with specifically tailored machine-learning algorithms to monitor and to image in situ the susceptibility of two Candida auris clades to different antifungal drugs (LSEM 0643 or JCM15448T, belonging to the East Asian Clade II; and, LSEM 3673 belonging to the South African Clade III). Raman characterizations provided new details on the mechanisms of action against Candida auris Clades II and III, while also unfolding differences in their metabolic reactions to different drugs. AmB treatment induced biofilm formation in both clades, but the formed biofilms showed different structures: a dense and continuous biofilm structure in Clade II, and an extra-cellular matrix with a “fluffy” and discontinuous structure in Clade III. Treatment with 5-FC caused no biofilm formation but yeast-to-hyphal or pseudo-hyphal morphogenesis in both clades. Clade III showed a superior capacity in reducing membrane permeability to the drug through chemically tailoring chitin structure with a high degree of acetylation and fatty acids networks with significantly elongated chains. This study shows the suitability of the in situ Raman method in characterizing susceptibility and stress response of different C. auris clades to antifungal drugs, thus opening a path to identifying novel clinical solutions counteracting the spread of these alarming pathogens.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, Tokyo, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
- *Correspondence: Giuseppe Pezzotti
| | - Miyuki Kobara
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tamaki Nakaya
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Tenma Asai
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Nao Miyamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Ichiro Nishimura
- Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, United States
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuo Nakata
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Koichi Makimura
- Medical Mycology, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| |
Collapse
|
2
|
Therapeutic Drug Monitoring of Antifungal Agents in Critically Ill Patients: Is There a Need for Dose Optimisation? Antibiotics (Basel) 2022; 11:antibiotics11050645. [PMID: 35625289 PMCID: PMC9137962 DOI: 10.3390/antibiotics11050645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
Invasive fungal infections are an important cause of morbidity and mortality, especially in critically ill patients. Increasing resistance rates and inadequate antifungal exposure have been documented in these patients, due to clinically relevant pharmacokinetic (PK) and pharmacodynamic (PD) alterations, leading to treatment failure. Physiological changes such as third spacing (movement of fluid from the intravascular compartment to the interstitial space), hypoalbuminemia, renal failure and hepatic failure, as well as common interventions in the intensive care unit, such as renal replacement therapy and extracorporeal membrane oxygenation, can lead to these PK and PD alterations. Consequently, a therapeutic target concentration that may be useful for one patient may not be appropriate for another. Regular doses do not take into account the important PK variations in the critically ill, and the need to select an effective dose while minimising toxicity advocates for the use of therapeutic drug monitoring (TDM). This review aims to describe the current evidence regarding optimal PK/PD indices associated with the clinical efficacy of the most commonly used antifungal agents in critically ill patients (azoles, echinocandins, lipid complexes of amphotericin B, and flucytosine), provide a comprehensive understanding of the factors affecting the PK of each agent, document the PK parameters of critically ill patients compared to healthy volunteers, and, finally, make recommendations for therapeutic drug monitoring (TDM) of antifungals in critically ill patients.
Collapse
|
3
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
4
|
Sixty years of Amphotericin B: An Overview of the Main Antifungal Agent Used to Treat Invasive Fungal Infections. Infect Dis Ther 2021; 10:115-147. [PMID: 33523419 PMCID: PMC7954977 DOI: 10.1007/s40121-020-00382-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022] Open
Abstract
Introduced in the late 1950s, polyenes represent the oldest family of antifungal drugs. The discovery of amphotericin B and its therapeutic uses is considered one of the most important scientific milestones of the twentieth century . Despite its toxic potential, it remains useful in the treatment of invasive fungal diseases owing to its broad spectrum of activity, low resistance rate, and excellent clinical and pharmacological action. The well-reported and defined toxicity of the conventional drug has meant that much attention has been paid to the development of new products that could minimize this effect. As a result, lipid-based formulations of amphotericin B have emerged and, even keeping the active principle in common, present distinct characteristics that may influence therapeutic results. This study presents an overview of the pharmacological properties of the different formulations for systemic use of amphotericin B available for the treatment of invasive fungal infections, highlighting the characteristics related to their chemical, pharmacokinetic structures, drug–target interactions, stability, and others, and points out the most relevant aspects for clinical practice.
Collapse
|
5
|
Tevyashova AN, Bychkova EN, Solovieva SE, Zatonsky GV, Grammatikova NE, Isakova EB, Mirchink EP, Treshchalin ID, Pereverzeva ER, Bykov EE, Efimova SS, Ostroumova OS, Shchekotikhin AE. Discovery of Amphamide, a Drug Candidate for the Second Generation of Polyene Antibiotics. ACS Infect Dis 2020; 6:2029-2044. [PMID: 32598131 DOI: 10.1021/acsinfecdis.0c00068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amphotericin B (AmB, 1) is the drug of choice for treating the most serious systemic fungal or protozoan infections. Nevertheless, its application is limited by low solubility in aqueous media and serious side effects such as infusion-related reactions, hemolytic toxicity, and nephrotoxicity. Owing to these limitations, it is essential to search for the polyene derivatives with better chemotherapeutic properties. With the objective of obtaining AmB derivatives with lower self-aggregation and improved solubility, we synthesized a series of amides of AmB bearing an additional basic group in the introduced residue. The screening of antifungal activity in vitro revealed that N-(2-aminoethyl)amide of AmB (amphamide, 6) had superior antifungal activity compared to that of the paternal AmB. Preclinical studies in mice confirmed that compound 6 had a much lower acute toxicity and higher antifungal efficacy in the model of mice candidosis sepsis compared with that of AmB (1). Thus, the discovered amphamide is a promising drug candidate for the second generation of polyene antibiotics and is also prospective for in-depth preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Anna N. Tevyashova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
- D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, 125047, Russia
| | - Elena N. Bychkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | | | - George V. Zatonsky
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | | | - Elena B. Isakova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | - Elena P. Mirchink
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | - Ivan D. Treshchalin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | | | - Evgeny E. Bykov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | - Svetlana S. Efimova
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg, 194064, Russia
| | - Olga S. Ostroumova
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg, 194064, Russia
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
- D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, 125047, Russia
| |
Collapse
|
6
|
AL-Khikani FHO. Amphotericin B from antifungal to antiviral therapy: promising modern therapeutic branch. RESEARCH RESULTS IN PHARMACOLOGY 2020. [DOI: 10.3897/rrpharmacology.6.53649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Introduction: Amphotericin B (AmB) which belongs to the polyene group has a wide spectrum in vitro and in vivo antimicrobial activity against fungi and parasites, but resistance to AmB is rare despite extensive use.
Material and methods: Atotal of 2530 articles were investigated in PubMed (n = 1525), Medline (n = 705), and Google Scholar (n = 300). From 2530 articles, only 61 studies were included in this review. All the short and full articles were searched that were scheduled to be published until April 2020.
Results: After its discovery, AmB has been one of the most common first-line choices in treating systemic fungal infection for over seven decades from its discovery. Recently, some studies have focused on the potential antimicrobial action of AmB against some enveloped and non-enveloped viruses, such as human immunodeficiency virus, Japanese encephalitis virus, herpes simplex virus, and Rubella virus.
Discussion: Among the invading pathogens, viruses constitute the most common ones,Due to the continuous spreading of viral infections with the rise in death numbers, new therapeutics development is urgent, as in general, some lethal viruses have no specific antiviral drugs or vaccines. So, this review may serve as an impetus for researchers working in the field of medical microbiology, vaccination, and antiviral drug design by discussing the most recent information about the antiviral action of AmB, as well as trying to provide a deeper understanding of major properties, mechanisms of action, immune system responses, and antimicrobial efficiency of AmB.
Conclusion: Since AmB is expected to alter the structure of the viral envelope, membrane integrity of cells, and internal cellular organelles, besides its other unique properties, such as host immunomodulatory effects, this review suggested that AmB as an effective anti-fungi drug may hold the promise of formulating a novel therapeutic option to treat many dangerous viruses, including those for treating which there are no active drugs or vaccines.
Collapse
|
7
|
Franco CH, Warhurst DC, Bhattacharyya T, Au HYA, Le H, Giardini MA, Pascoalino BS, Torrecilhas AC, Romera LMD, Madeira RP, Schenkman S, Freitas-Junior LH, Chatelain E, Miles MA, Moraes CB. Novel structural CYP51 mutation in Trypanosoma cruzi associated with multidrug resistance to CYP51 inhibitors and reduced infectivity. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:107-120. [PMID: 32688218 PMCID: PMC7369355 DOI: 10.1016/j.ijpddr.2020.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022]
Abstract
Ergosterol biosynthesis inhibitors, such as posaconazole and ravuconazole, have been proposed as drug candidates for Chagas disease, a neglected infectious tropical disease caused by the protozoan parasite Trypanosoma cruzi. To understand better the mechanism of action and resistance to these inhibitors, a clone of the T. cruzi Y strain was cultured under intermittent and increasing concentrations of ravuconazole until phenotypic stability was achieved. The ravuconazole-selected clone exhibited loss in fitness in vitro when compared to the wild-type parental clone, as observed in reduced invasion capacity and slowed population growth in both mammalian and insect stages of the parasite. In drug activity assays, the resistant clone was above 300-fold more tolerant to ravuconazole than the sensitive parental clone, when the half-maximum effective concentration (EC50) was considered. The resistant clones also showed reduced virulence in vivo, when compared to parental sensitive clones. Cross-resistance to posaconazole and other CYP51 inhibitors, but not to other antichagasic drugs that act independently of CYP51, such as benznidazole and nifurtimox, was also observed. A novel amino acid residue change, T297M, was found in the TcCYP51 gene in the resistant but not in the sensitive clones. The structural effects of the T297M, and of the previously described P355S residue changes, were modelled to understand their impact on interaction with CYP51 inhibitors. A ravuconazole-resistant T. cruzi clone presented reduced in vitro and in vivo fitness. The ravuconazole-resistant clone presented cross-resistance to other CYP51 inhibitors. There was no cross-resistance to benznidazole and nifurtimox. Resistance is associated with a novel structural mutation in the TcCYP51 protein.
Collapse
Affiliation(s)
- Caio H Franco
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - David C Warhurst
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Tapan Bhattacharyya
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ho Y A Au
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Hai Le
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Miriam A Giardini
- Institut Pasteur Korea, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Bruno S Pascoalino
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | - Ana Claudia Torrecilhas
- Department of Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Lavinia M D Romera
- Department of Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Rafael Pedro Madeira
- Department of Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology, UNIFESP, São Paulo, SP, Brazil
| | - Lucio H Freitas-Junior
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Institut Pasteur Korea, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Michael A Miles
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Carolina B Moraes
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Institut Pasteur Korea, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea; Department of Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil.
| |
Collapse
|
8
|
Islan GA, Durán M, Cacicedo ML, Nakazato G, Kobayashi RKT, Martinez DST, Castro GR, Durán N. Nanopharmaceuticals as a solution to neglected diseases: Is it possible? Acta Trop 2017; 170:16-42. [PMID: 28232069 DOI: 10.1016/j.actatropica.2017.02.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 12/05/2016] [Accepted: 02/10/2017] [Indexed: 12/22/2022]
Abstract
The study of neglected diseases has not received much attention, especially from public and private institutions over the last years, in terms of strong support for developing treatment for these diseases. Support in the form of substantial amounts of private and public investment is greatly needed in this area. Due to the lack of novel drugs for these diseases, nanobiotechnology has appeared as an important new breakthrough for the treatment of neglected diseases. Recently, very few reviews focusing on filiarasis, leishmaniasis, leprosy, malaria, onchocerciasis, schistosomiasis, trypanosomiasis, and tuberculosis, and dengue virus have been published. New developments in nanocarriers have made promising advances in the treatment of several kinds of diseases with less toxicity, high efficacy and improved bioavailability of drugs with extended release and fewer applications. This review deals with the current status of nanobiotechnology in the treatment of neglected diseases and highlights how it provides key tools for exploring new perspectives in the treatment of a wide range of diseases.
Collapse
Affiliation(s)
- German A Islan
- Laboratorio de Nanobiomateriales, CINDEFI, Depto. de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET (CCT La Plata), 1900, La Plata, Argentina
| | - Marcela Durán
- Urogenital Carcinogenesis: Urogenitaland Immunotherapy Laboratory, Institute of Biology, University of Campinas, Campinas, SP, Brazil,; NanoBioss, Chemistry Institute, University of Campinas, SP, Brazil
| | - Maximiliano L Cacicedo
- Laboratorio de Nanobiomateriales, CINDEFI, Depto. de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET (CCT La Plata), 1900, La Plata, Argentina
| | - Gerson Nakazato
- Department of Microbiology, Biology Sciences Center, Londrina State University (UEL), Londrina, Brazil
| | - Renata K T Kobayashi
- Department of Microbiology, Biology Sciences Center, Londrina State University (UEL), Londrina, Brazil
| | - Diego S T Martinez
- NanoBioss, Chemistry Institute, University of Campinas, SP, Brazil; Brazilian Nanotechnology National Laboratory (LNNano-CNPEM), Campinas, SP, Brazil
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Depto. de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET (CCT La Plata), 1900, La Plata, Argentina.
| | - Nelson Durán
- NanoBioss, Chemistry Institute, University of Campinas, SP, Brazil; Brazilian Nanotechnology National Laboratory (LNNano-CNPEM), Campinas, SP, Brazil; Biological Chemistry Laboratory, Institute of Chemistry, University of Campinas, Campinas, SP. Brazil.
| |
Collapse
|
9
|
The production of reactive oxygen species is a universal action mechanism of Amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug. Antimicrob Agents Chemother 2014; 58:6627-38. [PMID: 25155595 DOI: 10.1128/aac.03570-14] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Amphotericin B (AMB) is an antifungal drug that binds to ergosterol and forms pores at the cell membrane, causing the loss of ions. In addition, AMB induces the accumulation of reactive oxygen species (ROS), and although these molecules have multiple deleterious effects on fungal cells, their specific role in the action mechanism of AMB remains unknown. In this work, we studied the role of ROS in the action mechanism of AMB. We determined the intracellular induction of ROS in 44 isolates of different pathogenic yeast species (Candida albicans, Candida parapsilosis, Candida glabrata, Candida tropicalis, Candida krusei, Cryptococcus neoformans, and Cryptococcus gattii). We also characterized the production of ROS in AMB-resistant isolates. We found that AMB induces the formation of ROS in all the species tested. The inhibition of the mitochondrial respiratory chain by rotenone blocked the induction of ROS by AMB and provided protection from the killing action of the antifungal. Moreover, this phenomenon was absent in strains that displayed resistance to AMB. These strains showed an alteration in the respiration rate and mitochondrial membrane potential and also had higher catalase activity than that of the AMB-susceptible strains. Consistently, AMB failed to induce protein carbonylation in the resistant strains. Our data demonstrate that the production of ROS by AMB is a universal and important action mechanism that is correlated with the fungicidal effect and might explain the low rate of resistance to the molecule. Finally, these data provide an opportunity to design new strategies to improve the efficacy of this antifungal.
Collapse
|
10
|
Mesa-Arango AC, Scorzoni L, Zaragoza O. It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Front Microbiol 2012; 3:286. [PMID: 23024638 PMCID: PMC3441194 DOI: 10.3389/fmicb.2012.00286] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/21/2012] [Indexed: 11/26/2022] Open
Abstract
“Amphotericin B acts through pore formation at the cell membrane after binding to ergosterol” is an accepted dogma about the action mechanism of this antifungal, and this sentence is widely found in the literature. But after 60 years of investigation, the action mechanism of Amphotericin B is not fully elucidated. Amphotericin B is a polyene substance that is one of the most effective drugs for the treatment of fungal and parasite infections. As stated above, the first mechanism of action described was pore formation after binding to the ergosterol present in the membrane. But it has also been demonstrated that AmB induces oxidative damage in the cells. Moreover, amphotericin B modulates the immune system, and this activity has been related to the protective effect of the molecule, but also to its toxicity in the host. This review tries to provide a general overview of the main aspects of this molecule, and highlight the multiple effects that this molecule has on both the fungal and host cells.
Collapse
Affiliation(s)
- Ana C Mesa-Arango
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III Majadahonda, Madrid, Spain ; Group of Investigative Dermatology, University of Antioquia Medellín, Colombia
| | | | | |
Collapse
|
11
|
Kovacic P, Cooksy A. Novel, unifying mechanism for amphotericin B and other polyenedrugs: electron affinity, radicals, electron transfer, autoxidation, toxicity, and antifungal action. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md00267a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Cencig S, Coltel N, Truyens C, Carlier Y. Parasitic loads in tissues of mice infected with Trypanosoma cruzi and treated with AmBisome. PLoS Negl Trop Dis 2011; 5:e1216. [PMID: 21738811 PMCID: PMC3125148 DOI: 10.1371/journal.pntd.0001216] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/13/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chagas disease is one of the most important public health problems and a leading cause of cardiac failure in Latin America. The currently available drugs to treat T. cruzi infection (benznidazole and nifurtimox) are effective in humans when administered during months. AmBisome (liposomal amphotericin B), already shown efficient after administration for some days in human and experimental infection with Leishmania, has been scarcely studied in T. cruzi infection. AIMS This work investigates the effect of AmBisome treatment, administered in 6 intraperitoneal injections at various times during acute and/or chronic phases of mouse T. cruzi infection, comparing survival rates and parasitic loads in several tissues. METHODOLOGY Quantitative PCR was used to determine parasitic DNA amounts in tissues. Immunosuppressive treatment with cyclophosphamide was used to investigate residual infection in tissues. FINDINGS Administration of AmBisome during the acute phase of infection prevented mice from fatal issue. Parasitaemias (microscopic examination) were reduced in acute phase and undetectable in chronic infection. Quantitative PCR analyses showed significant parasite load reductions in heart, liver, spleen, skeletal muscle and adipose tissues in acute as well as in chronic infection. An earlier administration of AmBisome (one day after parasite inoculation) had a better effect in reducing parasite loads in spleen and liver, whereas repetition of treatment in chronic phase enhanced the parasite load reduction in heart and liver. However, whatever the treatment schedule, cyclophosphamide injections boosted infection to parasite amounts comparable to those observed in acutely infected and untreated mice. CONCLUSIONS Though AmBisome treatment fails to completely cure mice from T. cruzi infection, it impedes mortality and reduces significantly the parasitic loads in most tissues. Such a beneficial effect, obtained by administrating it over a short time, should stimulate studies on using AmBisome in association with other drugs in order to shorten recovery from T. cruzi infection.
Collapse
Affiliation(s)
- Sabrina Cencig
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Coltel
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| | - Carine Truyens
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| | - Yves Carlier
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
- * E-mail:
| |
Collapse
|
13
|
Haido RM, Esteves MJ, Barreto-Bergter E. Amphotericin B-induced carbohydrate changes on the Trypanosoma cruzi surface membrane. THE JOURNAL OF PROTOZOOLOGY 1992; 39:609-12. [PMID: 1522543 DOI: 10.1111/j.1550-7408.1992.tb04859.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Changes in the cell surface carbohydrates of Trypanosoma cruzi epimastigotes induced by Amphotericin B (AmB) were assessed by chemical methods and by agglutination assay employing a panel of highly purified lectins of various sugar specificities. Escherichia coli K12 with mannose-sensitive fimbriae was also used as an agglutination probe. Amphotericin B caused a decrease in the total carbohydrate content of all glycoconjugate fractions isolated. Exposure to AmB strongly affected the mannose/galactose ratio (1:5) in the CHCl3/methanol/H2O soluble fraction. These sugars in 1.4:1 ratio were the major hexose components of control cells. The decrease in the mannose content (48 to 15%) after AmB treatment agrees with the marked decrease in the T. cruzi cell surface receptors for fimbriated E. coli K12. Also, an increase in the galactose content (74%) as compared with control cells (34%) is in agreement with the peanut agglutinin and Euonymus europaeus lectins agglutination results. Differences in the cell surface carbohydrates induced by AmB could be associated with alterations in the membrane structure and organization.
Collapse
Affiliation(s)
- R M Haido
- Department of Microbiology and Parasitology, University of Rio de Janeiro, Brazil
| | | | | |
Collapse
|
14
|
Abstract
Over the last few years a remarkable progress has been made in the understanding of parasites biochemistry, molecular biology, and immunology. This progress is especially encouraging in that emphasis on drug development is shifting from random screening towards a more rational approach. A number of peculiar aspects characteristic of parasites which are not present in other organisms and that might be exploitable for the design of specific agents have been described recently. One of these aspects is their deficiency in defense mechanisms against oxygen toxicity. Catalase is absent in many parasites. Distinct superoxide dismutases have been detected and specific inhibitors of these enzymes have been investigated. Glutathione is absent in some anaerobic protozoa. Peroxidase and reductase activities dependent on a glutathione-spermidine cofactor termed trypanothione have been detected in several trypanosomatids and apparently replace the glutathione peroxidase-glutathione reductase system of other eukaryotic cells. Free radical intermediates have been shown to be involved in the reaction of enzymes present in anaerobic protozoa. In addition, a number of antiparasitic agents have been shown to exert their actions through a free radical metabolism: nitro compounds used against trypanosomatids, anaerobic protozoa and helminths; crystal violet used in blood banks to prevent blood transmission of Chagas' disease; the antimalarial primaquine, chloroquinine, and quinhasou; and quinones active in vitro and in vivo against different parasites.
Collapse
Affiliation(s)
- R Docampo
- Rockerfeller University, New York, NY 10021
| |
Collapse
|